电力电子电路控制1

合集下载

电力电子技术实验指导书(1).docx

电力电子技术实验指导书(1).docx

《电力电子技术》实验指导书电力电子实验室编华北电力大学二00六年十月1. 实验总体目标《电力电子技术》是电气工程及其自动化专业必修的专业基础课。

本实验是《电力电子技术》课程内实验,实验的主要目的是使学生在学习的过程屮通过实验环节进一步加深对电力电子电路工作原理的认识和理解,掌握测试电力电子电路的技能和方法,为后续课程打好基础。

2. 适用专业电气工程及其自动化以及和关各专业本科3・先修课程模拟电子技术基础,数字电子技术基础4.实验课时分配5. 实验环境实验室要求配有电力电子专用实验台,示波器,万用表等实验设备。

6. 实验总体要求掌握电力电子电路的测试和实验方法,拿握双踪示波器的使用方法;通过对实验电路的波形分析加深对电力电子电路工作原理的理解,建立电力电子电路的整体概念。

7. 本实验的重点、难点及教学方法建议《电力电子技术》实验的重点是:熟悉各种电力电子器件的特性和使用方法;掌握常用电力电子电路的拓扑、工作原理、控制方法和实验方法。

《电力电子技术》实验的难点是:电力电子电路的工作原理的理解和示波器的使用方法。

教学方法建议:在开始实验之前,通过多媒体设备对实验原理及实验方法进行讲解,同时对示波器的使用方法进行详细的讲解,对以通过实验演示的形式加深学牛对于实验内容的理解。

实验一、电力电子器件特性实验 (4)实验二、整流电路实验 (8)实验三、直流斩波电路实验(一)11实验四、直流斩波电路实验(二)14实验五、SPWM逆变电路实验17实验一、电力电子器件特性实验一、实验目的1 •熟悉MOSFET主要参数与开关特性的测童方法2.熟悉IGBT主要参数与开关特性的测试方法。

二、实验类型(验证型)木实验为验证型实验,通过实验对MOSFET和IGBT的主要参数和特性的测量,验证其开关特性。

三、实验仪器1 • MCL-07电力电子实验箱中的MOSFET与IGBT器件及英驱动电路部分2.双踪示波器3.毫安表4.电流表5.电压表四.实验原理MOSFET主要参数的测量电路原理图如图所示。

新能源电源变换技术 第1章 电力电子电源中的功率器件

新能源电源变换技术 第1章 电力电子电源中的功率器件
新能源电源变换技术
内容
电力电子电源中的功率器件 DC-DC 变换器原理及应用 软开关技术 三相 AC-DC 整流电路及控制算法 逆变电源原理及应用
第一章 电力电子电源中的功率器件 功率电子器件概述 常见的功率开关器件 功率器件的驱动电路
1.1 功率电子器件概述
功率电子器件的发展方向:
电容效应:势垒电容、扩散电容
反向恢复特性:二极管在关断时刻,由于少数载流子存储效应,正向导通电流
IF不能立即消失,在短时间内存在反向(即由阴极到阳极)电流,这个时间称 作反向恢复时间。根据反向恢复时间的大小,可分为:普通二极管(trr较大, 适用于低频场合,如1kHz整流电路);快速恢复二极管(trr < 5us,适用于高频 整流/斩波和逆变电路);肖特基二极管(适用于50V以下低压高频型器件).
(3)高频功率器件: 如 MOSFET、快恢复二极管、肖特基二极管、SIT等
按导电载波的粒子
(1)多子器件: 如 MOSFET、肖特基二极管、SIT、JFET 等
(2)少子器件: 如 IGBT、 GTR、 GTO、快恢复二极管等
按是否可控
半控型:晶闸管
功率器件
门极可关断晶闸管(GTO)
全控型
双极性功率晶体管
1.3.2 隔离驱动电路
MOSFET及IGBT的驱动电路绝大部分采用光耦隔离。
开通过程的时间为零
关断过程的时间为零
1.1.2 开关器件的分类
按制作材料:Si功率器件、Ga功率器件、GaAs功率器件、SiC功率器件、GaN 功率器件及Diamond功率器件
按工作频率:
(1)低频功率器件: 如可控硅,普通二极管等;
(2)中频功率器件: 如 GTR、 IGBT、IGT/COMFET;

