新课标高中数学必修5第一章解三角形导学案WORD版
下学期高一数学第一章解三角形全章教案 必修5

下学期高一数学第一章解三角形全章教案1.1第1课时 正弦定理(1)教学目标(1)要求学生掌握正弦定理及其证明;(2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点正弦定理的推导及其证明过程. 教学过程 一.问题情境在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢?探索1 我们前面学习过直角三角形中的边角关系,在Rt ABC ∆中,设90C =︒,则sin a A c =, sin b B c =, sin 1C =, 即:sin a c A =, sin b c B =, sin c c C =, sin sin sin a b cA B C==. 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法1 若C 为锐角(图(1)),过点A 作AD BC ⊥于D ,此时有sin AD B c =,sin ADC b=,所以sin sin c B b C =,即sin sin b c B C =.同理可得sin sin a cA C=, 所以sin sin sin a b cA B C ==. 若C 为钝角(图(2)),过点A 作AD BC ⊥,交BC 的延长线于D ,此时也有sin AD B c =,且sin sin(180)AD C C b =︒-=.同样可得sin sin sin a b cA B C==.综上可知,结论成立.证法 2 利用三角形的面积转换,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111sin sin sin 222ABC S ab C ac B bc A ∆===,每项同除以12abc 即得:sin sin sin a b cA B C==.探索4 充分挖掘三角形中的等量关系,可以探索出不同的证明方法.我们知道向量也是解决问题的重要工具,因此能否从向量的角度来证明这个结论呢?在ABC ∆中,有BC BA AC =+.设C 为最大角,过点A 作AD BC ⊥于D (图(3)),于是BC AD BA AD AC AD ⋅=⋅+⋅.设AC 与AD 的夹角为α,则0||||cos(90)||||cos BA AD B AC AD α=⋅⋅︒++⋅,其中 ,当C ∠为锐角或直角时,90C α=︒-; 当C ∠为钝角时,90C α=-︒. 故可得sin sin 0c B b C -=,即sin sin b cB C=. 同理可得sin sin a cA C =. 因此sin sin sin a b c A B C==. 四.数学运用 1.例题:例1.在ABC ∆中,30A =︒,105C =︒,10a =,求b ,c .解:因为30A =︒,105C =︒,所以45B =︒.因为sin sin sin a b cA B C==, 所以sin 10sin 45102sin sin 30a B b A ︒===︒,sin 10sin1055256sin sin 30a C c A ︒===+︒.因此, b ,c 的长分别为102和5256+.例2.根据下列条件解三角形: (1)3,60,1b B c ==︒=; (2)6,45,2c A a ==︒=.解:(1)sin sin b cB C =,∴sin 1sin 601sin 23c B C b ⨯︒===, ,60b c B >=,∴C B <,∴C 为锐角, ∴30,90C A ==,∴222a b c =+=.(2)sin sin a cA C=,∴sin 6sin 453sin 22c A C a ⨯===,∴60120C =或, ∴当sin 6sin 756075,31sin sin 60c B C B b C =====+时,; ∴当sin 6sin1512015,31sin sin 60c B C B b C =====-时,; 所以,31,75,60b B C =+==或31,15,120b B C =-==.说明:正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题. 练习:在ABC ∆中,30a =,26b =,30A =︒,求c 和,B C .说明:正弦定理可以用于解决已知两角和一边求另两边和一角的问题. 2.练习: (1)在ABC ∆中,已知8b c +=,30B ∠=︒,45C ∠=︒,则b = ,c = . (2)在ABC ∆中,如果30A ∠=︒,120B ∠=︒,12b =,那么a = ,ABC ∆的面积是 .(3)在ABC ∆中,30bc =,1532ABC S ∆=,则A ∠= . (4)课本第9页练习第1题. 五.回顾小结:1.用两种方法证明了正弦定理:(1)转化为直角三角形中的边角关系;(2)利用向量的数量积.2.初步应用正弦定理解斜三角形. 六.课外作业:课本第9页练习第2题;课本第11页习题1.1第1、6题§1.1.1第2课时 正弦定理(2)教学目标(1)掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形; (2)熟记正弦定理2sin sin sin a b cR A B C===(R 为ABC ∆的外接圆的半径)及其变形形式.教学重点,难点利用三角函数的定义和外接圆法证明正弦定理. 教学过程 一.问题情境上节课我们已经运用两种方法证明了正弦定理,还有没有其他方法可以证明正弦定理呢? 二.学生活动学生根据第5页的途径(2),(3)去思考. 三.建构数学证法1 建立如图(1)所示的平面直角坐标系,则有(cos ,sin )A c B c B ,(,0)C a ,所以ABC ∆的面积为1sin 2ABC S ac B ∆=.同理ABC ∆的面积还可以表示为1sin 2ABC S ab C ∆=及1sin 2ABC S bc A ∆=,所以111sin sin sin 222ab C ac B bc A ==. 所以sin sin sin a b c A B C==. 证法2 如下图,设O 是ABC ∆的外接圆,直径2BD R =.(1)如图(2),当A 为锐角时,连CD ,则90BCD ∠=︒,2sin a R D =.又D A ∠=∠,所以2sin a R A =.(2)如图(3),当A 为钝角时,连CD ,则90BCD ∠=︒,2sin a R D =.又180A D ∠+∠=︒,可得sin sin(180)sin D A A =︒-=,所以2sin a R A =.(3)当A 为直角时,2a R =,显然有2sin a R A =.