立体几何练习题及答案
立体几何练习题及答案

立体几何练习题及答案在学习立体几何的过程中,练习题对于巩固知识、提高应用能力起着至关重要的作用。
本文将为大家提供一些立体几何的练习题,并给出详细的答案解析,以帮助读者更好地理解和掌握立体几何的知识。
一、球的表面积和体积1. 某个球的半径为3cm,求其表面积和体积。
解析:球的表面积公式为S = 4πr²,体积公式为V = (4/3)πr³。
将半径r代入公式进行计算即可。
表面积:S = 4π(3)² = 4π(9) ≈ 113.04cm²体积:V = (4/3)π(3)³ = (4/3)π(27)≈ 113.04cm³因此,该球的表面积约为113.04cm²,体积约为113.04cm³。
二、立方体的表面积和体积2. 一个立方体的边长为5cm,求其表面积和体积。
解析:立方体的表面积公式为S = 6a²,体积公式为V = a³。
将边长a代入公式进行计算即可。
表面积:S = 6(5)² = 6(25) = 150cm²体积:V = (5)³ = 5(5)(5) = 125cm³因此,该立方体的表面积为150cm²,体积为125cm³。
三、圆柱的表面积和体积3. 一个圆柱的底面半径为4cm,高度为10cm,求其表面积和体积。
解析:圆柱的表面积公式为S = 2πr² + 2πrh,体积公式为V = πr²h。
将底面半径r和高度h代入公式进行计算即可。
表面积:S = 2π(4)² + 2π(4)(10) = 2π(16) + 2π(40) ≈ 321.2cm²体积:V = π(4)²(10) = π(16)(10) ≈ 502.4cm³因此,该圆柱的表面积约为321.2cm²,体积约为502.4cm³。
高三数学立体几何专项练习题及答案

高三数学立体几何专项练习题及答案一、选择题1. 下列哪个几何体的所有面都是三角形?A. 正方体B. 圆柱体C. 正六面体D. 球体答案:C2. 一个有8个面的多面体,其中6个面是正方形,另外2个面是等边三角形,它的名字是?A. 正八面体B. 正十二面体C. 正二十面体D. 正二十四面体答案:C3. 空间中任意一点到四个角落连线的垂直距离相等的四棱锥称为?A. 正四棱锥B. 圆锥台C. 四棱锥D. 无法确定答案:C4. 任意多面体的面数与顶点数、棱数的关系是?A. 面数 + 顶点数 = 棱数 + 2B. 面数 + 棱数 = 顶点数 + 2C. 顶点数 + 棱数 = 面数 + 2D. 顶点数 + 面数 = 棱数 + 2答案:A5. 求下列多面体的棱数:(1)正六面体(2)正八面体(3)正十二面体答案:(1)正六面体的棱数为 12(2)正八面体的棱数为 24(3)正十二面体的棱数为 30二、填空题1. 下列说法正确的是:一棱锥没有底面时,它的底面是一个______。
答案:点2. 铅垂线是指从一个多面体的一个顶点到与它相对的棱上所作的垂线,它与该棱垂足的连线相交于该多面体的______上。
答案:中点3. 对正八面体,下列说法不正确的是:_____条对角线与_____两两垂直。
答案:六,相邻面三、计算题1. 一个棱锥的底面是一个边长为6cm的正三角形,其高为8cm。
求棱锥体积。
解答:底面积 S = (1/2) ×底边长 ×高 = (1/2) × 6 × 8 = 24 cm²棱锥体积 V = (1/3) × S ×高 = (1/3) × 24 × 8 = 64 cm³所以,棱锥的体积为64 cm³。
2. 一个正四棱锥的底面是一个边长为10cm的正方形,其高为12cm。
求四棱锥的体积。
解答:底面积 S = 边长² = 10² = 100 cm²四棱锥体积 V = (1/3) × S ×高 = (1/3) × 100 × 12 = 400 cm³所以,四棱锥的体积为400 cm³。
高中数学立体几何专项练习题及答案

高中数学立体几何专项练习题及答案一、选择题1. 下面哪个选项不是描述柱体的特点?A. 体积恒定B. 底面形状不限C. 侧面是矩形D. 顶面和底面平行答案:A2. 如果一个四面体的一个顶点的对边垂直于底面,那么这个四面体是什么类型?A. 正方形四面体B. 倒立四面体C. 锥体D. 正方锥体答案:C3. 以下哪个选项正确描述了一个正方体的特点?A. 全部面都是正方形B. 12 条棱长度相同C. 8 个顶点D. 6 个面都是正方形答案:D4. 若长方体的高度是 6cm,底面积是 5cm²,底面对角线长为 a cm,那么 a 的值为多少?A. √11B. √29C. √31D. √41答案:C二、填空题1. 一个正方体的棱长为 4cm,它的体积是多少?答案:64cm³2. 一个球的表面积是100π cm²,那么它的半径是多少?答案:5cm3. 一个圆柱体的底面半径为 3cm,高度为 8cm,它的体积是多少?答案:72π cm³4. 一个圆锥的底面半径为 6cm,高度为 10cm,它的体积是多少?答案:120π cm³三、计算题1. 