电力电子学_康勇_第1章电力电子变换和控制技术导论

电力电子学_康勇_第1章电力电子变换和控制技术导论

电力电子学——电力电子变换和控制技术(第二版)第 1 章电力电子变换和控制技术导论1 电力电子变换和控制技术导论1.1 电力电子学科的形成1.2 电力电子变换和控制的技术经济意义1.3 开关型电力电子变换的基本原理及控制方法1.4 开关型电力电子变换器基本特性1.5 开关型电力电子变换器的应用领域课程学习要求1.1 电力电子学科的形成1.电力技术2.电子技术3.电力电子技术1.电力技术✓电力技术是一门涉及发电、输电、配电及电力应用的科学技术。

✓利用电磁学(电路、磁路、电场、磁场的基本原理),处理发电、输配电及电力应用的技术统称电力技术。

2.电子技术✓电子技术又称为电子学,它是与电子器件、电子电路以及电子设备和系统有关的科学技术。

✓电子技术是研究电子器件,以及利用电子器件来处理电子电路中电信号的产生、变换、处理、存储、发送和接收问题。

✓又称为信息电子技术或信息电子学。

(Power Electronics)3.电力电子技术✓也称为电力电子学。

✓利用电力电子开关器件组成电力开关电路,利用集成电路和微处理器构成信号处理和控制系统,对电力开关电路进行实时、适式的控制,经济有效地实现开关模式的电力变换和电力控制,包括电压(电流)的大小、频率、相位和波形的变换和控制。

✓是综合了电子技术、控制技术和电力技术的新兴交叉学科。

✓电力电子技术的发展史是以电力电子器件的发展史为纲3.电力电子技术(Power Electronics)典型的电力电子系统框图1.2 电力电子变换和控制的技术经济意义✓为了满足一定的生产工艺和流程的要求,供电电源的电压、频率甚至波形都必须满足各种用电设备的不同要求。

✓将发电厂生产的单一频率和电压的电能变换为各个用电设备最佳工况所需要的另一种特性和参数(频率、电压、相位和波形)的电能,再供负载使用,用电设备可以获得更好的技术特性和更大的经济效益。

1.3 开关型电力电子变换的基本原理及控制方法1.电力变换的类型2.交流机组实现电力变换3.利用开关器件实现电力变换的基本原理1.电力变换的类型✓电源可分为两类:直流电(D.C),频率f=0交流电(A.C),频率f 0✓电力变换按电压(电流)的大小、波形及频率变换划分为四类基本变换及相应的四种电力变换电路或电力变换器。

《电力电子技术》第1章课后习题答案

《电力电子技术》第1章课后习题答案

晶闸管导通的条件是什么由导通变成关断的条件是什么答:使晶闸管导通的条件是:晶闸管承受正朝阳极电压,并在门极施加触发电流(脉冲)。

或: u AK>0且 u GK>0。

要使晶闸管由导通变成关断,可利用外加电压和外电路的作用使流过晶闸管的电流降到凑近于零的某一数值以下,即降到保持电流以下,即可使导通的晶闸管关断。

1.2晶闸管非正常导通方式有几种(常有晶闸管导通方式有 5 种,见课本 14 页,正常导通方式有:门级加触发电压和光触发)答:非正常导通方式有:(1)Ig=0 ,阳极加较大电压。

此时漏电流急剧增大形成雪崩效应,又经过正反响放大漏电流,最后使晶闸管导通;(2)阳极电压上率 du/dt 过高;产生位移电流,最后使晶闸管导通(3)结温过高;漏电流增大惹起晶闸管导通。

试说明晶闸管有那些派生器件。

答:晶闸管派生器件有:(1)快速晶闸管,(2)双向晶闸管,(3)逆导晶闸管,(4)光控晶闸管GTO 和一般晶闸管同为PNPN结构,为何GTO能够自关断,而一般晶闸管不可以答:GTO 和一般晶闸管同为PNPN 结构 , 由 P1N1P2 和 N1P2N2构成两个晶体管V1、 V2 分别拥有共基极电流增益α 1和α2,由一般晶闸管的解析可得,α 1 + α 2 = 1 是器件临界导通的条件。

