实验4 译码器及其应用
无人机电子技术基础 实验项目:译码器及其应用

实验项目:译码器及其应用一.实验目的1.掌握中规模集成译码器的逻辑功能和使用方法。
2.熟悉数码管的使用。
二.实验原理译码器是一个多输入、多输出的组合逻辑电路。
它的作用是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。
译码器在数字系统中有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数据分配,存贮器寻址和组合控制信号等。
不同的功能可选用不同种类的译码器。
译码器可分为通用译码器和显示译码器两大类。
前者又分为变量译码器和代码变换译码器。
1.变量译码器(又称二进制译码器),用以表示输入变量的状态,如2线—4线、3线—8线和4线—16线译码器。
以3线—8线译码器74LS138为例进行分析,图5—1(a )、(b )分别为其逻辑图及引脚排列。
其中A 2、A 1、A 0为地址输入端,Y 0~Y 7为译码输出端,S 1、S 2、S 3为使能端。
表5—1为74LS138功能表。
当S 2=1,S 2+S 3=0时,器件使能,地址码所指定的输出端有信号(为0)输出,其它所有输出端均无信号(全为1)输出。
当S 1=0,S 2+S 3=X 时,或S 1=X ,S 2+S 3=l 时,译码器被禁止,所有输出同时为1。
图5—1 3—8线译码器74LS138逻辑图及引脚排列输入输出1S32S S2A1A0A0Y1Y2Y3Y4Y5Y6Y7Y1 0 0 0 0 0 1 1 1 1 1 1 1 1111111111 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 x x x x 1 1 1 1 1 1 1 1 x 1 x x x 1 1 1 1 1 1 1 1 2.数码显示译码器a.七段发光二极管(LED)数码管LED数码管是目前最常用的数字显示器,图5—5(a)、(b)为共阴管和共阳管的电路,(c)为两种不同出线形式的引出脚功能图。
实验四 编码器译码器

实验四译码器及其应用一、实验目的1.验证编码器、译码器的逻辑功能。
2.熟悉常用编码器、译码器的逻辑功能。
3.利用译码器设计组合逻辑电路。
二、实验原理1.编码器编码器也是组合电路的一部分。
编码器就是实现编码操作的电路,编码实际上是和译码相反的过程。
按照被编码信号的不同特点和要求,编码器也分成三类:(1)二进制编码器:如用门电路构成的4-2线,8-3线编码器等。
(2)二-十进制编码器:将十进制的0 ~ 9编成BCD码,如:10线十进制-4线BCD码编码器74LS147等。
(3)优先编码器:如8-3线优先编码器74LS148等2.译码器译码器是组合电路的一部分。
所谓译码,就是把代码的特定含义“翻译”出来的过程,而实现译码操作的电路称为译码器。
译码器分成三类:(1)二进制译码器:如中规模2-4线译码器74LS139,3-8线译码器74LS138等。
(2)二-十进制译码器:实现各种代码之间的转换,如BCD码-十进制译码器74LS145等。
(3)显示译码器:用来驱动各种数字显示器,如共阴数码管译码驱动74LS48(或74LS248)共阳数码管译码驱动74LS47(或74LS247)等。
三、实验内容与步骤1.编码器实验(1)将10线-4线(十进制――BCD码)编码器74LS147集成片插入IC空插座中,管脚排列图见图11。
输入端1~9通过开关接高低电平(开关开为“1”、关为“0”),输出Q D、Q C、Q B、Q A接LED发光二极管。
接通电源,按表3输入各逻辑电平,观察输出结果并填入表3中。
图11 74LS147管脚排列图表3 十进制/BCD编码器功能表注:表中×为状态随意表4 8线-3线编码器功能表注:表中×为状态随意(2)将8线-3线优先编码器74LS148集成片插入IC空插座中,按上述同样方法进行实验论证。
管脚排列图见图12。
按表4输入各逻辑电平,观察输出结果并填入表4中。
图12 74LS148管脚排列图2.译码器实验(1)将二进制2-4线译码器74LS139插入IC空插座中,管脚排列图见图13。
译码器及其应用实验报告