所以不论A 是锐角、钝角、直角,总有2sin a R A =.同理可证2sin b R B =,2sin c R C =.所以2sin sin sin a b cR A B C===. 由此可知,三角形的各边与其所对角的正弦之比是一个定值,这个定值就是三角形外接圆的直径. 由此可得到正弦定理的变形形式:(1)2sin ,2sin ,2sin a R A b R B c R C ===; (2)sin ,sin ,sin 222a b cA B C R R R===;(3)sin sin sin ::::A B C a b c =. 四.数学运用1.例题:例1.根据下列条件,判断ABC ∆有没有解?若有解,判断解的个数. (1)5a =,4b =,120A =︒,求B ; (2)5a =,4b =,90A =︒,求B ;(3)106a =,203b =45A =︒,求B ; (4)202a =203b =45A =︒,求B ;(5)4a =,33b =,60A =︒,求B . 解:(1)∵120A =︒,∴B 只能是锐角,因此仅有一解. (2)∵90A =︒,∴B 只能是锐角,因此仅有一解.(3)由于A 为锐角,而210632=,即A b a sin =,因此仅有一解90B =︒.(4)由于A 为锐角,而22032022031062>>=,即sin b a b A >>,因此有两解,易解得60120B =︒︒或.(5)由于A 为锐角,又1034sin 605<︒=,即sin a b A <,∴B 无解. 例2.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.解:令sin ak A=,由正弦定理,得sin a k A =,sin b k B =,sin c k C =.代入已知条件,得sin sin sin cos cos cos A B C A B C==,即tan tan tan A B C ==.又A ,B ,C (0,)π∈,所以A B C ==,从而ABC ∆为正三角形.说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角? (2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断.例3.某登山队在山脚A 处测得山顶B 的仰角为35︒,沿倾斜角为20︒的斜坡前进1000米后到达D 处,又测得山顶的仰角为65︒,求山的高度(精确到1米). 分析:要求BC ,只要求AB ,为此考虑解ABD ∆. 解:过点D 作//DE AC 交BC 于E ,因为20DAC ∠=︒, 所以160ADE ∠=︒,于是36016065135ADB ∠=︒-︒-︒=︒. 又352015BAD ∠=︒-︒=︒,所以30ABD ∠=︒. 在ABD ∆中,由正弦定理,得sin 1000sin13510002()sin sin 30AD ADB AB m ABD ∠︒===∠︒.在Rt ABC ∆中,sin 35235811()BC AB m =︒=︒≈. 答:山的高度约为811m .例4.如图所示,在等边三角形中,,AB a =O 为三角形的中心,过O 的直线交AB 于M ,交AC 于N ,求2211OM ON +的最大值和最小值. 解:由于O 为正三角形ABC 的中心,∴3AO =, 6MAO NAO π∠=∠=,设MOA α∠=,则233ππα≤≤,αβπβ-αACBD在AOM ∆中,由正弦定理得:sin sin[()]6OM OAMAO ππα=∠-+, ∴6sin()6OM πα=+,在AON ∆中,由正弦定理得:6sin()6ON πα=-,∴2211OM ON +22212[sin ()sin ()]66a ππαα=++-22121(sin )2a α=+, ∵233ππα≤≤,∴3sin 14α≤≤,故当2πα=时2211OM ON +取得最大值218a, 所以,当α=2,33or ππ时23sin 4α=,此时2211OM ON +取得最小值215a . 例5.在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:AB BDAC DC=. 证明:设BAD α∠=,BDA β∠=,则CAD α∠=,180CDA β∠=︒-.在ABD ∆和ACD ∆中分别运用正弦定理,得sin sin AB BD βα=,sin(180)sin AC DC βα︒-=, 又sin(180)sin ββ︒-=,所以AB AC BD DC =,即AB BDAC DC=. 2.练习:(1)在ABC ∆中,::4:1:1A B C =,则::a b c = ( D )A .4:1:1 B .2:1:1 CD(2)在ABC ∆中,若sin :sin :sin 4:5:6A B C =,且15a b c ++=,则a = , b = ,c = . 五.回顾小结:1.了解用三角函数的定义和外接圆证明正弦定理的方法; 2.理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. 六.课外作业:课本第9页练习第3题;课本第11页习题1.1第2、8题.§1.1.2 第3课时 余弦定理(1)教学目标(1)掌握余弦定理及其证明;(2)使学生能初步运用余弦定理解斜三角形. 教学重点,难点(1)余弦定理的证明及其运用;(2)能灵活运用余弦定理解斜三角形. 教学过程 一.问题情境 1.情境:复习正弦定理及正弦定理能够解决的两类问题. 2.问题:在上节中,我们通过等式BC BA AC =+的两边与AD (AD 为ABC ∆中BC 边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理,还有其他途径将向量等式BC BA AC =+数量化吗?二.学生活动如图,在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵BC AB AC +=∴()()AC AC AB BC AB BC ⋅=+⋅+22cos 2a B ac c +-=, 即B ac a c b cos 2222-+=;同理可证:A bc c b a cos 2222-+=, C ab b a c cos 2222-+=. 三.建构数学 1. 余弦定理上述等式表明,三角形任何一边的平方等于其他两边平方的和,减去这两边与它们夹角的余弦的积的两倍.这样,我们得到余弦定理. 2.思考:回顾正弦定理的证明,尝试用其他方法证明余弦定理.方法1:如图1建立直角坐标系,则(0,0),(cos ,sin ),(,0)A B c A c A C b .