α 1 +α 2 > 1两个等效晶体管过饱和而导通;α 1 +α 2 < 1 不可以保持饱和导通而关断。

GTO 之因此能够自行关断 , 而一般晶闸管不可以, 是因为GTO 与一般晶闸管在设计和工艺方面有以下几点不一样:1 ) GTO 在设计时α 2较大 , 这样晶体管T2 控制敏捷 , 易于 GTO 关断 ;2)GTO 导通时α 1 + α2的更凑近于 l,一般晶闸管α 1 + α 2 ≥ , 而 GTO 则为α 1+α 2 ≈, GTO 的饱和程度不深 , 凑近于临界饱和 , 这样为门极控制关断供给了有益条件;3)多元集成结构使每个 GTO 元阴极面积很小 , 门极和阴极间的距离大为缩短 , 使得 P2 极区所谓的横向电阻很小,从而使从门极抽出较大的电流成为可能。

东大14秋学期《电力电子电路Ⅰ》在线作业1 答案

东大14秋学期《电力电子电路Ⅰ》在线作业1 答案
C. SITH、MCT、Thyristor、GTO
D. IGCT、GTO、TRIAC、IPM
?
正确答案:B
3.三相桥式全控整流电路,电阻性负载,()是ud波形连续和断续的分界点。
A. 30°
B. 60°
C. 90°
D. 120°
?
正确答案:B
4.自然换流点在相电压波形正半周轮廓线交点的电路是()。
A.三相零式共阴极组整流电路
B.三相零式共阳极组整流电路
C.三相桥式全控整流电路
D5.单相全波可控整流电路,大电感负载,晶闸管的电流有效值是()。
A.
A
B.
B
C.
C
D.
D
?
正确答案:D
6. 180°导电型交-直-交电压变频器,任意时刻有()导通。
A.一只开关管
B.两只开关管
C.三只开关管
D.四只开关管
A.错误
B.正确
?
正确答案:A
2.交流调压电路的主要作用是把一种频率的交流电转化为另一种频率的交流电。
A.错误
B.正确
?
正确答案:A
3.门极可关断晶闸管GTO是电压控制型器件。
A.错误
B.正确
?
正确答案:A
4.电流型交-直-交变频器中间滤波环节采用大电感滤波。
A.错误
B.正确
?
正确答案:B
5.半控桥式晶闸管电路,可以组成反并联可逆电路。
A. 1
B. 2
C. 3
D. 4
?
正确答案:B
10.电压与电流波形相同的是()。
A.三相半波整流电路,电阻性负载
B.三相半波整流电路,电感性负载
C.单相全控桥式整流电路,电感性负载

实验36-电力电子电路闭环控制(稳态分析)

实验36-电力电子电路闭环控制(稳态分析)

C (s) G ( s) 1 G ( s) H ( s) = = R( s) 1 + G ( s) H ( s) H ( s) 1 + G ( s) H (s)
(36-3)
集学科优势
- 30-
求改革创新
华中科技大学电气与电子工程学院实验教学中心
信号与控制综合实验指导书
其等效变换前后的闭环系统方框图如图 36-2 和图 36-3 所示。从图中可以看出,等 效变换是将一个实际系统的控制电路给定值 R(s)变成了等效单位反馈系统中的等效给定 值 R(s)/H(s),实际系统中的给定 R(s)是低压信号,而等效变换后的给定 R(s)/H(s)由于反 馈系数 H 很小(降压比大) ,而成为高压信号,与系统的实际输出幅度相对应。我们知 道,改变给定是可以控制输出的幅值的,在负反馈系统中输出依据反馈的原理要跟踪输 入信号, 因此, 改变反馈系数 H (即反馈传递函数 H(s)的增益) , 就可以改变等效输入 (给 定) ,相应改变输出。这在设计中也是一种常见的思路,因为通常采用改变给定的方法来 调节输出会影响到控制精度 (尤其在输出值调节到比较低的时候) , 而改变反馈增益却不 会影响控制精度。设计反馈回路时考虑设置一个可调电阻,在需要时调节输出幅值,是 很有必要的。
三、实验内容
1. 设计一个电力电子变换电路及控制系统,内容根据实验装置条件自选。 (注:本实 验装置上可以完成实验的变换器电路模块有:DC/DC-Buck,Boost,Cuk 电路;DC/DC 单端正激变换电路;DC/DC 软开关电路;三相桥电路模块) 2. 采用实验装置各种模块(电力电子变换模块、滤波模块、传感器模块、各种检测仪 器和负载)和面包板(或控制电路板) ,构建所设计的电力电子控制系统,针对被控对象 (电力电子变换电路)进行闭环控制,控制器设计方案自选。系统构建方案尽可能简单、 可靠。要求稳态误差小、系统稳定。 3. 实现以上设计方案:用 PWM 控制芯片及外围电路实现;或采用数字控制器,应用 单片机或 DSP 实现。 - 32-

