液压缸的设计

合集下载

液压缸的设计计算

液压缸的设计计算

液压缸的设计计算液压缸设计计算是液压系统设计的关键部分之一,液压缸通过液压油的压力作用,将液压能转化为机械能。

液压缸的设计需要考虑液压缸的工作条件、负载要求、速度要求等多个因素。

下面是液压缸设计计算的一些关键要点。

液压缸设计前需要明确以下几个参数:(1)负载:液压缸要承受的最大负载。

(2)行程:液压缸的活塞行程,即活塞从一个极限位置到另一个极限位置的移动距离。

(3)速度:液压缸的移动速度要求。

(4)传动方式:液压缸的传动方式有单杆式和双杆式,单杆式主要用于简单操作,而双杆式适用于更复杂的应用场景。

(5)工作压力:液压缸的额定工作压力,一般由液压系统的工作压力决定。

在设计液压缸时,需要进行以下计算和选型:(1)工作压力的计算:根据液压缸所需承受的最大负载和速度要求,计算出液压缸所需的工作压力。

工作压力计算公式为:工作压力=功率÷斜杠(活塞面积×张角因数)活塞面积=π×活塞直径²÷4张角因数根据活塞材料和工作环境选取合适的值。

(2)液压缸尺寸的计算:根据所需承受的最大负载和工作压力,计算出液压缸的尺寸。

液压缸尺寸计算公式为:活塞面积=承受的负载÷工作压力活塞直径=(4×活塞面积÷π)^0.5根据液压缸的类型和具体要求,还需要进行一些其他计算,如活塞杆直径、带式液压缸的带宽和带材厚度的计算等。

(3)液压缸速度的计算:根据液压缸的移动速度要求,结合液压缸的流量特性和阀门的流量系数等参数,计算出所需的液压缸速度。

液压缸速度计算公式为:流量=活塞面积×速度速度=流量÷活塞面积其中,流量需要根据阀门流量系数、压差等因素计算得出。

为了确保液压缸的工作效果和可靠性,设计时还需要考虑液压缸的密封性、液压阀的选型、活塞材料的选择和润滑等方面的计算和选型。

总结起来,液压缸的设计计算包括工作压力的计算、液压缸尺寸的计算以及液压缸速度的计算等。

液压油缸压力计算公式液压油缸设计计算公式

液压油缸压力计算公式液压油缸设计计算公式

液压油缸压力计算公式液压油缸设计计算公式液压油缸(也称为液压缸)是将液压能转化为机械能的设备,它是液压系统中的关键组成部分。

在液压系统中,通过在液压缸两端施加不同的压力,使活塞在缸内运动,从而实现工作负载的移动、提升或压缩等操作。

液压油缸的设计计算需要考虑以下几个因素:负载大小、工作压力、缸径、活塞杆直径、活塞杆材料、油缸结构等。

下面是一般液压油缸设计计算的几个常用公式。

1.计算液压油缸的工作面积:液压油缸的工作面积可以根据液压系统的要求和负载大小来确定。

工作面积的计算公式如下:A=F/P其中,A表示油缸的工作面积,F表示需要承载的负载,P表示液压系统中的工作压力。

2.计算液压油缸的压力:液压油缸的压力可以根据所施加的负载和工作面积来确定。

压力的计算公式如下:P=F/A其中,P表示液压油缸的工作压力,F表示需要承载的负载,A表示油缸的工作面积。

3.计算液压油缸的活塞杆材料选取:液压油缸的活塞杆材料需要根据所承载负载和工作压力来选择,以满足强度和刚度的要求。

常见的活塞杆材料有碳钢、不锈钢、铬钼合金钢等。

一般用弯曲应力公式进行计算,考虑到材料的抗弯刚度,活塞杆的直径可以根据以下公式得到:d=((32*M*L)/(π*σ))^(1/3)其中,d表示活塞杆的直径,M表示活塞杆所承受的最大弯矩,L表示活塞杆的长度,σ表示选定材料的抗弯应力。