所以2222222222(cos )(sin )cos sin 2cos 2cos a c A b c A c A c A bc A b b c bc A=-+=+-+=+-同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=注:此法的优点在于不必对A 是锐角、直角、钝角进行分类讨论.方法2:若A 是锐角,如图2,由B 作BD AC ⊥,垂足为D ,则cos AD c A =,所以即A bc c b a cos 2222-+=,类似地,可以证明当A 是钝角时,结论也成立,而当A 是直角时,结论显 然成立.同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=.图1 图2 3.余弦定理也可以写成如下形式:bc a c b A 2cos 222-+= , ac b c a B 2cos 222-+=, acc b a C 2cos 222-+=.4.余弦定理的应用范围:利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在ABC ∆中,(1) 已知3b =,1c =,060A =,求a ;A BCcab(2) 已知4a =,5b =,6=c ,求A (精确到00.1).解:(1)由余弦定理,得2222202cos 31231cos607a b c bc A =+-=+-⨯⨯⨯=,所以 a =(2)由余弦定理,得222222564cos 0.752256b c a A bc +-+-===⨯⨯, 所以,041.4A ≈.例2. ,A B 两地之间隔着一个水塘,现选择另一点C ,测得182,CA m =126,CB m =063ACB ∠=,求,A B 两地之间的距离(精确到1m ). 解:由余弦定理,得所以,168()AB m ≈答:,A B 两地之间的距离约为168m .例3.用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<.证:当C 为锐角时,cos 0C >,由余弦定理,得222222cos c a b ab C a b =+-<+,即 222a b c +>.同理可证,当C 为钝角时,222a b c +<.2.练习:书第15页 练习1,2,3,4 五.回顾小结:1.余弦定理及其应用2.正弦定理和余弦定理是解三角形的两个有力工具,要区别两个定理的不同作用,在解题时正确选用;六.课外作业:书第16页1,2,3,4,6,7题§1.1.2 第4课时 余弦定理(2)教学目标(1)能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题. 教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题,牢固掌握两个定理,应用自如. 教学过程 一.问题情境1.正弦定理及其解决的三角形问题(1)已知两角和任一边,求其它两边和一角;(2)已知两边和其中一边的对角,求另一边的对角,从而进一步其它的边和角. 2.余弦定理及其解决的三角形问题 (1)已知三边,求三个角;(2)已知两边和他们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在长江某渡口处,江水以5/km h 的速度向东流,一渡船在江南岸的A 码头出发,预定要在0.1h 后到达江北岸B 码头,设AN 为正北方向,已知B 码头在A 码头的北偏东015,并与A 码头相距1.2km .该渡船应按什么方向航行?速度是多少(角度精确到00.1,速度精确到0.1/km h )?解:如图,船按AD 方向开出,AC 方向为水流方向,以AC 为一边、AB 为对角线作平行四边形ABCD ,其中 1.2(),50.10.5()AB km AC km ==⨯=.在ABC ∆中,由余弦定理,得2221.20.52 1.20.5cos(9015) 1.38BC =+-⨯⨯-≈, 所以 1.17()AD BC km =≈. 因此,船的航行速度为1.170.111.7(/)km h ÷=.在ABC ∆中,由正弦定理,得 0sin 0.5sin 75sin 0.41281.17AC BAC ABC BC ∠∠==≈, 所以 024.4ABC ∠≈所以 00159.4DAN DAB NAB ABC ∠=∠-∠=∠-≈.答:渡船应按北偏西09.4的方向,并以11.7/km h 的速度航行.例2. 在ABC ∆中,已知sin 2sin cos A B C =,试判断该三角形的形状.解:由正弦定理及余弦定理,得222sin ,cos sin 2A a a b c C B b ab+-==, 所以 22222a a b c b ab+-=,整理得 22b c =因为0,0b c >>,所以b c =.因此,ABC ∆为等腰三角形.例3.如图,AM 是ABC ∆中BC 边上的中线,求证:22212()2AM AB AC BC =+-.证:设AMB α∠=,则0180AMC α∠=-.在ABM ∆中,由余弦定理,得2222cos AB AM BM AM BM α=+-.在ACM ∆中,由余弦定理,得22202cos(180)AC AM MC AM MC α=+--.因为01cos(180)cos ,2BM MC BC αα-=-==, 所以2222122AB AC AM BC +=+,因此, 22212()2AM AB AC BC =+-. 例4.在ABC ∆中,BC a =,AC b =,,a b 是方程02322=+-x x 的两个根,且2cos()1A B +=,求:①角C 的度数; ②AB 的长度; ③ABC S ∆.解:①1cos cos(())cos()2C A B A B π=-+=-+=- ∴120C =;②由题设:232a b ab ⎧+=⎪⎨=⎪⎩,∴2222cos AB AC BC AC BC C =+-⋅⋅120cos 222ab b a -+=ab b a ++=22102)32()(22=-=-+=ab b a , 即10AB =;③ABC S ∆11133sin sin120222222ab C ab ===⋅⋅=.2.练习:(1)书第16页 练习1,2,3,4DCBA(2)如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =, 60BDA ∠=, 135BCD ∠=, 求BC 的长.(3)在ABC ∆中,已知()()()456::::b c c a a b +++=,求ABC ∆的最大内角;(4)已知ABC ∆的两边,b c 是方程2400x kx -+=的两个根,的面积是2cm ,周长是20cm ,试求A 及k 的值; 五.