电力电子技术(含实验)第1章_绪论

电力电子技术(含实验)第1章_绪论

1-4
课程内容简介
1-1 电力电子技术概述
电力电子技术(power electronics):指利用电力 电子器件对电能进行变换和控制,把从电网获取的“ 粗电”变换成负载所需要的“精电”的技术。
电子技术包括:
信息电子技术 和 电力电子技术。
信息电子技术——模拟电子技术和数字电子技术。
电力电子技术主要用于电力变换,而信息电子技术
电力电子器件
①分立器件
②模块
③IGBT单管
④IGBT模块
电力电子器件的发展趋势
高频化:提高开关频率,降低设备体积,节约资源
模块化:功率部分、控制、驱动、保护集成一体
数字化:数字控制技术广泛应用 绿色化:谐波污染小、功率因数高、电磁辐射小
1-3 电力电子技术应用
电力电子技术广泛用于一般工业、交通运输、 电力系统、不间断电源和开关电源、家用电器、以 及新能源的开发及应用领域。在解决全球能源危机、 资源危机和环境污染方面发挥着重要作用。经过至 少一次电力电子装置处理以后使用的电能所占比例 已经成为一个国家经济发展水平的重要指标。
导通和关断控制的有效信号。
3.电力电子技术的研究分支及特点
研究分支:
电 力 电 子 器 件 ( element) 技 术 、 变 流 技 术 (power conversion)和控制技术(Control)三个分支。 特点:

电力电子器件是整个电力电子技术的基础,电力电子技术 的发展集中体现在电力电子器件的发展上,器件一般均工 作在开关状态,这是重要特征; 变流技术是电力电子技术的主体,控制技术是电力电力电 子技术的灵魂;
5.家用电器
照明在家用电器中有十分突出的地位。由于电力电 子照明电源体积小、发光效率高、可节省大量能源, 通常被称为“节能灯”,正逐步取代传统的白炽灯 和日光灯。

电力电子技术的主要内容1

电力电子技术的主要内容1

电⼒电⼦技术的主要内容1电⼒电⼦技术的主要内容将电⼦技术和控制技术引⼊传统的电⼒技术领域,利⽤半导体电⼒开关器件组成各种电⼒变换电路实现电能的变换和控制称为电⼒电⼦技术。

电⼒电⼦技术主要包括电⼒电⼦器件、变流电路和控制技术三个部分,其中电⼒电⼦技术是基础,变流电路是电⼒电⼦技术的核⼼。

主要研究电⼒电⼦器件的应⽤、电⼒电⼦电路的电能变换原理以及控制技术及电⼒电⼦装置的开发与应⽤。

1、电⼒电⼦器件1.1电⼒电⼦器件是指可直接⽤于主电路中实现电能变换或控制的电⼦器件,它是电⼦器件的⼀⼤分⽀,能承受⾼电压和⼤电流,是弱电控制强电的纽带。

1.2电⼒电⼦器件的分类1.2.1按可控性分类根据控制信号对器件控制程度可将电⼒电⼦器件分为三类:(1)不可控器件,不能⽤控制信号来控制其导通、关断的电⼒电⼦器件,如电⼒⼆极管。