4.计算液压油缸的活塞直径:液压油缸的活塞直径可以通过活塞面积和活塞杆直径计算得到。

计算公式如下:D=(4*A)/(π*d^2)其中,D表示液压油缸的活塞直径,A表示油缸的工作面积,d表示活塞杆的直径。

5.计算液压油缸的油缸容积:液压油缸的油缸容积可以通过活塞面积和活塞行程来计算。

计算公式如下:V=A*l其中,V表示油缸的容积,A表示油缸的工作面积,l表示活塞的行程。

通过上述公式的计算,可以得到液压油缸的设计参数,从而满足液压系统的工作要求。

需要注意的是,在实际设计过程中,还应该考虑其他因素,如密封结构、摩擦损失、液压系统的动态响应等,以确保液压油缸的安全可靠运行。

液压缸的设计规范

液压缸的设计规范

液压缸的设计规范液压缸的设计规范⽬录:⼀、液压缸的基本参数1、液压缸内径及活塞杆外径尺⼨系列2、液压缸⾏程系列(GB2349-1980) ⼆、液压缸类型及安装⽅式1、液压缸类型2、液压缸安装⽅式三、液压缸的主要零件的结构、材料、及技术要求1、缸体2、缸盖(导向套)3、缸体及联接形式4、活塞头5、活寒杆6、活塞杆的密封和防尘7、缓冲装置8、排⽓装置9、液压缸的安装联接部分(GB/T2878)四、液压缸的设计计算1、液压缸的设计计算部骤2、液压缸性能参数计算3、液压缸⼏何尺⼨计算4、液压缸结构参数计算5、液压缸的联接计算⼀、液压缸的基本参数1.1液压缸内径及活塞杆外径尺⼨系列1.1.1液压缸内径系列(GB/T2348-1993)8 10 12 16 20 25 32 40 50 63 80 (90) 100 (110)125 (140) 160 (180) 200 220 (250)(280) 320 (360) 400 450 500括号内为优先选取尺⼨1.1.2活塞杆外径尺⼨系列(GB/T2348-1993)4 5 6 8 10 12 14 16 18 20 22 25 28 32 36 40 45 50 56 63 70 80 90 100 110 125 140 160 180 200 220 250 280 320 360活塞杆连接螺纹型式按细⽛,规格和长度查有关资料。