回顾小结:1.正弦、余弦定理是解三角形的有力工具,要区别两个定理的不同作用,在解题时正确选用;2.应用正弦、余弦定理可以实现将“边、角相混合”的等式转化为“边和角的单一”形式; 3.应用余弦定理不仅可以进行三角形中边、角间的计算,还可以判断三角形的形状. 六.课外作业:书第17页5,8,9,10,11题§1.3正弦定理、余弦定理的应用(1)教学目标(1)综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;(2)体会数学建摸的基本思想,掌握求解实际问题的一般步骤;(3)能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力. 教学重点,难点(1)综合运用正弦定理、余弦定理等知识和方法解决一些实际问题; (2)掌握求解实际问题的一般步骤. 教学过程 一.问题情境 1.复习引入复习:正弦定理、余弦定理及其变形形式, (1)正弦定理、三角形面积公式:R CcB b A a 2sin sin sin ===; B acC ab A bc S ABC sin 21sin 21sin 21===∆.(2)正弦定理的变形:①C R c B R b A R a sin 2,sin 2,sin 2===;②RcC R b B R a A 2sin ,2sin ,2sin ===; ③sin sin sin ::::A B C a b c =.(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=.二.学生活动引导学生复习回顾上两节所学内容,然后思考生活中有那些问题会用到这两个定理,举例说明.三.建构数学正弦定理、余弦定理体现了三角形中边角之间的相互关系,在测量学、运动学、力学、电学等许多领域有着广泛的应用.1.下面给出测量问题中的一些术语的解释:(1)朝上看时,视线与水平面夹角为仰角;朝下看时,视线与水平面夹角为俯角. (2)从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角.(3)坡度是指路线纵断面上同一坡段两点间的高度差与其水平距离的比值的百分率.道路坡度100%所表示的可以这样理解:坡面与水平面的夹角为45度.45度几乎跟墙壁一样的感觉了. (4)科学家为了精确地表明各地在地球上的位置,给地球表面假设了一个坐标系,这就是经纬度线.2.应用解三角形知识解决实际问题的解题步骤:①根据题意作出示意图;②确定所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案. 四.数学运用 1.例题:例1.如图1-3-1,为了测量河对岸两点,A B 之间的距离,在河岸这边取点,C D ,测得85ADC ∠=,60BDC ∠=,47ACD ∠=,72BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离(精确到1m ).解:在ADC ∆中,85ADC ∠=,47ACD ∠=,则48DAC ∠=.又100DC =,由正弦定理,得()sin 100sin 85134.05sin sin 48DC ADC AC m DAC ∠==≈∠.在BDC ∆中,60BDC ∠=,72BCD ∠=, 则48DBC ∠=.又100DC =, 由正弦定理,得()sin 100sin 60116.54sin sin 48DC BDC BC m DBC ∠==≈∠.在ABC ∆中, 由余弦定理,得3233.95≈, 所以 ()57AB m ≈答,A B 两点之间的距离约为57m .本例中AB 看成ABC ∆或ABD ∆的一边,为此需求出AC ,BC 或AD ,BD ,所以可考察ADC ∆和BDC ∆,根据已知条件和正弦定理来求AC ,BC ,再由余弦定理求AB .引申:如果A ,B 两点在河的两岸(不可到达),试设计一种测量A ,B 两点间距离的方法.可见习题1.3 探究拓展 第8题.例2.如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测出该渔轮在方位角为45,距离为10n mile 的C 处,并测得渔轮正沿方位角为105的方向,以9/n mile h 的速度向小岛靠拢,我海军舰艇立即以21/n mile h 的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到0.1,时间精确到1min ). 解:设舰艇收到信号后x h 在B 处靠拢渔轮,则21AB x =,9BC x =,又10AC =,()45180105120ACB ∠=+-=.由余弦定理,得2222cos AB AC BC AC BC ACB =+-⋅∠,即()()222211092109cos 120x x x =+-⨯⨯∠.化简,得2369100x x --=,解得()()240min 3x h ==(负值舍去).由正弦定理,得图1-3-1图1-3-2sin 9sin12033sin 2114BC ACB x BAC AB x ∠∠===, 所以21.8BAC ∠≈,方位角为4521.866.8+=.答 舰艇应沿着方向角66.8的方向航行,经过40min 就可靠近渔轮.本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A 到B 与渔轮从C 到B 的时间相同,所以根据余弦定理可求出该时间,从而求出AB 和BC ;再根据正弦定理求出BAC ∠. 例3.如图,某海岛上一观察哨A 在上午11时测得一轮船在海岛北偏东3π的C 处,12时20分测得轮船在海岛北偏西3π的B 处,12时40分轮船到达海岛正西方5km 的E 港口.如果轮船始终匀速前进,求船速. 解:设ABE θ∠=,船的速度为/km h υ,则43BC υ=,13BE υ=. 在ABE ∆中,153sin sin 30υθ=,15sin 2θυ∴=. 在ABC ∆中,()43sin120sin 180AC υθ=-, 4415sin 2033233322AC υθυυ⋅⋅∴===. 在ACE ∆中,22520202525cos150333υ⎛⎫⎛⎫⎛⎫=+-⨯⨯⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 22540077525100933υ=++=,293υ∴=, ∴船的速度93/km h υ=. 2.练习:书上P20 练习1,3,4题.五.回顾小结:1.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.2.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.六.课外作业: 书上P21页习题1.3 第2,3,4题.§1.3 正弦定理、余弦定理的应用(2)教学目标(1)能熟练应用正弦定理、余弦定理解决三角形等一些几何中的问题和物理问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦、余弦定理及相关的三角公式解决这些问题;(3)通过复习、小结,使学生牢固掌握两个定理,应用自如.教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题。