(2)半控型器件,能⽤控制信号控制其导通,但不能控制其关断的电⼒电⼦器件称为半控型器件,主要有晶闸管及其⼤部分派⽣器件(GTO除外)。

(3)全控型器件,能⽤控制信号控制其导通,⼜能控制其关断的电⼒电⼦器件称为半控型器件,⼜称为⾃关断器件。

如绝缘栅双极晶体管(IGBT)和电⼒场效应晶体管(P-MOSFET)等。

1.2.2按驱动信号类型分类(1)电流驱动型,通过控制极注⼊或抽出电流来实现导通或关断控制的。

如门极可关断晶闸管(GTO)、电⼒晶体管(GTR)。

(2)电压驱动型,通过在控制端和公共端之间加⼀定的电压信号就能实现导通或关断控制的,如电⼒场效应晶体管(P-MOSFET)、集成门集换流晶闸管(IGCT)。

1.2.3按器件内部载流⼦参与导电情况分类(1)单极型器件,由⼀种载流⼦参与导电的器件,如电⼒场效应晶体管(P-MOSFET)、静电感应晶体管(SIT)。

(2)双极型器件,由电⼦和空⽳两种载流⼦参与导电的器件,如电⼒晶体管(GTR)、静电感应晶闸管(SITH)、MOS控制晶闸管(MCT)。

1.3常⽤电⼒电⼦器件1.3.1电⼒⼆极管具有⼀个PN结和阳极A、阴极K的两层两端半导体器件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子电路的控制
Tel:87543658
87543071
pe105@
一概述
电力电子变换
电力变换:将一种参数(电压/电流的幅值、频率、波形)的电能变换为另一种参数的电能称为电力变换。

电力电子变换:利用电力半导体开关器件构成开关电路,对电路中的开关器件进行实时、适式的通、断状态控制,将电源输入的电压/电流幅值、频率或波形变换为另一种电压/电流幅值、频率或波形输出,称为电力电子变换。

电力电子(开关)电路:实现电力电子变换的开关电路。

电力电子变换器或变流器:实现电力电子变换的开关电路,连同其输入、输出滤波环节,辅助元器件和控制系统所构成的整体。

实现电力变换的技术
电力电子变换器在控制特性、重量、体积、效率、可靠性和维护管理等各方面均优于变流机组。

对比
两类变流机组:通过电动机-发电机组实现电力变换;电力电子变换器
z电源有两类:交流电源、直流电源
z负载有两类:交流负载、直流负载
z电力变换有四类:
(1)DC→DC (2)DC→AC
(3)AC→DC (4)AC→AC
电力电子变换器可实现这些电力变换
电力电子电路的基本形式(1)直流/直流降压变换电路
(Buck电路)
(2)直流/直流升压变换电路
(Boost电路)
(3)单相半桥电路
DC/DC 两象限变换器
A
N
EF
V E
F
A
EF
V E
F
单相半桥逆变电路单相半桥PWM整流电路
DC/DC
四象限变换器
单相桥式相控AC/DC
变换器
(4)单相全桥电路:
单相桥DC/AC 变换器
三相电压源PWM 整流器三相PWM 逆变器
三相桥式相控AC/DC 变换器
+-+-
(5)三相桥式电路:
AC/AC 变换器:周波变换器、矩阵型交流/交流直接变频器。

A
B
C
EF
V E
F
AC
三相
电力电子变换电源:利用电力电子电路给专用负载或通用负载供电DC/DC直流电源
DC/AC变换器(CVCF、VVVF交流电源)
AC/DC整流电源
AC/AC交流电源(变频器、周波变换器)
电力电子补偿控制器:
对电力电子电路中的开关器件实施控制,可输出所要求的幅值、频率、相位和波形均可控的电压或电流,补偿控制电力系统或负载
的基波电压/电流(幅值、相位)、谐波电压/电流、有功或/和
无功功率。

电力电子补偿控制器不仅在用电系统,在电力系统发电、输电、配电系统中得到广泛应用,电力电子补偿控制器将是今后10-20年
电力电子技术最大的应用领域和最高技术水平的应用领域。

利用电力电子变换和补偿控制技术可使发电、输电、
配电及用电高效、优质。

¾开关器件的开关模式控制
相控、方波、PWM方式
¾电能变换模式的控制
目标
工作原理及控制方案
电力电子电路的形式
电力电子电路的跟踪性能控制(控制器设计)
电力电子电路根据控制的不同可实现不同的电力电子变换
二有源电力滤波器
主要内容
电能质量问题
指标与标准
技术方案
并联型有源电力滤波器
串联型有源电力滤波器
有源电力滤波器应用
1.电能质量问题
电能质量从供电看包括电压质量、供电可靠性:
a)电压质量:
频率质量:频率偏差;
电压幅值:电压下跌、电压上升、电压瞬变、电压波动、过电压、欠电压、中断;
电压不平衡;
波形质量:谐波、间谐波、电压切痕;
b)供电可靠性
主要关注谐波和无功问题。