1.2液压缸的⾏程系列(GB2349,1980)1.2.1第⼀系列25 50 80 100 125 160 200 250 320 400500 630 800 1000 1250 1600 2000 2500 3200 4000 1.2.1第⼆系列40 63 90 110 140 180 220 280 360 450550 700 900 1100 1400 1800 2200 28003600⼆、液压缸的类型和安装办法2.1液压缸的类型对江东机械公司⽽⾔2.1.1双作⽤式活塞式液压缸2.1.2单作⽤式柱塞式液压缸2.2液压缸的安装⽅式对江东机械公司⽽⾔2.2.1对柱塞式头部法兰2.2.2对活塞式螺纹联接在梁上三、液压缸主要零件的结构、材料、技术要求3.1缸体3.1.1缸体材料A焊接缸头缸底等,采⽤35钢粗加⼯后调质[σ],110MPaB⼀般情况采⽤45钢HB241,285 [σ],120MPaC铸钢采⽤ZG310,57 [σ],100MPaD球墨铸铁 (江东⼚采⽤)QT50,7 [σ],80,90MPaE⽆缝纲管调质(35号 45号) [σ],110MPa 3.1.2缸体技术要求A内径 H8 H9 精度粗糙度( 垳磨 )B内径圆度 9,11级圆柱度 8级3.2缸盖(导向套)3.2.1缸盖材料A可选35,45号锻钢B可选⽤ZG35,ZG45铸钢C可选⽤HT200 HT300 HT350铸铁D当缸盖⼜是导向导时选铸铁3.2.2缸盖技术要求A直径d(同缸内径)等各种回转⾯(不含密封圈)圆柱度按 9 、10 、11 级精度B内外圆同轴度公差0.03mmC与油缸的配合端⾯?按7级D导向⾯表⾯粗糙度3.2.3联接形式多种可按图133.2.4活塞头(耐磨)A材料灰铸铁HT200 HT300 钢35 、45B技术要求外径D(缸内径)与内孔D1?按7、8级外径D的圆柱度 9、10、11级端⾯与内孔D1的?按7级C活塞头与活塞杆的联接⽅式按图3形式D活塞头与缸内径的密封⽅式柱寒缸 40MPa以下V型组合移动部分活塞缸 32MPa以下⽤Yx型移动部分静⽌部分 32MPa以下⽤“O“型 3.2.5 活塞杆A端部结构按江东⼚常⽤结构图17、18B活塞杆结构空⼼杆实⼼杆C材料实⼼杆35、45钢空⼼杆35、45⽆缝缸管D技术要求粗加⼯后调质HB229,285可⾼频淬⽕HRC45,55外圆圆度公差按9、10、11级精度圆柱度按8级两外圆?为0.01mm端⾯?按7级⼯作表⾯粗糙度 < (江东镀铬深度0.05mm)渡后抛光 3.2.6活塞杆的导向、密封、和防尘 A导向套结构图9(江东常⽤) 导向杆材料可⽤铸铁、球铁导向套技术要求内径H8/f8、H8/f9表⾯粗糙度 B活塞杆的密封与防尘柱塞缸V型组合移动部分活塞缸Yx 移动部分“O”型 (静⽌密封)防尘,⽑毡圈(江东常⽤)3.2.7 液压缸缓冲装置多路节流形式缓冲参考教科书3.2.8 排⽓装置3.2.9液压缸的安装联接部分的型式及尺⼨可⽤螺纹联接(细⽛) 油⼝部位可⽤法兰压板联接油⼝部位液压缸安装可按图84 液压缸的设计计算4.1液压缸的设计计算部骤4.1.1根据主机的运动要求定缸的类型选择安装⽅式4.1.2根据主机的动⼒分析和运动分析确定液压缸的主要性能参数和主要尺⼨如推⼒速度作⽤时间内径⾏程杆径注:负载决定了压⼒。

液压缸设计指导书

液压缸设计指导书

液压缸设计指导书
液压缸设计指导书
1.引言
1.1 目的
本指导书的目的是为液压工程师提供设计液压缸的详细步骤和指导,包括液压缸的选型、尺寸计算、材料选择等方面的内容,以确保设计出符合要求且可靠的液压缸。

1.2 适用范围
本指导书适用于液压工程师、机械设计师和相关专业人员。

2.液压缸类型
2.1 单作用液压缸
2.2 双作用液压缸
2.3 伸缩式液压缸
2.4 旋转液压缸
3.液压缸选型
3.1 载荷计算
3.2 推力计算
3.3 工作压力计算
3.4 活塞速度计算
3.5 缸体材料选择
4.液压缸尺寸设计
4.1 活塞直径计算
4.2 活塞杆直径计算
4.3 缸体内径计算
4.4 缸体壁厚计算
4.5 缸体长度计算
5.液压缸密封件选取与设计5.1 密封件种类
5.2 密封件选型
5.3 密封件尺寸设计
6.液压缸安全设计
6.1 过载保护
6.2 液压缸应急情况处理
6.3 液压缸的安全标准和规范
7.液压缸安装与调试
7.1 安装前准备
7.2 安装步骤
7.3 调试与测试
附件:
附件1:液压缸设计工程图纸
附件2:液压缸性能测试报告
法律名词及注释:
1.著作权:指法律规定的对作品的全部或部分的独占意志权和财产权
2.专利:指依法授予发明创造者的专利权人对其发明创造在一定的期限内处于独占的权利
3.商标:指用以区别商品或服务的标志,包括文字、图形、字母、数字、颜色、声音、三维标志等
4.知识产权:知识产权是指人们在创造和利用文化、科学、技术、艺术和其他领域中所拥有的、可以依法保护的权利。