一个四棱锥的底面是边长为 5cm 的正方形,高度为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:5cm * 5cm = 25cm²再计算体积:25cm² * 8cm / 3 = 200cm³2. 一个圆柱体的底面直径为 12cm,高度为 15cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面半径:12cm / 2 = 6cm再计算底面积:π * 6cm * 6cm = 36π cm²最后计算体积:36π cm² * 15cm = 540π cm³3. 一个球的直径为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算半径:8cm / 2 = 4cm再计算体积:4/3 * π * 4cm * 4cm * 4cm = 268.08π cm³4. 一个圆锥的底面半径为 10cm,高度为 20cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:π * 10cm * 10cm = 100π cm²最后计算体积:100π cm² * 20cm / 3 = 2000π cm³四、解答题1. 若一个长方体的长度、宽度、高度分别为 a、b、c,它的表面积为多少?答案:单位为 cm²,计算过程如下:首先计算侧面积:2 * (a * b + a * c + b * c)再计算底面积:a * b最后计算表面积:2 * (a * b + a * c + b * c) + a * b2. 一个四棱锥的底面为边长为 a 的正三角形,高度为 h,求这个四棱锥的体积。
高中数学立体几何小题100题(含答案与解析)

立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C。
立体几何大题训练及答案

1、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,(1)线段的中点为,线段的中点为,求证:;(2)求直线与平面所成角的正切值.解:(1)取的中点为,连,,则,面/面, .............. 分5(2)先证出面,.............. 分8为直线与平面所成角,................ 分11................ 分142、己知多面体ABCDE中,DE平面ACD,, AC=AD=CD=DE=2 AB =1, O 为CD 的中点.(1)求证:AO平面CDE(2)求直线BD与平面CBE所成角的正弦值3、如图,在△中,,,点在上,交于,交于•沿将△翻折成△,使平面平面;沿将△翻折成△ ,使平面平面.( 1 )求证:平面;(2 )若,求二面角的平面角的正切值.解:(1)因为,平面,所以平面.因为平面平面,且,所以平面. …2分同理,平面,所以,从而平面. …4分所以平面平面,从而平面.2)因为,,所以,,,.过E作,垂足为M,连结.由( 1)知,可得,所以,所以.所以即为所求二面角的平面角,可记为.在Rt△中,求得,所以. …4、如图,平面ABC,平面BCD, DE=DA=AB=AC,. M(1) 求直线EM与平面BCD所成角的正弦值;(2) P为线段DM上一点,且DM,求证:AP//DE. (12)分15 分为BC中点.解:(1) 平面,为在平面上的射影,为与平面所成角. …分2平面,, 设,又,. 在△中,,,又为中点,, ,.…5分在△中,,.……………………分 (7)2),为中点, .又平面, ,平面.又平面,,分11 …分9又,平面. .............. 分13又平面,. .............. 分145、如图,已知ABCD是边长为1的正方形,AF丄平面ABCD, CE// AF,(1)证明:BD丄EF;(2)若AF= 1,且直线BE与平面ACE所成角的正弦值为,求的值.解:(1)连结BD、AC,交点为O. •/ ABCD是正方形/• BD丄AC ……2分•/ AF丄平面ABCD A AF丄BD ……4分••• BD丄平面ACEF (6)A BD丄EF ……7分(2)连结0E,由(1)知,BD丄平面ACEF所以/ BEO即为直线BE与平面ACE所成的角. ……10分•/ AF丄平面ABCD, CE// AF , • CE丄平面ABCD, CE1 BC,•/ BC =1 , AF= 1 ,贝U CE= , BE= , B0=,• RtA BEO 中,,…1盼因为解得. …… 15分6、如图在几何体中平面ABC分别是的中点.(1) 求证:平面CDE;(2) 求二面角的平面角的正切值.解:(1)连接ACR1R交EC于点F ,由题意知四边形ACCR1RE是矩形,贝U F是ACR1R的中连接DF, •/ D是AB的中点,•ABCR1R勺中位线,a BCR1R//DF, 4 分•/ BCR1RF面EDC DF平面EDC,• BCR1R//平面CDE. 