1.1谐波
谐波源:
¾非线性负荷产生谐波电流,谐波电流通过网络阻抗产生谐波电压,导致电网电压畸变。

¾谐波源主要包括铁磁设备、电弧设备和电力电子设备等。

a)铁磁设备:变压器、旋转电机等;
b)电弧设备:电弧炉、电弧焊、荧光灯等;
c)电力电子设备:电机调速装置(ASD)、整流柜、
开关电源、充电器、计算机电源、不停电电源(UPS)等。

¾电力电子设备已成为主要谐波污染源。

+−+−+
−sa L sb
L sc
L sa u sb u sc
u dc C dc
R 1
D 3D 5
D 4
D 6
D 2
D +

RC 型不控或相控整
流器是典型的谐波源; 谐波含量非常大,一般THDi ≥60%;
通常导致供电电压严重畸变;
一般要求在交流侧增加标么值为3%左右的电抗器。

电压型整流器谐波源
t (s)
(c ) U s a (V ) a n d i L a (A )
RL 型不控或相控整流器是典型的谐波源;
谐波含量大,一般THDi 值在30%左右;
也可能导致供电电压产生畸变;
+−+−+
−sa L sb
L sc
L sa u sb u sc
u dc
L dc
R 1
D 3D 5D 4
D 6
D 2
D +

电流型整流器谐波源
t (s)
(c ) U s a (V ) a n d i L a (A )
谐波危害:
¾附加谐波损耗,降低设备使用效率,增加线损
谐波电流、电压使电网中的电气设备产生附加的谐波损耗,降低了发电、输电及用电设备的效率;
¾热效应,绝缘老化,降低设备使用寿命
影响各种电气设备的正常工作,谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重过热,使电容器过压过热,使电缆等设备过热、绝缘老化、寿命缩短,以致损坏。

大量的三次谐波流过中线时会使线路过热甚至发生火灾。

¾可能引起电网中局部谐振,损坏器件
会引起电网中局部的并联谐振和串联谐振,从而使谐振波放大,使谐波危害大大增加,甚至引起严重事故。

¾电力系统保护设备(继电保护和自动装置)误动作
¾电气测量设备计量不准确
¾干扰甚至损坏电子通信设备
1.2无功
无功源:
无功功率的定义还在争论。

只讨论基波无功,不考虑谐波无功。

无功源主要包括阻感型负载、电力电子装置、电弧炉:a)阻感型负载:交流电机、变压器、日光灯镇流器、电抗器、架空线等;
b)电力电子装置:相控整流器、相控交流电机调速装置等;
c)工业用电弧炉。

无功危害:
¾冲击性无功引起系统电压波动和闪变,降低供电质量;
¾增加设备容量;
¾增加设备和线路损耗;
¾降低功率因数,严重时用户将受到无功罚款。

电弧炉
电力机车
卫星发射中心
大学教学楼i-a i-c i-b
R.M.S Values:
i-a Î
46.09A , i-b Î27.03A , i-c Î43.85A , i-neutral Î45.64A
i-neutral
Std. Current Waveform:
* Sinusoidal
* Neutral Current is 0
银行
Voltage RMS Vs. Time Current RMS Is. Time
输入电压达到要求范围负荷电流包含大量谐波
最大中线电流达到93.45A
2.指标与标准
性能指标:
¾总谐波畸变率THD(Total Harmonic Distortion)THD= Harm I rms/ Fund I rms
¾总要求畸变率TDD(Total Demand Distortion)TDD = Harm I rms/ Full-load Fund I rms
Total I, rms Fund I,
rms
Harm I,
rms THD(I)TDD
Full load936.68936.0035.57 3.8% 3.8% 836.70836.0034.28 4.1% 3.7%
767.68767.0032.21 4.2% 3.4%
592.63592.0027.23 4.6% 2.9%
424.53424.0021.20 5.0% 2.3%
246.58246.0016.97 6.9% 1.8%
111.80111.0013.3212.0% 1.4%
Measured
¾基波位移因数DF
(Displacement Factor)
1
cosΦ1=P1/S1=基波有功功率/基波视在功率¾功率因数PF (Power Factor)
PF=P/S=有功功率/视在功率。

相关文档
最新文档