液压油缸的主要设计技术参数

液压油缸的主要设计技术参数

液压油缸的主要设计技术参数
真实
一、安装和机械
1、安装
在安装液压油缸时应考虑如下因素:
(1)确定油缸的中心位置;
(2)确定油缸的正确位置,以便便于操作和维护;
(3)清楚理解油缸安装的物理限制,以便充分发挥油缸的机动性能;
(4)液压油缸的支架安装要紧固,以保证液压油缸稳定可靠;
(5)液压油缸的安装位置应尽量避免受污染;
(6)支撑架应具有良好的抗震性能;
(7)液压油缸的支架安装位置不应有明显裂缝;
(8)液压油缸安装的支架应考虑温度和机动性能;
2、轴座
(1)液压油缸的轴座是油缸安装和固定的重要部件,如果不进行正
确的轴座设计,可能会导致油缸工作不正常。

(2)液压油缸的轴座可以采用多种不同的材料,如钢板、木材、铝
合金、铁材等,依据实际情况选择。

(3)液压油缸的轴座不仅要考虑抗静态荷载的问题,还要设计具有可靠的抗振性能,以保证液压油缸能够正常工作。

(4)液压油缸的轴座设计时应考虑表面处理问题,严禁使用油污、焊渣等粗糙的表面处理方法,以保证液压油缸的精度和寿命。

液压缸的设计和计算

液压缸的设计和计算

液压缸设计和计算液压缸的设计和计算液压缸的设计是整个液压系统设计中的一部分,它是在对整个系统进行了工况分析,编制了负载图,选定了工作压力之后进行的; 一、设计依据:1了解和掌握液压缸在机械上的用途和动作要求;2了解液压缸的工作条件;3了解外部负载情况;4了解液压缸的最大行程,运动速度或时间,安装空间所允许的外形尺寸以及缸本身的动作;5设计已知液压系统的液压缸,应了解液压系统中液压泵的工作压力和流量的大小、管路的通径和布置情况、各液压阀的控制情况;6了解有关国家标准、技术规范及参考资料;二、设计原则:1保证缸运动的出力、速度和行程;2保证刚没各零部件有足够的强度、刚度和耐用性;3保证以上两个条件的前提下,尽量减小缸的外形尺寸;4在保证刚性能的前提下,尽量减少零件数量,简化结构;5要尽量避免缸承受横向负载,活塞杆工作时最好承受拉力,以免产生纵向弯曲;6缸的安装形式和活塞杆头部与外部负载的连接形式要合理,尽量减小活塞杆伸出后的有效安装长度,增加缸的稳定性;三、设计步骤:1根据设计依据,初步确定设计档案,会同有关人员进行技术经济分析;2对缸进行受力分析,选择液压缸的类型和各部分结构形式;3确定液压缸的工作参数和结构尺寸;4结构强度、刚度的计算和校核;5根据运动速度、工作出力和活塞直径,确定泵的压力和流量;6审定全部设计计算资料,进行修改补充;7导向、密封、防尘、排气和缓冲等装置的设计;8绘制装配图、零件图、编写设计说明书;四、液压缸设计中应注意的问题液压缸的设计和使用正确与否,直接影响到它的性能和是否易于发生故障;所以,在设计液压缸时,必须注意以下几点:1、尽量使液压缸的活塞杆在受拉状态下承受最大负载,或在受压状态下具有良好的稳定性;2、考虑液压缸行程终了处的制动问题和液压缸的排气问题;3、正确确定液压缸的安装、固定方式;4、液压缸各部分的结构需根据推荐的结构形式和设计标准进行设计,尽可能做到结构简单、紧凑、加工、装配和维修方便;5、在保证能满足运动行程和负载力的条件下,应尽可能地缩小液压缸的轮廓尺寸;6、要保证密封可靠,防尘良好;五、计算液压缸的结构尺寸1、缸筒内径D 