7 分(2)作AH丄直线CD,垂足为H ,连接HE,•/ AAR1R丄平面ABC, • AAR1RL DC,CD丄平面AHE,CD丄EH ,••• AHE是二面角E -CD -A的平面角. 11分•/ D是AB的中点,• AH等于点B到CD的距离,在厶BCD中,求得:AH=, 在厶AEH中,即所求二面角的正切值为.7、如图,已知平面与直线均垂直于所在平面,且,( 1 )求证:平面;(2)若,求与平面所成角的正弦值.解:(1)证明:过点作于点,•••平面丄平面,•平面……2分又•••丄平面•- 〃 , ......... 分又•••平面• 〃平面 ......... 分(2) •••平面•,又•/••………………分8•点是的中点,连结,则•平面•//,•四边形是矩形………………分10设得:,又•••,•,从而,过作于点,则:•是与平面所成角…………………………………………分…… •,• 与平面所成角的正弦值为…………………………分14&如图,在直三棱柱中,是等腰直角三角形,,侧棱AA仁2, D, E分别为点,点E在平面ABD上的射影是的重心.(1) 求证:DE// 平面ACB;(2) 求A1B与平面ABD所成角的正弦值.12CC1 与A1B 的中9、如图,在侧棱垂直于底面的三棱柱ABC-A1B1中,底面△ ABC为等腰直角三角形,/ B=90°D为棱BB1的中点。
立体几何大题练习(附答案)

1.(本小题总分值14分)如图,在四棱锥 P ABCD 中,底面ABCD 是正方形,侧棱PD 底面ABCD, PD DC 1, E 是PC 的中点,作EF PB 交PB 于点F.(I)证实: PA //平面EDB; (II)证实:PB ,平面EFD; (III)求三棱锥P DEF 的体积.2 .(本小题总分值(m)求三棱锥(I )求证:B 118.(本小题总分值14分)如右图,在直角梯形ABCD中, B=90 °,1DC//AB,BC=CD= -AB=2 , G 为线段AB 的中点,将VADG 沿GD 2折起,使平面ADG 平面BCDG,得到几何体A-BCDG.(1)假设E,F分别为线段AC,AD的中点,求证:EF//平面ABG;(2)求证:AG 平面BCDG;(3)求V C-ABD 的值.4、(本小题总分值14分)如图4, AA是圆柱的母线, AB是圆柱底面圆的直径,C是底面圆周上异于A,B的任意一点, AA AB 2.(1)求证:BC 平面A〔AC ;(2)求三棱锥A ABC的体积的最大值.图4C (n ) 求证:EF 面PAC;〔出〕求三棱锥B-PAC的体积.6 .〔本小题总分值14分〕如图,平行四边形ABCD中,CD 1, BCD 60,且BD CD ,正方形ADEF 和平面ABCD成直二面角,G, H是DF , BE的中点.〔I〕求证:BD 平面CDE ;〔n〕求证:GH 〃平面CDE;〔出〕求三棱锥D CEF的体积.7.〔本小题总分值14分〕右图是一个直三棱柱〔以A i B i C i为底面〕被一平面所截得到的几何体,截面为ABC.A i B i = B i C i = l, ZAi B i C i = 90 ,AA i = 4,BB i=2, CC i=3.(I)设点O是AB的中点,证实:OC//平面A i B i C i;(II)求此几何体的体积.8 .(本小题总分值i4分)如图,在正方体ABCD—A i B i C i D i中,E、F为棱AD、AB的中点.(i )求证:EF//平面CB i D i;(2)求证:平面CAA i C■平面CB i D i.9 .(本小题总分值i4分)如图i ,在直角梯形ABEF中(图中数字表示线段的长度),将直角梯形DCEF沿CD折起,使平面DCEF 平面ABCD,连结局部线段后围成一个空间几何体,如图2.(I)求证:BE〃平面ADF ;(n)求三棱锥F BCE的体积.图图-10 .(本小题总分值14分)在直三棱柱ABC ABG中,AD 平面ABC,其垂足D落在直线A〔B上.(I )求证:BC A1B ;(n)假设AD J3, AB BC 2, P为AC的中点,求三棱锥P ABC的体积.B1…1 .解:(1)证实:连结AC, AC交BD于O,连结EO••・底面ABCD是正方形,,点O是AC的中点在PAC中,EO是中位线,,PA // EO而EO 平面EDB且PA 平面EDB,所以,PA //平面EDB.(2)证实:PD,底面ABCD 且DC 底面ABCD,,PD DCPD=DC,可知PDC是等腰直角三角形,而DE是斜边PC的中线,.DE PC ①同样由PD,底面ABCD,得PDXBC•••底面ABCD是正方形,有DCXBC,,BC,平面PDC 而DE 平面PDC, BC DE ②由①和②推得DE 平面PBC而PB 平面PBC, . DE PB又EF PB 且DE EF E,所以PB ,平面EFD................................ 8分(3) . PD DC 1,由 PD ,平面 ABCD,PDXBC,又.BCXCD, PDACD = D,BC± PC.