数学:1.1轴对称与轴对称图形课件(苏科版八年级上)

合集下载

苏科版八年级上册 轴对称图形 知识点总结讲解

苏科版八年级上册  轴对称图形 知识点总结讲解

轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称;注意:其中这条直线叫对称轴;两个图形的对应点叫对称点;轴对称图形:如果把一个图形沿一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形;注意:轴对称图形也有对称轴和对称点;轴对称和轴对称图形的区别于联系:区别:1、轴对称是指两个图形折叠重合。

轴对称图形是指本身折叠重合,2、轴对称对称点在两个图形上;轴对称图形对称点在一个图形上;3、轴对称只有一条对称轴;轴对称图形至少有一条对称轴;联系:若把成轴对称的两个图形看作一个整体,那么这个整体是一个轴对称图形; 若把一个轴对称图形位于对称轴的两部分看作两个图形,那么这两个图形 就成轴对称。

图文解释:△ABC 和△DEF 关于直线MN 对称, △ABC 关于直线MN 对称 MN 是对称轴,我们称这两个三角形关于 MN 为对称轴,我们称 直线MN 成轴对称,点C 点F 为对称点, △ABC 为轴对称图形。

点B 点E 为对称点,点A 点D 为对称点。

CABMNFEDMNAB C轴对称的性质:1、成轴对称的两个图形全等;2、成轴对称的两个图形,对应点的连线被对称轴垂直平分;垂直平分线:作点关于直线的对称点,连接这两点的线段。

我们定义:垂直并且平分一条线段的直线,叫作这条线段的垂直平分线。

又称“中垂线”注意:判断一条直线是否是线段的垂直平分线,必须满足两个条件。

1、这条直线过线段的中点;2、这条直线垂直于线段;通过研究线段或者某个图形关于直线的对称:轴对称还有如下的性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分。

注意:这个性质其实告诉如何确定对称轴:即成轴对称的两个图形,对称轴是对应点连线的垂直平分线。

画一个图形关于一条直线对称的图形步骤:首先我们要明白一个事实:点构成线,线构成面。

1、关键是确定某些点关于这条直线的对称点。

八年级数学上册教学课件《轴对称与坐标变化》

八年级数学上册教学课件《轴对称与坐标变化》

2. 点(﹣1,2)关于原点的对称点坐标是( B )
A.(﹣1,﹣2) B.(1,﹣2)
C.(1,2)
D.(2,﹣1)
课堂检测
基础巩固题
3.3 轴对称与坐标变化
1.如图,△ABC与△DFE关于y轴对称,已知A(-4,6), B(-6,2),E(2,1),则点D的坐标为( B ) A.(-6,4) B.(4,6) C.(-2,1) D.(6,2)
课堂检测
基础巩固题
3.3 轴对称与坐标变化
2.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论: ①A、B关于x轴对称; ②A、B关于y轴对称;③A、B关于原 点对称;④A、B之间的距离为4,其中正确的有( B )
A.1个
B.2个
C.3个
D.4个
3.点(-4,9)与点(4,9)的关系是( C )
A.关于原点对称
B.关于x轴对称
C.关于y轴对称
D.不能构成对称关系
课堂检测
基础巩固题
3.3 轴对称与坐标变化
4.已知点P(2a-3,3),点A(-1,3b+2),
2
(1)如果点P与点A关于x轴对称,那么a+b= 3 ;
7
(2)如果点P与点A关于y轴对称,那么a+b= 3 .
课堂检测
能力提升题
3.3 轴对称与坐标变化
A: ( 1 , 2 ) B:( 5 , 1 ) C:( 3 , 4 )
A1:( 1 , 2) B1:( 5 , 1) C1:( 3 , 4 )
对应点的横 对应点的纵坐
坐标相同
标互为相反数
(3)如果点P(m,n)在△ABC内,那么它 在△A1B1C1内的对应点P1的坐标是 (m,-n) .