译码器及其应用实验报告译码器是一种能够将数字信号转换为模拟信号或者将模拟信号转换为数字信号的设备,它在通信、控制系统以及各种电子设备中都有着广泛的应用。
本实验旨在通过对译码器的实际操作,深入了解其工作原理和应用场景。
实验一,译码器的基本原理。
首先,我们需要了解译码器的基本原理。
译码器是一种数字电路,它能够将输入的数字信号转换为相应的模拟信号输出。
在实验中,我们使用了常见的二进制译码器,通过对不同的输入信号进行转换,观察输出信号的变化,从而验证译码器的工作原理。
实验二,译码器的应用场景。
译码器在数字通信系统中有着重要的应用,比如在调制解调器中,译码器可以将数字信号转换为模拟信号进行传输,而在接收端,又可以将模拟信号转换为数字信号进行解码。
此外,在控制系统中,译码器也扮演着重要的角色,它能够将数字控制信号转换为模拟控制信号,实现对各种设备的精确控制。
实验三,译码器的性能评估。
在实验中,我们对译码器的性能进行了评估。
通过测量译码器的输入输出特性、信噪比、失真度等指标,我们可以全面了解译码器的性能优劣,并对其在实际应用中的适用性进行评估。
实验四,译码器的改进与优化。
最后,我们对译码器进行了改进与优化。
通过对译码器电路的调整和优化设计,我们可以提高译码器的性能指标,使其在实际应用中具有更好的稳定性和可靠性。
总结:通过本次实验,我们深入了解了译码器的工作原理和应用场景,掌握了对译码器性能进行评估和优化的方法,这对我们进一步深入研究译码器的工作原理和应用具有重要意义。
译码器作为一种重要的数字电路设备,在通信、控制系统等领域有着广泛的应用前景,我们有信心通过不断的研究和实践,进一步提升译码器的性能和应用水平,为数字化时代的发展做出更大的贡献。
译码器及其应用

实验四译码器及其应用[实验目的]1、掌握中规模集成译码器的逻辑功能和使用方法。
2、熟悉数码管的使用,了解七段数码显示电路的工作原理。
[实验原理]译码管是一个多输入、多输出的组合逻辑电路。
它的作用是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。
译码器在数字系统中有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数据分配,存贮器寻址和组合控制信号等。
不同的功能可选用不同种类的译码器。
译码器可分为通用译码器和显示译码器两大类。
前者又分为变量译码器和代码变换译码器。
1、变量译码器(又称二进制译码器)用以表示输入变量的状态,如2-4译码器、3-8译码器和4-16译码器。
若用n个输入变量,则有2n个不同的组合状态,就有2n个输出端供其使用。
而每一个输出所代表的函数对应于n个输入变量的最小项。
以3-8译码器74LS138为例进行分析,图4-4-1为其逻辑图及引脚排列。
其中A2、A1、A0为地址输入端,Y——0~Y——7为译码输出端,S1、S2、S3为使能端。
当S1=1,S——2+S——3=0时,器件处于正常译码状态地址码所指定的输出端有信号(为0)输出,其它所有输出端均无信号(全为1)输出。
当S1=0,S——2+S——3=X时,或S1=X,S——2+S——3=1时,译码器被禁止,所有输出同时为1。
图4-4-1 3-8译码器74LS138逻辑图及引脚排列表4-4-1为74LS138的功能表。
表4-4-1二进制译码器实际上也是负脉冲输出的脉冲分配器。
若利用使能端中的一个输入端输入数据信息,器件就成为一个数据分配器(又称又路分配器),如图4-4-2所示。
若在S1输入端输入数据信息,S——2=S——3=0,地址码所对应的输出的S1数据信息的反码;若从S——2端输入数据信息,令S1=1、S——3=0,地址码所对应的输出就是S——2端数据信息的原码。
若数据信息是时钟脉冲,则数据分配器便成为时钟脉冲分配器。
实验4译码器及其应用

实验五译码器及其应用一、实验目的1、掌握中规模集成译码器的逻辑功能和使用方法2、熟悉数码管的使用二、 实验设备与器件1 、+ 5V 直流电源23 、逻辑电平显示器45 、译码显示器6三、 实验内容1、74LS138译码器逻辑功能测试将译码器使能端 S 、S 2、S 3及地址端A 2、A 1、A 分别接至逻辑电平开关输出口,八个输出端Y 7 Y 0依次连接在逻辑电平显示器的八个输入口上,拨动逻辑电平开关,按表 6- 1逐项测试74LS138的逻辑功能。
图6- 1(a )、(b )分别为其逻辑图及引脚排列。
其中A 2、A 、A o 为地址输入端, Y o 〜丫7为译码输出端,Si 、S 2、S 3为使能端。
表输入输 出sS 2 + S 3A A 1 AY 0 Y 1 Y 2 Y 3 Y 4 Y Y 6 Y 7当S = 1, S 2 + S 3 = 0时,器件正常工作,地址码所指定的输出端有信号(为 0)输出,其它所有输出端均无信号(全为 1) 输出。
当 S = o , S 2 + S 3 = X 时,或 S 1 = X , S 2 + S 3 =1时,译码器被禁止,所有输出同时为 1。
1图6 - 1 3 - 8线译码器(b)ho As74LS138AaV GGYoAlY LA J¥2Y JY I:Y=Yft SiGNDJ5工1377一0一逻辑图及引脚排列、逻辑电平开关 、拨码开关组 、74LS138 X2CC45112= ABC ABC ABC + ABC图6- 2 作数据分配器图6-3实现逻辑函数3、码显示译码器及译码显示电路数据拨码开关的使用。
将实验装置上的四组拨码开关的输出A 、B 、C 、D 分别接至4组显示译码/驱动器CC4511的对应输入口, LE 、BI 、LT 接至三个逻辑开关的输出插口,接上+5V 显示器的电源,然后按功能表 6 — 2输入的要求揿动四个数码的增减键(“ + ”与“―”键)和操作与LE 、BI 、LT 对应的三个逻辑开关,观测拨码盘上的四位数与LED 数码管显示的对应数字是否一致,及译码显示是否正常。
数字逻辑实验报告:译码器及其应用