-CL 2f在Z^BDE 中,DE -------- , BD22221 DE2 BE 2 BD 2 — 2 而由(2), PB,平面EFD,••.BC,平面 PCD,3 c-一 2 0,即 DEL BE.2PBXDE,因而 DEL 平面 BEF,2在 RtABPD 中,BF BP BD , BF1 1 . V DE EF PF 32 2.解:(I)证实:连结 BD ,那么 BD // B 1D 1,ABCD 是正方形,,AC BD. CE 面 ABCD,,CE BD .又 A .CE C, BD 面 ACE. . AE 面 ACE, . . BD AE ,• .B 1D 1 AE .(n)证实:作BB 1的中点F,连结AF 、CF 、EF.• •・E 、F 是 CC 、BB 1 的中点,,CE?B 1F , • •・四边形B 〔FCE 是平行四边形,, CF// B 1E .E,F 是 CC 、BB 1 的中点,,EF//BC ,又 BC//AD , EF //AD ...............14分136;Rt 革EFEF. AF I CF C , B 1EI ED E ,,平面 ACF 〃面 B 1DE .又 AC 平面 ACF , . . AC 〃面 B 1DE .4证实:二.是底面圆周上异于 A, B 的任意 柱底面圆的直径, •••BCXAC,……2 分,.AA1,平面 ABC , BC i 平面 ABC, . AAiXBC,…… 4 分•.AA i AAC=A , AA 1 i 平面 AA i C, AC i 平面 AA1 C, . EC ,平面AA1C.……6分 (2)解法 1 :设 AC=x ,在 RtMBC 中,BC = J AB 2 AC 2 h x 2(o<x<2),……7 分....1 一 … 1 11 -~~2故 V ARABC = —S VABC AA 1— — AC BC AA 1 _x \ 4x (0<x<2),13 3 23即 V A 「ABC =4“ x 2 1 \/x 2 (4 x 2):J (x 2~2)2~4 . ……11 分 23 33,-0<x<2 , 0<x 2<4 ,「.当 x 2=2,即 x = 五时, 三棱锥A 1-ABC 的体积的最大值为 -.……14分35(1)证实:在三角形 PBC 中,E 是PC 中点.F 为PB 中点所以 EF//BC , BC 面ABC, EF 面ABC, 所以 EF 〃面ABC ……4分,四边形ADEF 是平行四边形,AF // ED ,(3)S ABD - AB AD 2 •2VA BDE VE ABD1S ~ SABDCE1S3 SABDCE2 3又AB 是.O 的直径,所以BC AC …… ⑵ ……7分 由(1) (2)得 BC 面PAC 因EF//BC BC 面PAC ,所以EF 面PAC ……9分(出)因PA OO 所在的平面,AC 是PC 在面ABC 内的射影,1V B PACV P ABC S ABC PA37 . (1)证实:作OD //.交片81于口,连C 1D .那么 OD // BB 1 // CC 1 .作BH(n) PA BC面ABC 面ABCBC PA所成角 PCA 450,PA=AC11分在Rt ABC 中,E 是PC 中点,BAC -, AC BC 2412分Q O 是AB 的中点,OD1-(AA 1 BB 1) 3 CC 1 .2那么ODCQ 是平行四边形,OC // C 1D .……4分Q C 1D 平面 C 1B 1A 且 OC 平面C1B1A ,OC // 面 A 1B 1C 1.(2)如图,过B 作截面BA 2c 2CC 1 于 A 2,//面ABG,分别交AA1,Q CC 1 面 BA 2c 2, CC 1BH ,那么BH 平面AC .又Q A 2B AB 1 1 , BC 2B 1c l 1 , BH --, 2V B AA 2C 2C1 S A A 2c 2c3BH 1 1 厂J.21 (1 2) '2 -3 2 22PCA 即为PC 与面ABC'.2----- …14分3所求几何体体积为:V V B AACC . 八八 2 J 2 J8 .〔本小题总分值14分〕折叠之后平行关系不变. BC 平面ADF , AD 平面 • .BC//平面 ADF ,V AB|C 1 A2BC 21八, SA A 1B 1C 1BB 1 - 2 1〔1〕证实:连结 BD .在长方体AC i 中, 对角线BD//B 1D 1. 又Q E 、F 为棱AD 、AB 的中点, ・.EF //BD . . .EF //BD 1. 又 B 1D 1 平面 CBD 1, EF 平面 CB 1D 1,,EF//平面 CB 1D 1. (2) Q 在长方体 AC [中,AA 1,平面 A 1B 1C 1D 1,而 B 1D 1 平面 A 1B 1C 1D 1, . AA iX B i D i . 又Q 在正方形 A 1B 1C 1D 1 中,A 1C 1 XB 1D 1, .. B 1D 1,平面 CAA 1C 1. 