八上 1.1 轴对称和轴对称图形

八上 1.1 轴对称和轴对称图形

第一章轴对称图形(教案)1.1 轴对称和轴对称图形班级姓名学号教学目标:1、认识轴对称与轴对称图形;2、会画出对称轴,找出对称点;3、能设计简单轴对称图案、标志;教学重点:正确辨认轴对称图形,画出它们的对称轴;教学难点:设计简单轴对称图案;教学过程:一、情境创设:活动一:将一张矩形的纸对折,用针在纸上扎出简单的图形或数字,将纸打开铺平.仔细观察回答下列问题:1.纸上的图案有什么关系?2.找出图形中的两组对应点,并连接,看看你连接的的线段与对称轴之间有什么关系?3.在扎字中的对应线段,对应角又有什么样的关系?由此可得:把一个图形沿着一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫对称轴,两个图形中的对应点叫做对称点做一做1用一张半透明的纸描出图所示的星形图,然后用不同的方式对折,用直尺画出折痕,看看这颗星有多少条对称轴.做一做2请你标出图中A、B、C三点的对称点A1、B1、C1.我们再看图中的两组图形.试一试把一张纸对折,然后从折叠处剪出一个图形,想一想展开后会是一个什么样的图形?观察图10.1.1中的各个图形,它们都是对称图形.这些图形有什么特点呢?如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.图10.1.1轴对称与轴对称图形的区别与联系.区别:轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分能完全重合.联系:两部分都完全重合,都有对称轴,都有对称点.二、例题示范:例1 下列汉字,如果用一样粗细的笔写出来,哪些是轴对称图形?是轴对称图形的,有几条对称轴?大小口中朋木三、课堂小结:1、什么是轴对称和轴对称图形;2、如何画出对称轴、如何找对称点?3、生活中的轴对称和轴对称图形.四、课后作业:P9 1,2,3五、教学后记:。

苏科版八年级数学教师教材分析轴对称与轴对称图形

苏科版八年级数学教师教材分析轴对称与轴对称图形

教师教材分析记录教材版本苏教版年级八课题轴对称与轴对称图形一、本章知识概括分析:本章从现实生活中的图形入手,研究轴对称及其基本性质,并利用这些知识探索线段、角、等腰三角形等一些简单图形的轴对称性,并了解了线段的垂直平分线、角平分线的性质及等腰三角形的特征和识别,能利用轴对称进行图案设计,进而感知数学美。

由于轴对称性在现实生活中有着广泛的应用,所以,通过本章的学习也能为今后能更好的适应社会奠定基础。

二、本章内容的重点与难点:1.重点:(1)轴对称与轴对称图形的区别和联系(2)线段垂直平分线以及角平分线的应用(3)等腰三角形的性质及识别(3)动手操作,画轴对称图形。

2.难点:理解轴对称及轴对称图形的性质设计简单的轴对称图形。

三、本章教学环节的突破:1.在学习§2.1轴对称与轴对称图形时,我认为要从实际生活中的图形出发,充分利用结合学生已有的经验,并注意联系生活中的实例去区分轴对称和轴对称图形:一定要让学生理解他们的概念,有什么相同之处和不同之处,让学生清楚相同之处就是都是一条对称轴,并且这条对称轴两旁的部分都能够完全重合;不同之处是轴对称图形是指一个图形,而成轴对称的图形是指两个图形。