数字逻辑实验报告:译码器及其应用
译码器是一种可以转换数字信号的设备或系统。
它的主要功能是将输入的数字序列
(被称为码)转换为一个输出的数字序列。
这样,便能从一种形式再转换成另一种形式。
这
种变换叫做译码,实际上它将信号转换为可读的形式为人类所理解。
译码器集成了各种电路,用来检测输入的数字信号,并输出结果。
这种电路将被解码
的数字信号转换成字节,以便我们使用它们来提取信息。
译码器经常用于信息传输,识别
图像,还可以用来将数字信号转换成语音。
译码器的应用也受到很多的关注,尤其是在处理复杂的数字信号时,译码器被见识到
了其精确的处理方式。
它可以将一种复杂的、编码的信号转换成简单的、易于理解的信号。
它还可以用于编码器的工作,比如将文本文件转换为不同格式的语音、图像和视频等。
近几年来,译码器发挥了重要作用,尤其是在社交媒体和其它与网络有关的工作中。
译码器可以将大量的数据编码,并且可以准确地解码出来。
这样,社交媒体服务提供商便
可以及时地发布大量的信息或数据。
因此,译码器有多种用途,它不仅可以将数据转换为信息,还可以用来将数据转换成
多种格式,从而使信息更有效地传达给用户。
将其应用于社交媒体,网络等,可以大大提
高运行速度和数据处理能力,提供更高质量的服务。
数电实验四 译码器及其应用

实验四译码器及其应用一、实验目的1.掌握中规模集成译码器的逻辑功能和使用方法。
2.掌握组合译码器的应用。
3.熟悉掌握集成译码器的扩展方法。
二、实验设备1.数字电路试验箱2.数字万用表3.74LS138、74LS20三、实验原理译码器是一个多输入多输出的组合电路,它的作用是将输入的具有特定含义的二进制代码翻译成输出信号的不同组合,实验电路的逻辑控制功能。
译码器在数字系统中应用广泛,可用于代码转换、终端数字的显示、数据的分配、存储器寻址和组合控制信号等。
本实验主要讨论3—8线变量译码器74LS38,它有三根输入线,可以输入三位二进制数码,共有八种状态组合,即可译出8个输出信号。
下图分别为管脚图和功能图。
该集成芯片共有16个引脚,其中8脚应接地线,16脚接+5V电源,脚,,为二进制编码输入端(为高位,为低位);—为译码器输出端(为高位,为低位),,,为信号输入允许端,也称使能端。
,为低电平有效,为高电平有效。
只有信号输入允许端有效时输入的信号才有效,才能实现译码。
74LS138的功能表如下表所示。
74LS138引脚图 74LS138逻辑符号74LS138功能表四、实验内容1.测试74LS138的逻辑功能;2.设计电路,用74LS138,74LS20实现函数:Y=*+*+ABC3.用两片74LS138构成一个4—16线译码器。
四、实验过程1.设计电路,实现函数Y=*+*+ABC (1)列出的真值表(2)函数的实现Y = +++ = (3)逻辑电路设计AB5v2.用两片74LS138构成一个4—16线译码器逻辑电路设计如下:。
数电实验四 译码器及其应用