又Q B 1D 1 平面 CB 1D 1,,平面 CAA 1C 1,平面 CB 〔D 1. 14分9 .〔本小题总分值14分〕 证实:〔I 〕证法一:取 DF 中点为G,连结AG, EG 中, 八 1一 八 一八.CE — DF ,,EG 〃CD 且 EG CD 2 又•••AB 〃CD 且AB CD,,EG 〃AB 且 EG AB四边形ABEG 为平行四边形,,BE//AG. BE 平面ADF , AG 平面 ADF,. ・BE 〃平面 ADF ,证法二:由图1可知BC // AD , CE//DFV A 1B 1C 1 A 2BC 2同理CE〃平面ADF ................... 4分. BCI CE C , BC , CE 平面BCE ,,平面BCE 〃平面ADF ......... 6分. BE 平面BCE ,,BE 〃平面ADF ......... 7 分(II)解法1:V F BCE V B CEF .................... 8分由图1可知BC CD.平面DCEF 平面ABCD ,平面DCEF I平面ABCD CDBC 平面ABCD,..BC 平面DCEF ,1 1由图 1 可知DC CE 1 S CEF -CE DC .................. ........... 12 分2 2V F BCE V B CEF 3 BC S CEF解法2:由图1可知CD BC , CD CEBCI CE C. .CD 平面BCE ,. DF //DC点F到平面BCE的距离等于点D到平面BCE的距离为1 ,由图1可知BC CE 1 S BCE 1-BC CE 2BCE 1 … c 13 CD S BCE 6解法3:过E作EH FC ,垂足为H , ....................... 8分由图1可知BC CD•••平面DCEF 平面ABCD,平面DCEFI 平面ABCD CD11分A B11分BC 平面 ABCD,. BC 平面 DCEF ,EH 平面 DCEF.BC EH,EH 平面BCF 1 、5S BCF -BC DF —, .......... 12 分 2 2又 BD CD. .BD ¥® CDE(n )证实:连结 EA ,那么G 是AE 的中点••• EAB 中,GH // AB又 AB//CD . GH //CD . .GH 〃平面CDE 11分 由 BC FC , FC .DC 2 DF 2 5, 在 CEF 中,由等面积法可得 EHV F BCE V E BCF EH S BCF13分 14分 6.(本小题总分值14分)(I )证实:平面 ADEF 平面ABCD ,交线为ADED AD• .ED 平面ABCDED BD2〔出〕解:设Rt BCD中BC边上的高为h1 1 -依题意:一2 h 1 32 23• • h —2_ ___ _____ .. 一、. .3即:点C到平面DEF的距离为- ---------------- 10•V D CEF V C DEF .32,33分------- 14 分。
立体几何练习题(含答案)

立几测001试一、选择题:1.a 、b 是两条异面直线,下列结论正确的是( )A .过不在a 、b 上的任一点,可作一个平面与a 、b 都平行B .过不在a 、b 上的任一点,可作一条直线与a 、b 都相交C .过不在a 、b 上的任一点,可作一条直线与a 、b 都平行D .过a 可以且只可以作一个平面与b 平行2.空间不共线的四点,可以确定平面的个数为 ( )A.0 B.1 C.1或4 D.无法确定3.在正方体1111ABCD A B C D -中,M 、N 分别为棱1AA 、1BB 的中点,则异面直线CM 和1D N 所成角的正弦值为 ( ) A.19 B.2345 254.已知平面α⊥平面β,m 是α内的一直线,n 是β内的一直线,且m n ⊥,则:①m β⊥;②n α⊥;③m β⊥或n α⊥;④m β⊥且n α⊥。
这四个结论中,不正确...的三个是 ( )A.①②③ B.①②④ C.①③④ D.②③④5.一个简单多面体的各个面都是三角形,它有6个顶点,则这个简单多面体的面数是( ) A. 4 B. 5 C. 6 D. 86. 在北纬45°的纬度圈上有甲、乙两地,两地经度差为90°,则甲、乙两地最短距离为(设地球半径为R )( ) A.R π42 B. R 3π C. R 2π D. 3R7. 直线l ⊥平面α,直线m ⊂平面β,有下列四个命题(1)m l ⊥⇒βα// (2)m l //⇒⊥βα (3)βα⊥⇒m l // (4)βα//⇒⊥m l 其中正确的命题是( )A. (1)与(2)B. (2)与(4)C. (1)与(3)D. (3)与(4)8. 正三棱锥的侧面均为直角三角形,侧面与底面所成角为α,则下列不等式成立的是( ) A. 60πα<< B.46παπ<< C.34παπ<< D.23παπ<<9.ABC ∆中,9AB =,15AC =,120BAC ∠=︒,ABC ∆所在平面α外一点P 到点A 、B 、C 的距离都是14,则P 到平面α的距离为( )A.7 B.9 C.11 D.1310.