高中数学第一章解三角形第一章小结与复习(教师版)导学案苏教版必修

必修5 第一章小结与复习 1 第 7 课时一、学习目标1.进一步熟悉正、余弦定理内容,能够应用正、余弦定理进行边角关系的相互转化,判断三角形的形状;2.能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题.二、课前预习(一) 三角形中的定理1.正弦定理: ,其中R 为 . 正弦定理的作用: ⑴ ⑵ 正弦定理的变形: ①2sin a R A =, , ;②sin 2a A R =, , ; ③::a b c = . 2.余弦定理:2222cos a b c bc A =+-,余弦定理的作用:⑴⑵⑶ .⑷ .余弦定理的变形:①cos A = 等;②222a b c +-= 等.3.三角形面积公式: 1sin 2S ab C ∆== = 4. 在已知两边a,b 及角A 解三角形时,需要讨论.(1)若A≥90°,则有①a>b 时有 解;②a ≤b 时 解.(2)若A<90°时,则有①若a <bsinA ,则 解; ②若a =bsinA ,则 解;③若bsinA <a <b ,则有 解;④若a ≥b ,则有 解.预习题:1.(2009年广东卷文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若62a c ==+且75A ∠=,则b =_______000000026sin sin 75sin(3045)sin 30cos 45sin 45cos304A +==+=+= 62a c ==+可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得261sin 2sin 226a b B A +=⋅=⨯=+2.(2008浙江)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若()C a A c b cos cos 3=-,则=A cos _________. 33.(2007湖南)在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b =7,3c =,则B = .答案 65π 4.(2009长郡中学第六次月考)△ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,则角C 的大小为_____3π三、数学运用例1.(2009全国卷Ⅰ理)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin ,A C A C = 求b【随堂记录】:分析:此题事实上比较简单,但考生反应不知从何入手.对已知条件(1)222a c b -=左侧是二次的右侧是一次的,学生总感觉用余弦定理不好处理,而对已知条件(2) sin cos 3cos sin ,A C A C =过多的关注两角和与差的正弦公式,甚至有的学生还想用现在已经不再考的积化和差,导致找不到突破口而失分. 解法一:在ABC ∆中sin cos 3cos sin ,A C A C =则由正弦定理及余弦定理有:2222223,22a b c b c a a c ab bc+-+-=化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解得40(b b ==或舍). 例2. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若).(R k k BC BA AC AB ∈=⋅=⋅(Ⅰ)判断△ABC 的形状; (Ⅱ)若k c 求,2=的值. 解:(I )B ca BC BA A cb AC AB cos ,cos =⋅=⋅Bac A bc BC BA AC AB cos cos =∴⋅=⋅又B A A B cos sin cos sin =∴ 即0cos sin cos sin =-A B B A 0)sin(=-∴B ABA B A =∴<-<-ππ ABC ∆∴为等腰三角形.(II ) 由(I )知b a =22cos 2222c bc a c b bc A bc AC AB =-+⋅==⋅∴2=c 1=∴k 例3.(2009湖南卷文)在锐角ABC ∆中,1,2,BC B A ==则cos AC A的值等 于 ,AC 的取值范围为 .【随堂记录】:解析 设,2.A B θθ∠=⇒=由正弦定理得,1 2.sin 2sin 2cos cos AC BC AC AC θθθθ=∴=⇒= 由锐角ABC ∆得0290045θθ<<⇒<<,又01803903060θθ<-<⇒<<,故233045cos θθ<<⇒<<, 2cos 2,3).AC θ∴=∈四、巩固训练1.(2009北京理) 在ABC ∆中,角,,A B C 的对边分别为,,,3a b c B π=,4cos ,35A b ==(Ⅰ)求sin C 的值;(Ⅱ)求ABC ∆的面积. 【解析】 本题主要考查三角形中的三角函数变换及求值、诱导公式、三角形的面积公式等基础知识,主要考查基本运算能力.解(Ⅰ)∵A 、B 、C 为△ABC 的内角,且4,cos 35B A π==, ∴23,sin 35C A A π=-=,∴213sin sin cos sin 32210C A A A π+⎛⎫=-=+= ⎪⎝⎭.(Ⅱ)由(Ⅰ)知33sin ,sin 510A C +==,又∵,3B b π==ABC 中,由正弦定理,得 ∴sin 6sin 5b A a B ==.∴△ABC 的面积116336sin 2251050S ab C ++==⨯=. 五、反思总结熟悉了正、余弦定理在进行边角关系转换时的桥梁作用,并利用正、余弦定理对三角恒等式进行证明以及对三角形形状进行判断。
高中数学 第一章 解三角形全套教案 新人教A版必修5