如果对于这两个概念理解的不透彻,就会对这两个概念产生混淆而出现理解错误,这也是§2.1中教师要重点讲解之处。

2.在学习§2.2轴对称的性质。

这节中轴对称的性质是重点,是必须让学生掌握的。

要真正理解轴对称的性质最好就是让学生多动手画图,从画图中去思考理解。

在掌握轴对称性质的同时一定让学生理解“对应点到对称轴的距离相等”与“对应线段相等”的区别。

画对称轴图形是学习的一个难点。

要突破这个难点关键是找一些特殊的对称点,例如,线段的端点,角的顶点等,然后顺次连接对称点,得到对称线段组成的图形就是对称图形。

3. §2.3设计轴对称图案。

学习本节内容时,让学生根据要求设计出优美的轴对称图形,感知对称性的特点,并培养学生的动手能力。

2.4 线段、角的轴对称性 课件 苏科版数学八年级上册

2.4 线段、角的轴对称性 课件 苏科版数学八年级上册

例 3 在铁路a的同侧有两个工厂A和B,要在铁路边建一货 场C,使A、B两个工厂到货场C的距离相等,试在图 2.4-6 中作出点C.
解题秘方:连接AB,作出线段AB的垂直平分线即可. 解:连接AB,作线段AB的垂直平分线交直线a于点C. 如图2.4-6, 点C即为所求.
方法点拨
尺规作图时要注意虚实线,即辅助性的线 用虚线,所要画的线用实线,同时要注意保留 作图痕迹.
3. 角平分线的判定定理与性质定理的关系 (1)如图2.4-9,都与距离有关,条件PD⊥OA,PE⊥OB 都具备; (2)点在角的平分线上 性质 (角的内部的)点到角两边的 判定 距离相等.
4. 拓展 三角形三个内角的平分线交于一点且这点到三边 的距离相等.
特别提醒
1. 使用该判定定理的前提是这个点必须在角的内部. 2. 角平分线的判定是由两个条件(垂线,线段相等) 得到一个结论(角平分线). 3. 角平分线的判定定理是证明两角相等的重要依据, 它比利用三角形全等证两角相等更方便快捷.
特别解读
1. 线段垂直平分线的性质中的“ 距离”是 “该点与这条线段两个端点的距离”.
2. 用线段垂直平分线的性质可直接证明线段相 等,不必再用三角形全等来证明,因此它为证明 线段相等提供了新方法.
例 1 如图2.4-2,在△ABC中,AB边的垂直平分线DE,分 别与AB边和AC边交于点D和点E,BC边的垂直平分
解题秘方:由线段垂直平分线的判定可知,证明 AD所在的直线上的点A和点D到线段EF的两个端 点的距离相等即可.
解:线段AD所在的直线是线段EF的垂直平分线. 证明:如图2.4-4,连接DE、DF. ∵ AD为∠BAC的平分线,∴∠EAD=∠FAD. 在△AED和△AFD中,
AE=AF, ቐ∠EAD=∠FAD,∴△AED≌△AFD. ∴ DE=DF.

苏科版初中八年级数学上册第二章《轴对称图形》PPT课件

苏科版初中八年级数学上册第二章《轴对称图形》PPT课件

●A
l E●
C●
● D H●
●F
●B
G●
2.2 轴对称的性质(1)
(3)连接AE、BG, AE与BG平行吗?为什么? 解:(3)平行. 因为 A和E,B和G是关于直线 l 的对称点, 所以 l⊥AE ,l⊥BG. 所以 AE ∥BG.
●A
l E●
C●
● D H●
●F
●B
G●
2.2 轴对称的性质(1)
所以 线段OA、OA′重合,

O是AA′的中点.
因为 ∠1=∠2 且 ∠1+∠2=180°,
所以 ∠1=∠2=90°.
所以 l 垂直且平分AA′.
2.2 轴对称的性质(1)
垂直并且平分一条线段的直线,叫做这条线段的垂 直平分线(midpoint perpendicular).
如图,直线 l 交线段AB于点O, ∠1=90°,AO=BO,
(1) (3)
(2) (4)
2.2 轴对称的性质(1)
活动一:
如图所示,把一张纸折叠后,用针扎一个孔;
再把纸展开,两针孔分别记为点A、点A′,折
痕记为l ;连接AA′,AA′与l相交于点O .
你有什么发现 (小组交流)?
l

l
AO
A′


2.2 轴对称的性质(1)
l
12
A●
o
● A′
因为 把纸沿折痕 l 折叠时,点A、A′重合,
3.轴对称图形中的对称线段所在直线的交点在对称 轴上或对称线段所在直线互相平行.
2.2 轴对称的性质(2)
思考:
如图,点A、B、 C都在方格纸的格点上, 请你再找一个格点D, 使点A、B、C、D组成 一个轴对称图形.