在一个45︒的二面角的一个平面内有一条直线与二面角的棱成角45︒,则此直线与二面角的另一个平面所成角的大小为 ( )A.30︒ B.45︒ C.60︒ D.90︒11. 如图,E, F 分别是正方形SD 1DD 2的边D 1D,DD 2的中点, 沿SE,SF,EF 将其折成一个几何体,使D 1,D,D 2重合,记作 D.给出下列位置关系:①SD ⊥面DEF; ②SE ⊥面DEF;③DF ⊥SE; ④EF ⊥面SED,其中成立的有: ( )A. ①与② B. ①与③ C. ②与③ D. ③与④12. 某地球仪的北纬60度圈的周长为6πcm,则地球仪的表面积为( )A. 24πcm 2B. 48πcm 2C. 144πcm 2D. 288πcm 2二、填空题(本大题共4小题,每小题4分,共16分) 13. 直二面角α—MN —β中,等腰直角三角形ABC 的斜边BC ⊂α,一直角边AC ⊂β,BC 与β所成角的正弦值是46,则AB 与β所成角大小为__________。
高三精选立体几何大题30题(含详细解答)

A BC第1题图ABCD第1题图立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高沿CD 把△ABC折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A,B的位置,使二面角A-CD-B是直二面角?证明你的结论.(2)试在平面ABC上确定一个P,使DP与平面ABC内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值.2.如图,已知正四棱柱ABCD—A1B1C1D1的底面边长为3,侧棱长为4,连结A1B过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E。
(Ⅰ)求证:D1B⊥平面AEC;(Ⅱ)求三棱锥B—AEC的体积;(Ⅲ)求二面角B—AE—C的大小的正弦值.3.如图,正三棱柱ABC—A1B1C1的底面边长为1,点M在BC上,△AMC1是以M为直角顶点的等腰直角三角形.(I)求证:点M为BC的中点;(Ⅱ)求点B到平面AMC1的距离;(Ⅲ)求二面角M—AC1—B 的正切值. 4.如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1,F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求多面体ABCDE的体积;(Ⅲ)求二面角C-BE-D 的正切值.5.已知:ABCD是矩形,设PA=a,PA⊥平面ABCD.M、N分别是AB、PC的中点.(Ⅰ)求证:MN⊥AB;(Ⅱ)若PD=AB,且平面MND⊥平面PCD,求二面角P—CD—A的大小;(Ⅲ)在(Ⅱ)的条件下,求三棱锥D—AMN的体积.6.在正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点。
(I)求二面角B1—MN—B的正切值;(II)证明:PB⊥平面MNB1;(III)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
…数学立体几何练习题一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.如图,在正方体-A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和上的点,A 1M ==,则与平面1C 1C 的位置关系是( ) A .相交 B .平行 C .垂直 D .不能确定2.将正方形沿对角线折起,使平面⊥平面,E 是中点,则AED ∠的大小为( ) A.45 B.30 C.60D.90 ]3.,,是从P 引出的三条射线,每两条的夹角都是60º,则直线与平面所成的角的余弦值为( )A .12B 。
32C 。
33D 。
634.正方体—A 1B 1C 1D 1中,E 、F 分别是1与1的中点,则直线与D 1F 所成角的余弦值是A .15B 。
13C 。
12D 。