实验四译码器及其应用一、实验目的1.掌握中规模集成译码器的逻辑功能和使用方法。
2.掌握组合译码器的应用。
3.熟悉掌握集成译码器的扩展方法。
二、实验设备1.数字电路试验箱2.数字万用表3.74LS138、74LS20三、实验原理译码器是一个多输入多输出的组合电路,它的作用是将输入的具有特定含义的二进制代码翻译成输出信号的不同组合,实验电路的逻辑控制功能。
译码器在数字系统中应用广泛,可用于代码转换、终端数字的显示、数据的分配、存储器寻址和组合控制信号等。
本实验主要讨论3—8线变量译码器74LS38,它有三根输入线,可以输入三位二进制数码,共有八种状态组合,即可译出8个输出信号。
下图分别为管脚图和功能图。
该集成芯片共有16个引脚,其中8脚应接地线,16脚接+5V电源,脚,,为二进制编码输入端(为高位,为低位);—为译码器输出端(为高位,为低位),,,为信号输入允许端,也称使能端。
,为低电平有效,为高电平有效。
只有信号输入允许端有效时输入的信号才有效,才能实现译码。
74LS138的功能表如下表所示。
74LS138引脚图 74LS138逻辑符号74LS138功能表四、实验内容1.测试74LS138的逻辑功能;2.设计电路,用74LS138,74LS20实现函数:Y=*+*+ABC3.用两片74LS138构成一个4—16线译码器。
四、实验过程1.设计电路,实现函数Y=*+*+ABC (1)列出的真值表(2)函数的实现Y = +++ = (3)逻辑电路设计AB5v2.用两片74LS138构成一个4—16线译码器逻辑电路设计如下:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五译码器及其应用
一、实验目的
1、掌握中规模集成译码器的逻辑功能和使用方法
2、熟悉数码管的使用
二、实验设备与器件
1、+5V直流电源
2、逻辑电平开关
3、逻辑电平显示器
4、拨码开关组
5、译码显示器
6、 74LS138×2 CC4511
三、实验内容
1、74LS138译码器逻辑功能测试
将译码器使能端S1、2S、3S及地址端A2、A1、A0分别接至逻辑电平开关输出口,八个Y⋅⋅⋅依次连接在逻辑电平显示器的八个输入口上,拨动逻辑电平开关,按表6-输出端0
7Y
1逐项测试74LS138的逻辑功能。
图6-1(a)、(b)分别为其逻辑图及引脚排列。
其中 A2、A1、A0为地址输入端,0Y~7Y为译码输出端,S1、2S、3S为使能端。
当S1=1,2S+3S=0时,器件正常工作,地址码所指定的输出端有信号(为0)输出,其它所有输出端均无信号(全为1)输出。
当S1=0,2S+3S=X时,或 S1=X,2S+3S=1时,译码器被禁止,所有输出同时为1。
图6-1 3-8线译码器 74LS138逻辑图及引脚排列
表6-1
2、二进制译码器还能方便地实现逻辑函数,如图6-3所示,实现的逻辑函数是 Z =
C B A C B A C B A +++ABC
图6-2 作数据分配器 图6-3 实现逻辑函数
3、码显示译码器及译码显示电路
数据拨码开关的使用。
将实验装置上的四组拨码开关的输出A i、B i、C i、D i分别接至4组显示译码/驱动器CC4511的对应输入口,LE、BI、LT接至三个逻辑开关的输出插口,接上+5V显示器的电源,然后按功能表6-2输入的要求揿动四个数码的增减键(“+”与“-”键)和操作与LE、BI、LT对应的三个逻辑开关,观测拨码盘上的四位数与LED数码管显示的对应数字是否一致,及译码显示是否正常。
a、七段发光二极管(LED)数码管
LED数码管是目前最常用的数字显示器,图6-5(a)、(b)为共阴管和共阳管的电路,(c)为两种不同出线形式的引出脚功能图。
符号及引脚功能
b、BCD码七段译码驱动器
此类译码器型号有74LS47(共阳),74LS48(共阴),CC4511(共阴)等,本实验系采用CC4511 BCD码锁存/七段译码/驱动器。
驱动共阴极LED数码管。
图6-6为CC4511引脚排列
其中图6-6 CC4511引脚排列
A、B、C、D—BCD码输入端
a、b、c、d、e、f、g—译码输出端,输出“1”有效,用来驱动共阴极LED数码管。
LT—测试输入端,LT=“0”时,译码输出全为“1”
BI—消隐输入端,BI=“0”时,译码输出全为“0”
LE —锁定端,LE=“1”时译码器处于锁定(保持)状态,译码输出保持在LE=0时的数值,LE=0为正常译码。
在本数字电路实验装置上已完成了译码器CC4511和数码管BS202之间的连接。
实验时,只要接通+5V电源和将十进制数的BCD码接至译码器的相应输入端A、B、C、D即可显示0~9的数字。
五、实验预习要求
复习有关译码器和分配器的原理。
六、实验报告:对实验结果进行分析、讨论。