高中数学:新人教A 版必修5全套教案第一章 解三角形课题: 1.1.1正弦定理●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c==, A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin a b A B=sin cC=A cB (图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
高中数学新人教版A版精品教案《解三角形(专题课)重难点教学方法设计》

解三角形(专题课)教学设计一、教材分析本节课是高中数学课本必修5第一章《解三角形》,而在本章中,学生应该在已有的知识基础上,通过对任意三角形的边角关系的探究,发现并掌握三角形中的边长与角度之间的关系数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题。
本章知识是初中解直角三角形的继续,通过本章内容的学习,学生能够系统地掌握解任意三角形的完整实施。
可以从数量的角度认识三角形,使三角形成为研究几何问题的重要工具。
是中学许多数学知识的交汇点,如向量、平面几何、三角函数、解析几何、立体几何等。
二、学情分析学生已经学习并掌握了任意角及任意角的三角函数,诱导公式、三角恒等变换、正余弦定理等相关的知识。
学习本节内容是对以上知识内容的综合应用,尤其是对正弦定理与余弦定理的熟练运用。
通过解三角形的方法解决有关的实际问题,可以培养学生的数学应用意识,提高学生运用数学知识解决实际问题的能力,使学生逐渐形成数学的思维方式去解决问题、认识世界的意识。
三、教学目标知识与技能:引导学生准确理解正弦定理、余弦定理、三角形面积公式,会对正余弦定理会进行简单的变形;引导学生通过观察,推导,比较等出一些结论,如射影定理,三角形边角之间的关系;会运用所学知识解三角形以及与三角形有关的实际问题。
过程与方法:引导学生通过观察,推导,比较,由特殊到一半归纳出正余弦定理以及三角形面积公式等结论。
培养学生的创新意识,观察能力,总结归纳的逻辑思维能力。
让学生通过学习能体会用向量作为数形结合的工具,将几何问题转化为代数问题的数学思想方法。
情感态度与价值观:面向全体学生,创造平等的教学氛围,进行高效课堂教学,激情教育,通过学生之间,师生之间的交流与讨论、合作与评价,调动学生的主动性和积极性,让学生体验学习数学的的乐趣,感受成功的喜悦,增强学生学好数学的信心,激发学生学习的兴趣。
四、教学重难点重点:正弦定理、余弦定理的内容及基本应用。
难点:正弦定理、余弦定理的内容及基本应用;正余弦定理的变形应用;用所学知识解决解三角形问题的题型归纳总结。
高中数学第一章解三角形教学设计新人教A版必修5

(新课标)高中数学第一章解三角形教学设计新人教A版必修5从容说课本章主要学习了正弦定理和余弦定理、应用举例以及实习作业.正弦定理、余弦定理是反映三角形边、角关系的重要定理.利用正弦定理、余弦定理,可以将三角形中的边的关系与角的关系进行相互转化,许多几何问题也可以转化为解三角形的问题来研究.本节课是人教版数学必修五第一章解三角形的全章复习.教学重点1.在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.2.三角形各种类型的判定方法;三角形面积定理的应用.3.正、余弦定理与三角形的有关性质的综合运用.教学难点定理及有关性质的综合运用.教具准备多媒体投影仪三维目标一、知识与技能1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形确良;2.三角形各种类型的判定方法;3.三角形面积定理的应用.二、过程与方法通过引导学生分析,解答典型例题,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题.三、情感态度与价值观通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学过程导入新课师本章我们共学习了哪些内容?生 本章我们学习了正弦定理与余弦定理. 师 你能讲出正弦定理、余弦定理的具体内容吗?生 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即R CcB b A a 2sin sin sin ===; 余弦定理: a 2=b 2+c 2-2bcco s A ,b 2=a 2+c 2-2acco s B , c 2=b 2+a 2-2baco s C ;abc b a C ac b c a cisB bc a c b A 2cos ,2,2cos 222222222-+=-+=-+=.师 很好!哪位同学来说说运用正弦定理、余弦定理可以解决哪些类型的问题? 生 正弦定理可以解决以下两类问题:(1)已知两角和一边解三角形;(2)已知两边及其中一边的对角解三角形.余弦定理可以解决以下两类问题:(1)已知三边解三角形;(2)已知两边及其夹角解三角形.生 老师,我来补充.利用正弦定理的解题的类型(1)在有解时只有一解,类型(2)可有解、一解和无解;利用余弦定理的解题的两种类型有解时只有一解. 师 very good !除了以上这些,我们还学习了什么? 生 除了正弦定理、余弦定理我们还学习了三角形面积公式:C ab B ac A bc S sin 21sin 21sin 21===C ,利用它我们可以解决已知两边及其夹角求三角形的面积.师 你说的非常完善,你是我们全班同学学习的榜样.希望我们全班同学都向他学习.推进新课 多媒体投影解斜三角形时可用的定理公式 适用类型 备注余弦定理a 2=b 2+c 2-2bc cos A b 2=a 2+c 2-2ac cos B c 2=b 2+a 2-2ba cos C(1) 已知三边 (2)已知两边及其夹角类型(1)(2)有解时只有一解正弦定理(3)已知两角和一边类型(3)在有解时只有一解,类型(4)可有解、一解和无R CcB b A a 2sin sin sin === (4)已知两边及其中一边的对角解三角形面积公式S =21bc sin A =21ac sin B =21ab sin C(5)已知两边及其夹角生 老师,我也来补充.利用正弦定理、余弦定理我们还可以解决实际生活中的一些问题:有关测量距离、高度、角度的问题.师 看来同学们对解三角形这一章掌握得都不错.下面,我们来看一下例题与练习. [例题剖析]【例1】在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为_________. 生 这个题目以前做过的,A 与B 的大小关系不定. 师 对吗?生 我认为不对.我以前做过的题目中没有“在△ABC 中”这个条件. (其他学生一致认可) 师 那本题应该怎么做呢?生 我觉得答案应该是A >B ,但是理由我说不上来. 生 我来说.