325. 在棱长为2的正方体1111D C B A ABCD -中,O 是底面的中心,E 、F 分别是1CC 、的中点,那么异面直线和1FD 所成的角的余弦值等于( ) A .510B .32C .55 D .5156.在正三棱柱1B 1C 1中,若2,A A 1=1,则点A 到平面A 1的距离为( )A .43 B .23 C .433 D .3:7.在正三棱柱1B 1C 1中,若1,则1与C 1B 所成的角的大小为( )ºB. 90ººD. 75º8.设E ,F 是正方体1的棱和D 1C 1的中点,在正方体的12条面对角线中,与截面A 1成60°角的对角线的数目是( ) A .0B .2C .4D .6二、填空题:本大题共6小题,每小题5分,共30分. 9.在正方体-A 1B 1C 1D 1中,M 、N 分别为棱1和1的中点,则〈CM ,1D N 〉的值为.10.如图,正方体的棱长为1,C 、D分别是两条棱的中点, A 、B 、M 是顶点,那么点M 到截面的距离是 .11.正四棱锥的所有棱长都相等,E 为中点,则直线与截面所成的角为 .12.已知正三棱柱1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则直线与平面B 1所成角的正弦值为 .:13.已知边长为的正三角形中,E 、F 分别为和的中点,⊥面,且2,设平面α过且与平行,则与平面α间的距离AB|D CABCDP 为 .14.棱长都为2的直平行六面体—A 1B 1C 1D 1中,∠60°,则对角线A 1C 与侧面1D 1所成角的余弦值为.三、解答题:本大题共6小题,共80分。
解答需写出必要的文字说明、推理过程或计算步骤.15.如图,直三棱柱111C B A ABC -,底面ABC ∆中,==1,90=∠BCA ,棱21=AA ,M 、N 分别A 1B 1、A 1A 是的中点. (1) 求的长; ((2) 求〉〈11,cos CB BA 的值;(3) 求证:N C B A 11⊥.16.如图,三棱锥P —中, ⊥平面,2,,D 是上一点, 且⊥平面.(1) 求证:⊥平面;:(2) 求异面直线与所成角的大小;(3)求二面角的大小的余弦值.xy…17.如图所示,已知在矩形中,1,(a >0),⊥平面,且1.·(1)试建立适当的坐标系,并写出点P 、B 、D 的坐标;(2)问当实数a 在什么范围时,边上能存在点Q , 使得⊥(3)当边上有且仅有一个点Q 使得⊥时, 求二面角的余弦值大小..18. 如图,在底面是棱形的四棱锥ABCD P -中,,,60a AC PA ABC ===∠ aPD PB 2==,点E 在PD 上,且PE :(1) 证明 ⊥PA 平面ABCD ;(2) 求以为棱,EAC 与DAC 为面的二面角θ(3) 在棱上是否存在一点F ,使BF ∥平面AEC 证明你的结论./19. 如图四棱锥P —中,底面是平行四边形,⊥平面,垂足为G ,G 在上,且=4,GD AG 31=,⊥,==2,E 是的中点.QP DCBA C *(1)求异面直线与所成的角的余弦值;(2)求点D到平面的距离;(3)若F点是棱上一点,且⊥,求FCPF的值.]20.已知四棱锥S-的底面是正方形,⊥底面,E是上的任意一点.(1)求证:平面⊥平面;(2)设=4,=2,求点A到平面的距离;&(3)当的值为多少时,二面角B--D的大小为120°理科立体几何训练题(B)答案一、选择题题号<12345678%答案B D D A D B B-CPA G&CDFEA BC DP xyz二、 填空题9. 10. 11. 45° 12. 4513. 3321443三、解答题15解析:以C 为原点建立空间直角坐标系xyz O -. (1) 依题意得B (0,1,0),M (1,0,1).(2) 依题意得A 1(1,0,2),B (0,1,0)1,2).563),2,1,0(),2,1,1(1111===⋅=-=∴CB BA CB BA 1030,cos 11=>=<∴CB BA CB BA . (3) 证明:依题意得C 1(0,0,2),N )0,21,21(),2,1,1(),2,21,21(11=--=∴N C B A . NC B A N C B A 1111,002121⊥∴=++-=⋅∴,16.解析: (1) ∵⊥平面,⊂AB 平面,∴⊥.∵⊥平面,⊂AB 平面,∴⊥.又C CD PC = ,∴⊥平面.(2 由(I) ⊥平面,∵2, 又∵,可求得.以B 为原点, 如图建立坐标系.则A(0,0),B(0,0,0),C (,0,0),P (,0,2).AP =(,-,2),BC =(,0,0). 则AP BC ⋅×+0+0=2. <x'cos AP,BC <>AP BCAP BC ⋅⋅2222⨯ 21.∴异面直线与所成的角为3π.(3)设平面的法向量为 (x ,y ,z ).AB =(0, -,0)AP (,-,2),则AB 0,AP 0.⎧⋅=⎪⎨⋅=⎪⎩mm即0,20.z ⎧=⎪-+=解得0,y x =⎧⎪⎨=⎪⎩令 -1,得 (2,0,-1).由⊥平面易知:平面⊥平面,取的中点E ,连接,则BE →为平面的一个法向量,)0,1,1(22)0,22,22(==→BE ,故平面的法向量也可取为 (1,1,0).cos ,⋅<>=m nm n m n=33232=⨯. ∴二面角的大小的余弦值为33.>17.解析:(1)以A{别为x 、y 、z ∵1,,∴P (0,0,1),B (1,0,0),D (0,a ,0).(2)设点Q (1,x ,0),则(1,,0),(1,,1)DQ x a QP x =-=--.由0DQ QP •=,得x 21=0.显然当该方程有非负实数解时,边上才存在点Q ,使得⊥,故只须⊿2-4≥0.)