八年级数学上册第一章轴对称图形1.1轴对称与轴对称图形课件苏教版


结束语
与广大教师共勉! 如有不足之处,欢迎指正!
把一个图形沿着某一条直线折叠,如果直线两旁的 部分能够互相重合,那么称这个图形是轴对称图形,这 条直线就是对称轴。
练一练
同桌之间互相画一个轴对称图形,请同 学找出对称轴:
Hale Waihona Puke ADA FA BB
B
E
o
CC D
图1
图2
图3
图4
想一想
请把下面两个轴对称图形补充完整:
对称轴
对称轴
作业
找出下列图形中的对称图形,并画出对称轴:
轴对称与轴对称图形
请同学们拿出2张纸,裁成正方形,再适当折 叠,剪出下面的2个图案:
如何把他们 剪出来呢?
剪法如下:
剪法如下:
思考
通过刚才的操作大家发现了什么?如果我 们把剪好的图形沿着某条直线折叠,会出现什 么情况呢?
轴对称图形
请大家画一条直线和一个角,它们沿某条线折叠能重合吗?
对称轴 对称轴

部编人教版八年级数学上册《13第十三章 轴对称【全章】》精品PPT优质课件

正方形ABCD面积的一半,∵正方形ABCD的边长为4cm, ∴S阴影=42÷2=8(cm2).故选B.
方法归纳:正方形是轴对称图形,在轴对称图形中 求不规则的阴影部分的面积时,一般可以利用轴对 称变换,将其转换为规则图形后再进行计算.
当堂练习
1.观察下列各种图形,判断是不是轴对称图形?





方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.
例2 如图,正方形ABCD的边长为4cm,则图中 阴影部分的面积为( B )
A.4cm2 B.8cm2 C.12cm2 D.16cm2
解析:根据正方形的轴对称性可得,阴影部分的面积等于
(1)
(2)
思考:如图,△ABC和△A′B′C′关于直线MN对称, 点A′,B′,C′分别是点A,B,C的对称点,线段AA′, BB′,CC′与直线MN有什么关系?
A
AA′⊥MN,
M A′
BB′⊥MN,
B
B′
CC′⊥MN.
C
C′
N
知识要点
线段垂直平分线的定义
M
经过线段中点并且垂直于这条
线段的直线,叫做这条线段的
A
P
垂直平分线.
B
如图,MN⊥AA′, AP=A′P.
C
直线MN是线段AA ′的垂直平分线.
N
图形轴对称的性质
A'
B' C'
如果两个图形关于某条直线对称,那么对称轴是任 何一对对应点所连线段的垂直平分线.
一个轴对称图形的对称轴是否也具有上述性质呢? 请你自己找一些轴对称图形来检验吧!

苏科版八年级上册 轴对称图形 知识点总结讲解

轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称;注意:其中这条直线叫对称轴;两个图形的对应点叫对称点;轴对称图形:如果把一个图形沿一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形;注意:轴对称图形也有对称轴和对称点;轴对称和轴对称图形的区别于联系:区别:1、轴对称是指两个图形折叠重合。

轴对称图形是指本身折叠重合,2、轴对称对称点在两个图形上;轴对称图形对称点在一个图形上;3、轴对称只有一条对称轴;轴对称图形至少有一条对称轴;联系:若把成轴对称的两个图形看作一个整体,那么这个整体是一个轴对称图形; 若把一个轴对称图形位于对称轴的两部分看作两个图形,那么这两个图形 就成轴对称。

图文解释:△ABC 和△DEF 关于直线MN 对称, △ABC 关于直线MN 对称 MN 是对称轴,我们称这两个三角形关于 MN 为对称轴,我们称 直线MN 成轴对称,点C 点F 为对称点, △ABC 为轴对称图形。