根据负载的大小来选定工作压力或往返运动速度比,求得液压缸的有效工作面积,从而得到缸筒内径D,再从GB2348-80标准中选取最近的标准值作为所设计的缸筒内径;液压缸的有效工作面积为…… 24D p F A π== 以无杆腔作工作腔时………… p FD π4=以有杆腔作工作腔时………… 24d p F D +=π 2、活塞杆外径d 通常先从满足速度或速度比的要求来选择,然后再校核其结构强度和稳定性;若速度比为v λ,则 vv Dd λλ1-= 也可根据活塞杆受力状况来确定:受拉力作用时,d =~; 受压力作用时,则有3、缸筒长度L 缸筒长度L 由最大工作行程长度加上各种结构需要来确定,即:l —— 活塞的最大工作行程;B —— 活塞宽度,一般为~1D ;A —— 活塞杆导向长度,取~D ;M —— 活塞杆密封长度,由密封方式定;C —— 其他长度; 注意:从制造工艺考虑,缸筒的长度最好不超过其内径的20倍;六、强度校核对液压缸的缸筒壁厚δ、活塞杆直径d和缸盖固定螺栓的直径,在高压系统中必须进行强度校核;1、缸筒壁厚校核δ 缸筒壁厚校核分薄壁和厚壁两种情况;当D/δ≥10时为薄壁,壁厚按下式进行校核:δ≥δδδ2[δ]当D/δ<10时为厚壁,壁厚按下式进行校核:δ≥δ2(√[δ]+0.4δδ[δ]−1.3δδ−1)pt ——缸筒试验压力,随缸的额定压力的不同取不同的值D ——缸筒内径σ——缸筒材料许用应力2、活塞杆直径校核活塞杆的直径d按下式进行校核:3、液压缸盖固定螺栓直径校核液压缸盖固定螺栓直径按下式计算:F ——液压缸负载k ——螺纹拧紧系数~Z ——固定螺栓个数σ——螺栓材料许用应力七、液压缸稳定性校核活塞杆轴向受压时,其直径d一般不小于长度L的1/15;当L/d≥15时,须进行稳定性校核,应使活塞杆承受的力F不能超过使它保持稳定工作所允许的临界负载Fk ,以免发生纵向弯曲,破坏液压缸的正常工作;Fk 的值与活塞杆材料性质、截面形状、直径和长度以及缸的安装方式等因素有关,验算可按材料力学有关公式进行;• 当活塞杆细长比 21/ψψ>k r l 时,则• 当活塞杆细长比21/ψψ≤k r l 且120~2021=ψψl -- 安装长度,其值与安装方式有关;Ψ1 -- 柔性系数,对钢取Ψ1=85;Ψ2 -- 末端系数,由液压缸支承方式决定;E -- 活塞杆材料的弹性模量,对钢取E=× 1011Pa ;J -- 活塞杆横截面惯性矩;A -- 活塞杆横截面面积;f -- 由材料强度决定的实验数值,对钢取f=×108 N /m2; α--系数,对钢取α=1/5000;rk --活塞杆横截面的最小回转半径;八、缓冲计算液压缸的缓冲计算主要是估计缓冲时缸中出现的最大冲击压力,以便用来校核缸筒强度、制动距离是否符合要求;液压缸在缓冲时,缓冲腔内产生的液压能E 1和工作部件产生的机械能E 2分别为:当E 1=E 2时,工作部件的机械能全部被缓冲腔液体所吸收,则有九、油缸的试验1.油缸试验压力,低于16MPa乘以工作压力的,高于16乘以工作压力的;2.最低启动压力:是指液压缸在无负载状态下的最低工作压力,它是反映液压缸零件制造和装配精度以及密封摩擦力大小的综合指标;3.最低稳定速度:是指液压缸在满负荷运动时没有爬行现象的最低运动速度,它没有统一指标,承担不同工作的液压缸,对最低稳定速度要求也不相同;4.内部泄漏:液压缸内部泄漏会降低容积效率,加剧油液的温升,影响液压缸的定位精度,使液压缸不能准确地、稳定地停在缸的某一位置;。