因为在△ABC 中,由正弦定理得R CcB b A a 2sin sin sin ===,所以 a =2Rsin A ,B =2Rsin B .又因为sin A >sin B ,所以A >B . 又因为在三角形中,大边对大角,所以A >B . 师 好,你解得非常正确.【例2】在△ABC 中,若△ABC 的面积为S ,且2S=(a +b )2-C 2,求t a n C 的值. 师 拿到题目你怎么考虑,从哪里下手?生 利用三角形的面积公式,代入已知条件2S=(A +B )2-C 2中,再化简. 师 用面积公式S=21 bc in A =21ac sin B =21ab sin C 中的哪一个呢? 生 用哪一个都可以吧. 生 不对,应该先化简等式右边,得(A +B )2-C 2=A 2+2AB +B 2-C 2,出现了A 与B 的乘积:AB ,而2abco s C =a 2+b 2-c 2,因此面积公式应该用S=21ab sin C ,代入等式得 ab sin C =a 2+b 2+2ab -C 2=2ab -2abco s C .化简得tan 2C=2.从而有344142tan12tan2tan2-=-=-=CCC.师思路非常清晰,请同学们思考本题共涉及到了哪些知识点?生正弦定理、余弦定理与三角形面积公式.生还有余切的二倍角公式.师你能总结这类题目的解题思路吗?生拿到题目不能盲目下手,应该先找到解题切入口.师对,你讲得很好.生正弦定理、余弦定理都要试试.【例3】将一块圆心角为120°,半径为20 c m的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值.师本题是应用题,怎么处理?生由实际问题抽象出数学模型,找到相应的数学知识来解决.分析:这是一个如何下料的问题,从图形的特点来看,涉及到线段的长度和角度,将这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.解:按图(1)的裁法:矩形的一边O P在OA上,顶点M在圆弧上,设∠M OA=θ,则|MP|=20sinθ,|OP|=20co sθ,从而S=400sinθco sθ=200sin2θ,即当4πθ=时,S m a x=200.按图(2)的裁法:矩形的一边PQ与弦AB平行,设∠M O Q=θ,在△M O Q中,∠O QM=90°+30°=120°,由正弦定理,得|MQ|=θθsin2340120sinsin20=︒.又因为|MN |=2|OM |sin(60°-θ),=40sin(60°-θ),所以 S=|MQ |·|MN |=331600sinθsin(60°-θ)=331600{-21[co s60°-co s(2θ-60°)]}=33800[cos(2θ-60°)-co s60°]. 所以当θ=30°时,S m a x =33400. 由于33400>200,所以用第二种裁法可裁得面积最大的矩形,最大面积为33400c m 2. 评注:正弦定理、余弦定理在测量(角度、距离)、合理下料、设计规划等方面有广泛应用.从解题过程来看,关键是要找出或设出角度,实质是解斜三角形,将问题涉及的有关量集中在某一个或者几个三角形中,灵活地运用正弦定理、余弦定理来加以解决.【例4】如果一个三角形的三边是连续的三个自然数,求所有这些三角形中的最大角的度数.(精确到°) 师 已知什么,要求什么?生(齐答)已知三角形的三边,要求三角形中的角. 师 怎么处理呢?生用正弦定理或余弦定理实现三角形中边与角的转化,可是三条边的值不知道啊. 生条件中三角形的三边是连续的三个自然数,那么我们可以设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.师 接下来怎么做呢?生 因为co sθ是[0°,180°]内的减函数,所以要求θ的最大值即求co sθ的最小值. 师cosθ的最小值怎么求呢? 生 因为cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <23n-1>1⇒n >2. 又因为n 为自然数,所以当n=3时,(cosθ)min =-41,所以θ的最大值为°. (教师用多媒体投影)解:设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.因为cosθ是[0°,180°]内的减函数,所以要求θ的最大值即求co s θ的最小值,且cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <⇒23n-1>1⇒n >2. 因此,当n=3时,(cosθ)min =-41,所以θ的最大值为°. 师 下面我们来看一组练习 多媒体投影1.在△ABC 中,若A =30°,B =45°,C =6,则A 等于( ) A.26- B.26(2-C.)26(3-D.)26(4-2.在△ABC 中,若a =7,b =4,c =5, 则△ABC 的面积为(精确到0.1)( ) A .7B .C .D . 3.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离D 1与第二辆车与第三辆车的距离D 2之间的关系为( ) >d 2=d 2 <d 2 D.大小确定不了4.在△ABC 中,若A ·co t A =bco t B ,则△ABC 是_______三角形.5.在异面直线A ,B 上有两点M 、N ,EF 是直线A ,B 的公垂线段,若EM =5,EF =3,FN =4,MN =6,则异面直线A ,B 所成的角为___________.(精确到1°) 练习题答案:4.等腰°课堂小结同学们本节课你的收获是什么?生 正弦定理、余弦定理都是联系三角形边和角的关系式.生 凡是可用正弦定理的时候,都可以用余弦定理;当关系式中有边的平方项时,可以考虑余弦定理.生 已知两边一对角求解三角形时用余弦定理讨论二次方程,更容易判断是无解、一解还是两解的问题.生 利用正弦定理和余弦定理解决几何问题的关键还是在于找出图形中的边角关系,然后假设有关的边和角,利用正弦定理和余弦定理建立边或角的关系式.生 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.其基本步骤是: (1)分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);(2)建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理、余弦定理解这些三角形,求得数学模型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.布置作业1.已知锐角三角形的三边长分别为2、3、x ,则x 的取值范围是__________.2.