点B 点E 为对称点,点A 点D 为对称点。

CABMNFEDMNAB C轴对称的性质:1、成轴对称的两个图形全等;2、成轴对称的两个图形,对应点的连线被对称轴垂直平分;垂直平分线:作点关于直线的对称点,连接这两点的线段。

我们定义:垂直并且平分一条线段的直线,叫作这条线段的垂直平分线。

又称“中垂线”注意:判断一条直线是否是线段的垂直平分线,必须满足两个条件。

1、这条直线过线段的中点;2、这条直线垂直于线段;通过研究线段或者某个图形关于直线的对称:轴对称还有如下的性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分。

注意:这个性质其实告诉如何确定对称轴:即成轴对称的两个图形,对称轴是对应点连线的垂直平分线。

画一个图形关于一条直线对称的图形步骤:首先我们要明白一个事实:点构成线,线构成面。

1、关键是确定某些点关于这条直线的对称点。

苏科版初中数学八年级上册精品教案第一章 轴对称图形

义务教育基础课程初中教学资料第一章轴对称图形1.1 轴对称和轴对称图形教学目标:1、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念;2、能够认识轴对称和轴对称图形,并能找出对称轴;3、知道轴对称和轴对称图形的区别和联系;4、欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛应用和它的丰富的文化价值。

教学重点:正确辨认轴对称图形,画出它们的对称轴;教学难点:设计简单轴对称图案;教学过程:一、创设情境:动手操作:用一张正方形的纸片,二、新课讲解:1、观察、思考:(投影片)P4 4幅图,观察下列四幅图形,你能发现它们有什么共同特征,说出来与同学交流。

如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2、动手试一试:观察课本第4页几幅图中,画出它们对称轴。