液压缸设计规范范文

液压缸设计规范范文

液压缸设计规范范文液压缸是一种常用的液压元件,广泛应用于各个工业领域。

设计规范对液压缸的设计和制造起着重要的指导作用。

下面将从设计原则、结构设计、制造和检测等方面介绍液压缸的设计规范。

设计原则:1.力学原则:液压缸的设计应满足机械强度和刚度的要求,以确保在工作条件下不发生变形和振动。

2.密封原则:液压缸的设计应采用可靠的密封结构,以确保液压缸的密封性能和工作寿命。

3.动力原则:液压缸的设计应满足给定的工作条件和要求,以保证液压缸具有足够的工作压力和速度。

4.可靠性原则:液压缸的设计应考虑到使用寿命、可靠性和安全性等因素,以确保液压缸的长期稳定工作。

结构设计:1.缸体设计:液压缸的缸体应具有充分的强度和刚度,以承受工作压力和荷载。

缸体的内腔应光滑且无明显凹凸坑洞,以减小液压缸内流体的泄露和阻力。

2.活塞设计:液压缸的活塞应具有充分的强度和密封性能。

活塞的直径和有效面积应根据工作条件进行合理选择,以满足要求的工作压力和运动速度。

3.密封设计:液压缸的密封系统应具有良好的密封性能和可靠性。

应选择适当的密封装置,如密封圈、密封垫等,以避免泄漏和污染。

4.支承设计:液压缸的支承结构应具有足够的强度和刚度,以承受工作荷载和防止不正常运动。

支承结构的设计应考虑到液压缸的安装和维护便利性。

制造要求:1.材料选择:液压缸的缸体和活塞等关键部件应选用高强度、高刚度和耐磨损的材料,经过热处理等工艺,以确保其机械性能和使用寿命。

2.加工工艺:液压缸的加工工艺应符合相关标准和规范,以确保关键尺寸和形位公差的精度和可靠性。

3.涂层处理:液压缸的关键部件可进行表面涂层处理,如镀铬、电镀等,以提高其耐磨性和耐腐蚀性。

4.装配工艺:液压缸的装配应严格遵循相关规范和要求,以确保各部件之间的配合精度和装配质量。

检测要求:1.尺寸检测:液压缸在制造过程中,应进行各关键尺寸和形位公差的检测,以确保液压缸的装配质量和性能。

2.密封性检测:液压缸的密封系统应进行密封性能的测试,以确保液压缸的密封效果及使用寿命。

液压油缸设计标准

液压油缸设计标准

液压油缸设计标准1. 结构和材料液压油缸的主要结构应设计为耐高压、高强度和耐疲劳的结构。

缸体应采用高强度材料,如铸钢、合金钢或不锈钢。

对于关键部位,如活塞和活塞环,应选择耐磨、耐腐蚀的材料,如不锈钢或高强度合金钢。

2. 密封和防泄漏液压油缸的密封系统应设计为防止内部和外部泄漏。

活塞和活塞环之间应采用高性能的密封圈或密封环,以防止液压油的泄漏。

此外,缸盖和缸体之间也应采用密封圈或密封环,以确保缸体的密封性。

3. 性能要求液压油缸应具有良好的性能,包括推力、速度、精度和稳定性。

推力应足够大,以适应各种应用场景的需要。

速度应可调,以满足不同操作速度的要求。

精度应高,以实现精确的控制。

稳定性应强,以确保在各种操作条件下都能保持稳定的工作状态。

4. 安装和维护液压油缸的安装和维护应简单易行。

在安装过程中,应确保各部件的正确安装和调整,避免因安装不当而引起的泄漏或损坏。

在维护过程中,应定期检查液压油的清洁度和浓度,以及各部件的磨损情况,及时进行更换或维修。

5. 表面处理和涂层液压油缸的表面处理和涂层应能够抵抗腐蚀和磨损。

缸体和活塞等部件应进行防腐蚀处理,如镀锌、喷涂防腐涂料等。

此外,为了提高耐磨性,活塞环等摩擦表面应进行耐磨涂层处理。

6. 环境和安全要求液压油缸的设计应考虑环境和安全要求。

在操作过程中,液压油缸可能会产生热量和压力,因此应确保液压油缸能够安全地承受这些条件。

此外,在设计和制造过程中,应考虑到环境保护的要求,尽可能减少对环境的影响。

7. 测试和检验液压油缸在出厂前应进行严格的测试和检验。