因a >0,故a 的取值范围为a ≥2.(3)易见,当2时,上仅有一点满足题意,此时1,即Q 为的中点.取的中点M ,过M 作⊥,垂足为N ,连结、.则M (0,1,0),P (0,0,1),D (0,2,0).∵D 、N 、P 三点共线, ∴(0,1,0)(0,1,1)(0,1,)111MD MP MN +λ+λ--λλ===+λ+λ+λ.又(0,2,1)PD =-,且0MN PD •=, 故(0,1,)232(0,2,1)0113-λλ-λ•-==⇒λ=+λ+λ.于是22(0,1,)1233(0,,)25513MN -==+. 故12(1,,)55NQ NM MQ MN AB =+=-+=--.》∵1202()(1)()055PD NQ •=+⨯-+-⨯-=,∴PD NQ ⊥.(资料来源:168) ∴∠为所求二面角的平面角. ∵6cos 6||||NM NQ MNQ NM NQ •∠==注:该题还有很多方法解决各个小问,以上方法并非最简.<18解析:(1)传统方法易得证明(略)(2)传统方法或向量法均易解得 30=θ;(3)解 以A 为坐标原点,直线AP AD ,分别为y 轴、z 轴,过AzyxBCDAPEF 点垂直于平面的直线为x 轴,建立空间直角坐标系(如图).由题设条件,相关各点的坐标为)0,21,23(),0,21,23(),0,0,0(a a C a a B A -)31,32,0(),,0,0(),0,,0(a a E a P a D所以=AE )31,32,0(a a ,=AC )0,21,23(a a ,=AP ),,0,0(a =PC ),21,23(a a a -点,=BP ),21,23(a a a -,设点F 是棱PC 上的==PC PF λ),21,23(a a a λλλ-,其中10<<λ,则))1(),1(21),1(23(λλλ-+-=+=a a a PF BP BF .令AE AC BF 21λλ+=得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=+=-221131)1(3221)1(2123)1(23λλλλλλλa a a a a a a《解得23,21,2121=-==λλλ,即21=λ时,AE AC BF 2321+-=.亦即,F 是的中点时,AE AC BF ,,共面,又⊄BF 平面AEC ,所以当F 是的中点时,BF ∥平面AEC .19解析:(1)以G 点为原点,GP GC GB 、、为x 轴、y 轴、 z 轴建立空间直角坐标系,则B (2,0,0),C (0,2,0),P (0,0,4),故E (1,1,0),GE =(1,1,0), PC=(0,2,4)。
10102022||||cos =⋅=⋅⋅>=<PC GE PC GE PC GE ,,∴与所成的余弦值为1010.(2)平面的单位法向量n =(0,±1,0)PA G B,DFE∵)02323(4343,,-===BC AD GD , ∴点D 到平面的距离为⋅GD |n |=23.(3)设F (0,y ,z ),则)2323()02323()0(z y z y DF ,,,,,,-=--=。
∵GCDF⊥,∴0=⋅GC DF ,(资料来源:168)即032)020()2323(=-=⋅-y z y ,,,,,∴23=y , 又PCPFλ=,即(0,23,z -4)=λ(0,2,-4), ∴1,故F (0,23,1) ,)1210()3230(-=-=,,,,,FC PF ,∴FC PF 352352PF PC ==。
20解析:(1)∵⊥平面,⊂平面,∴⊥,∵四边形是正方形,∴⊥,∴⊥ 平面, ∵⊂平面,∴平面⊥平面. (2)设∩=F ,连结,则⊥, ∵=2,=4,∴=2, ===3,∴S △=·=·2·3=6, 设点A 到平面的距离为h ,∵⊥平面,∴·S △·h =·S △·,∴6·h =·2·2·4,∴h =,即点A 到平面的距离为.(3)设=a ,以A 为原点,、、所在直线分别为x 、y 、z 轴建立空间直角坐标系,为计算方便,不妨设=1,则C (1,1,0),S (0,0,a ),B (1,0,0),D (0,1,0),∴SC =(1,1,-a ),SB =(1,0,-a ),SD =(0,1,-a ),再设平面、平面的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2),则111111100n SC x y az n SB x az ⎧=++=⎪⎨=-=⎪⎩∴y 1=0,从而可取x 1=a ,则z 1=1,∴n 1=(a,0,1), 222222200n SC x y az n SB x az ⎧=++=⎪⎨=-=⎪⎩ ∴x 2=0,从而可取y 2=a ,则z 2=1,∴n 2=(0,a,1), ∴〈n 1,n 2〉=,要使二面角B --D 的大小为120°,则=,从而a =1, 即当==1时,二面角B --D 的大小为120°.。