3、探索思考:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

动手画出第5页几幅图片的对称轴。

说说你所熟悉的图形是否是轴对称图形,对称轴是什么?与同学讨论、交流,同小组互相补充。

轴对称图形:圆、正方形、长方形、菱形、等腰梯级、等腰三角形、角、线段等。

学生口述对称轴的位置。

4、讨论、交流:轴对称与轴对称图形的区别与联系。

区别:轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分能完全重合。

联系:两部分都完全重合,都有对称轴,都有对称点。

5、观察、思考:镜像特征:哪些字母在镜中的像与原字母一样?哪些发生了改变?说说它们的对称轴;手在镜中的像有什么变化?说说生活中的轴对称和轴对称图形。

6、欣赏大自然风景(倒影)并说说它们的对称轴的位置。

三、课堂练习:1、P1 22、动手制作一轴对称标志(校运会)四、本节课的收获:1、什么是轴对称和轴对称图形;2、如何画出对称轴、如何找对称点?3、生活中的轴对称和轴对称图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)
■下列图形中对称轴最多的是( A.圆 B.正方形 C.角 D.线段
)
■下列图案是几种名车的标志,在这 几个图案中是轴对称图形的共有( )
雪佛兰
三菱 雪铁龙 丰田
A.1个
B.2个
C. 3个
D.4个
■下列图形是不是轴对称图形?如果 是轴对称图形的,说出对称轴的条数.
欣赏大自然风景, 说说图中的对称轴.
1.1 轴对称与轴对称图形
青州市黄楼初中
赵玲玲
教材的编写意图
教材从具体到抽象,从感性到理性,从 实践到理论,再用实践检验理论,层次分 明,循序渐进地指导学生认识自然界和日 常生活中具有轴对称性质的事物,使学生 进一步认识前面所学的平面图形的本质特 征。
教学目标
根据大纲的要求和教材的特点,结合八年级学生 的实际水平,本节课可确定如下教学目标: (1)通过观察操作,认识轴对称和轴对称图 形的特点,掌握轴对称和轴对称图形的概念。 (2)能准确判断哪些事物是轴对称图形,能找 出轴对称图形的对称轴。 (3)弄清轴对称和轴对称图形的区别和联系 (4)通过观察,培养学生的抽象思维和空间想 象能力。 (5)结合教材和联系生活实际培养学生的学 习兴趣和热爱生活的情感。
想一想
手在镜中的像有什么变化?
哪些英文字母在镜中的像与原字母一样? 哪些发生了改变?说说它们的对称性。
Hale Waihona Puke A H O VB C D E F G I J K L M N P Q R S T U W X Y Z
小结:
一:什么是轴对称,什么是轴对称图形 二:怎样画对称轴,怎样找对称点
三:生活中的轴对称和轴对称图形
说 学 说学法 法
根据学法指导自主性和差异性原则,让学 生在“观察一操作一概括一检验一应用” 的学习过程中,自主参与知识的发生、发 展、形成的过程,使学生掌握知识。
说程序设计
课堂教学是学生数学知识的获得、技能技巧的形 成、智力、能力的发展以及思想品德的养成的主 要途径。为了达到预期的教学目标,我对整个教 学过程进行了系统地规划,遵循目标性、整体性、 启发性、主体性等一系列原则进行教学设计。设 计了五个主要的教学程序是: (一)观图激趣,设疑导入 (二)指导观察,形 成概念。 (三)合作探究,加深认识。 (四)跟踪练习,自我检测。 (五)综合拓展,发散思维。
课后延伸
预习《镜面对称》
教学重点
(1)认识轴对称和轴对称图形的特点,建 立轴对称和轴对称图形的概念; (2)会找轴对称图形的对称轴。
教学难点
根据本班学生学习的实际情况,本节 课教学的难点是轴对称和轴对称图形的区 别和联系 。
说教法
根 据本节教材内容和编排特点,为了更有效地突 出重点,突破难点,按照学生的认知规律,遵循 教师为主导,学生为主体,训练为主线的指导思 想,采用观察发现法 为主,直观演示法、设疑诱 导法为辅。教学中,教师精心设计一个又一个带 有启发性和思考性的问题,创设问题情景,诱导 学生思考、操作,教师适时地演示,并运 用电教 媒体化静为动,激发学生探求知识的欲望,逐步 推导归纳得出结论,使学生始终处于主动探索问 题的积极状态,从而培养思维能力。
观察下面的图形,你能发现它们有 什么共同的特征吗?
轴对称、对称轴、对称点 如果把一个图形沿着某一条直 线折叠后,能够与另一个图形 重合,那么这两个图形关于这 条直线成轴对称,这条直线叫 做对称轴。两个图形中的对应 点叫对称点。
对称点
A B
C
D
E
F
l
对称轴
你能找出图中的对称轴和一些对称点吗?
观察下列图形,它们有什么共同特征?
轴对称图形
把一个图形沿一条直线折叠,如 果直线两旁的部分能互相重合, 那么这个图形叫 轴对称图形。
讨论:
轴对称与轴对称图形有什么区别与联系?
区别: 轴对称是两个图形能沿对称轴折叠后能 重合,指的是两个图形的位置关系。
而轴对称图形是指一个图形的两部分沿 对称轴折叠后能完全重合,指的是具有 对称性的某个图形。 联系: 如果把成轴对称的2个图形看成一个整体, 那么这个整体就是一个轴对称图形。 如果把一个轴对称图形位于对称轴两旁的 部分看成2个图形,那么这两部分图形就 成轴对称。
请你举出生活中的轴对称和轴对称图形
轴对称: 两扇大门、一双鞋、两只手、人脸、物体和 镜中的像…… 轴对称图形: 圆、正方形、长方形、菱形、等腰三角形、等 边三角形、等腰梯形、线段、角……
注意:平行四边形不是轴对称图形
小试牛刀
指出下列图形的对称轴:(注意有的图形可能不 止一条)
■轴对称图形的对称轴的条数( A.只有1条 B.2条 C.3条 D.至少一条
相关文档
最新文档