测试应包括性能测试、密封性测试、耐压测试等。

检验应包括外观检验、尺寸检验等。

只有经过合格的测试和检验,液压油缸才能被视为符合设计标准。

8. 标记和文档液压油缸应有清晰的标记和完整的文档。

标记应包括产品名称、型号、规格、生产日期等基本信息。

文档应包括设计图纸、使用说明书、维护手册等。

这些标记和文档应易于理解和使用,以便于用户正确地使用和维护液压油缸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录
一、设计要求——————————————————————-1 题目—————————————————————————1
二、各零部件的设计及验算————————————————-5
1、缸筒设计———————————————————————5
2、法兰设计———————————————————————14
3、活塞设计———————————————————————19
4、活塞杆设计——————————————————————21
•一、设计一单活塞杆液压缸,工作台快进时采用差动联接,快进、快退速度为5m/min。

当工作进给时外负载为25×103N,背压为0.5MPa,已知泵的公称流量为25L/min,公称压力为6.3MPa,工作行程L=100mm。

•要求:(1)确定活塞和活塞杆直径。

(2)如缸筒材料的[σ]=5×107N/m2,计算筒壁厚。

1、主要设计参数:
•(1)外载F=25×103N,背压P2=0.5MPa
•(2)工进、快退速度V1= 5m/min。

•(3)泵的公称流量q=25L/min,公称压力为P1=6.3MPa •(4)工作行程L=100mm
•(5)缸筒材料的自选(教材仅作参考)
2、设计提要
①、液压油缸主要参数给定
在设计要求中已经提到的参数这里就不再赘述,下面只给出此次设计中液压油缸主要部件的其他参数:
缸内径:D=100mm;
缸外径:
D=116mm;
1
壁厚: =8mm;
极限推力:
F=25KN;
max
活塞杆直径:
d=70mm;
活塞外推流量(快退):q2 =0.20L/min,快进:q1=0.39L/min
说明:液压缸的效率
油缸的效率η:本设计不考虑效率
②、法兰安装方式
螺纹连接
③、缓冲机构的选用
一般承压在10MP以上应当选用缓冲机构,本次设计中,工作压力为3.5MP,因此缓冲机构从略。

④、密封装置选用
选用Y型密封圈.
⑤、工作介质的选用
因为工作在常温下,所以选用普通的是油型液压油即可。

⑥、缸筒的加工要求
对于橡胶圈密封,缸筒内径D采用H9/f9级配合,表面粗糙度
R为
a 0.4;
热处理:调质,HB≥240;
缸筒内径D的圆度、圆柱度不大于直径公差的一半,使用活塞环密封时,不大于内径公差之1/3;
缸筒直线度不大于0.03mm(<500mm);
液压缸端面对于轴线的垂直度不大于0.04mm;
油口的孔口及排气口必须有倒角,不能有飞边、毛刺;
在缸内表面镀30--50μm的铬,外表面刷防腐油漆。

⑦活塞
采用装配式,材料采用耐磨铸铁。

外径的圆度和圆柱度不大于直径公差的一半,f9的公差为87μm;外径对内孔的同轴度不大于公差的一半;
活塞端面与轴线的垂直度按直径每100mm不超过0.04mm;
活塞外径采用f9,内孔采用H9,Ra0.4;
⑨活塞杆
采用45钢,热处理:调质,活塞杆与导向套配合,H9/f9, Ra0.4; 活塞杆与活塞配合,H7/k6,Ra0.8;
配合部分的圆度和圆柱度不大于直径公差的一半,k6:19μm, H7:30μm;
活塞杆轴线的直线度在500mm长度上不大于0.03mm;
与活塞端面相结合的端面垂直度在直径100mm上不大于0.04mm;二、各零部件的设计及验算
1、缸筒设计
液压缸的壁厚由液压缸的强度条件来计算。

工程机械的液压缸,一般是用无缝钢管材料,大多属于薄壁圆筒结构,其壁厚按薄壁圆筒公式计算
[]y p D 2δσ≥
(3-14) 式中 δ——液压缸壁厚(m);
D ——液压缸内径(m);
y p ——试验压力,取最大工作压力的1.5倍(MPa );
[]σ——缸筒材料的许用应力。

无缝45钢管。

由计算的公式所得的液压缸的壁厚厚度很小,使缸体的刚度不够,如在切削加工过程中的变形,安装变形等引起液压缸工作过程中卡死或漏油。

所以选取壁厚:δ=8mm
[]mm D P Y 6535360
21005.35.12.=⨯⨯⨯⨯=≥σδ
液压缸壁厚算出后,可求出缸体的外径1D =116mm
2、活塞杆强度校核
取45号钢作为活塞杆材料,抗拉强度600MPa ,屈服强度为360MPa ,活塞杆的安全系数为2—4,取3
设计时,取70mm ,满足强度要求
3、液压缸缸盖固定螺栓直径的校核
液压缸缸盖固定螺栓在工作过程中同时承受拉应力和剪切应力, []mm Z KF d =⨯⨯⨯⨯⨯=≥82.62
420614.310254.12.52.53
1σπ 其中:K —螺纹的拧紧系数,1.25—1.5,取1.4
F —液压缸最大作用力
Z —取6个。

[σ]—螺栓材料的许用应力,[σ]=σs/n.n 为安全系数,
1.2-
2.5,取2.螺栓取5.8,σs=420MPa 。

选用粗牙螺纹,螺栓螺母M7,螺距为1mm
4、缸盖厚度的确定
一般液压缸多为平底缸盖,采用HT200铸铁材料。

无孔时
.t 0433D ≥
有孔时
.t 0433D ≥
式中 t ——缸盖有效厚度(m);
[]m F
d 630.003/10360102544631=.⨯⨯⨯⨯=≥πσπ
2D ——缸盖止口内径(m);
0d ——缸盖孔的直径(m)。

无孔时:[]mm P D t y 92.91005.35.1100
433.0433.02=⨯⨯=≥σ 有孔时:[]mm d D D P D t y 11.18)
701001001005.35.1100433.0(433.00222
=- ⨯⨯⨯=-≥()σ
5、最小导向长度的确定
mm D L H 552
10020100220=+=+≥
取为60mm ;
活塞长度(活塞宽度B )取: B=(0.6—1)D=0.6x100=60mm
缸盖滑动支承面的长度
mm d l 42706.0)16.0(1=⨯=--= 隔套的长度
82
426060)(211=+-=+-
=B l H C mm
6、缸体长度的确定
液压缸刚体内部长度应等于活塞的行程与活塞的宽度之和。

缸体外形长度还要考虑到两端盖的厚度。

一般液压缸缸体长度不应大于内径的20~30倍。

液压缸工作时要完成如下动作,工作行程为100mm 。

快 进50
┏━━━━→┓工 进25
┃ ┗┓工 进25
┃快 退 ┗━━━━→┓
┗━━━━━━━←━━━━━━━━━━┛
即:缸体内部长度100+60+30=290mm
缸体长度≤(20-30)D=(2000-3000)mm
即取缸体长度为350mm
9、液压缸进、出油口尺寸的确定
金属管子内径
mm Q
d 97960
/539011301130.=.=≥ν 取10mm ,管子外径为18mm ,M18X1.5
液压缸的进、出油口可布置在端盖或缸筒上,本设计布置在缸筒上,进、出油口处的流速5m/min, 不大于5m/s ,油口的连接形式为螺纹连接或法兰连接,采用螺纹联接。

进出油口的尺寸为M18x1.5。

连接方式为螺纹连接。

相关文档
最新文档