在△ABC 中,已知t a n A =21,t a n B =31,试求最长边与最短边的比. 3.某人坐在火车上看风景,他看见远处有一座宝塔在与火车前进方向成30°角的直线上,1分钟后,他看见宝塔在与火车前进方向成45°角的直线上,设火车的速度是100 km/h ,求宝塔离开铁路线的垂直距离. 答案:1.(5,13)2.解:因为t a n A =21,t a n B =31,所以1312113121tan tan 1tan tan )tan(=•-+=-+=+BA B A B A . 因为0°<A <45°,0°<B <45°,所以A +B = 45°. 所以3510103135sin sin sin =︒==B C b c ,所以最长边与最短边的比为35. 3.解:如图,设宝塔在C 点,先看时的位置为A ,再看时的位置为B ,由题意知∠BAC =45°-30°=15°,AB =3560100=(km ),AC =)13(3513515sin 53sin sin +=︒︒=∠•∠=ABC BCA AB AC ,所以C 点到直线AB 的距离为d =AC ·sin30°=65(3+1)(km ).板书设计 本章复习例1 例3 例2 例4(投影区)备课资料解三角形三角形的三条边和三个内角是三角形的六个基本元素.已知其中的三个基本元素(至少有一个是边)求其余的基本元素叫做解三角形. 1.直角三角形的解法因为直角三角形中有一个是直角,例如△ABC 中,C =90°,角A 、B 、C 的对边分别是A 、B 、C .那么利用以下关系式:(1)A +B =90°;(2)A 2+B 2=C 2;(3)A =c sin A =cco s B =B ·t a n A ;(4)B =cco s A =c sin B =acxtana . 可分四种情况来解直角三角形. (1)已知斜边和一锐角; (2)已知一条直角边和一锐角; (3)已知一斜边和一直角边; (4)已知两条直角边. 2.斜三角形的解法在一个三角形中,如果没有一个角是直角,那么这个三角形叫做斜三角形.斜三角形的解法可分以下四种情况:(1)已知两角和一边;(2)已知两边和其中一边的对角;(3)已知两边和它们的夹角;(4)已知三边.解斜三角形常常利用以下基本关系式: 1.三角形内角和为180°,即A +B +C =180°; 2.正弦定理,即R CcB b A a 2sin sin sin ===3.余弦定理,即(1)⎪⎩⎪⎨⎧+=+=+=;cos cos ,cos cos ,cos cos B a A b c A c C a b C b B c a(2)⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2,cos 2222222222一般地说,在已知两边和其中一边的对角的情况下,解三角形时,问题不一定有解,如果有解也不一定有唯一解.对这类问题进行讨论,可得如下结论.90°≤A <180°0°<A <90°a >b 一解 一解 a =b 无解 一解a <b无解A >B sin A A =B sin A A <B sin A两解 一解 无解。
新课标理念下高中数学必修5第一章解三角形

新课标理念下高中数学必修5第一章解三角形教法学法的探究交流仙游一中福建省特级教师余启西本章概述:本章是在学习三角函数、平面向量的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并运用它们解决一些与测量和几何计算有关的实际问题。
本章的主要内容是两个重要定理,即正弦定理和余弦定理以及这两个定理在解斜三角形中的应用。
教材地位:本章是在学习了三角函数、平面向量等知识的基础上,进一步学习如何解三角形的。
正、余弦定理是我们学习有关三角形知识的继续和发展,它们进一步揭示了三角形边与角之间的关系,在生产、生活中有着广泛的应用,是我们求解三解形的重要工具。
本章内容与三角形定性研究的结论相联系,与三角函数相联系,同时也体现了向量及其运算的应用。
高考中常与三角函数和向量知识联系起来考查,是高考的一个热点内容。
课标要求:1、理解并掌握正弦定理和余弦定理,并能解决一些简单的三角形度量问题。
2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
学法指导:1、重视数学思想方法的运用。
解三角形作为几何度量问题,要突出几何背景,注意数形结合思想的运用,具体解题时,要注意函数与方程思想的运用。
2、加强新旧知识的联系。
本章知识与初中学习的三角形的边、角关系有着密切联系。
同时,要注意与三角函数、平面向量等知识的联系,将新知识融入已有的知识体系,从而提高综合运用知识的能力。
3、提高数学建模能力。
利用解三角形解决相关的实际问题,根据题意,找出量与量之间的关系,作出示意图,将实际问题抽象成解三角形模型。
学科实践:本章知识在现实生活中有着广泛的应用,如天文测量、航海测量、地理测量以及日常生活中的距离、高度、角度的测量等,解三角形的理论被用于解决许多测量问题。
因此,通过本章的学习,能提高学生解决关于测量和几何计算的实际问题的能力和数学建模能力。
ABCj图1-2图1-1知识点1 正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即CcB b A a sin sin sin == 正弦定理给出了任意三角形中,三条边及其对应角的正弦值之间的对应关系。
(新课标)高中数学第1章解三角形1.1正弦定理和余弦定理第1课时正弦定理课时作业新人教B版必修5

2017春高中数学 第1章 解三角形 1。
1 正弦定理和余弦定理 第1课时 正弦定理 课时作业 新人教B 版必修5基 础 巩 固一、选择题 1.在△ABC 中,AB =3,∠A =45°,∠C =75°,则BC 等于错误!( A )A .3- 3B . 2C .2D .3+错误![解析] 由正弦定理,得错误!=错误!,即错误!=错误!,∴BC =错误!=错误!=3-错误!.2.已知△ABC 的三个内角之比为A ︰B ︰C =3︰2︰1,那么对应的三边之比a ︰b ︰c 等于错误!( D )A .3︰2︰1B .错误!︰2︰1C .错误!︰错误!︰1D .2︰错误!︰1 [解析] ∵⎩⎨⎧ A ︰B ︰C =3︰2︰1A +B +C =180°,∴A =90°,B =60°,C =30°.∴a ︰b ︰c =sin A ︰sin B ︰sin C =1︰错误!︰错误!=2︰错误!︰1。
3.在△ABC 中,a =3,b =5,sin A =错误!,则sin B =错误!( B )A .错误!B .错误!C .错误!D .1 [解析] 由正弦定理,得a sin A =错误!,∴错误!=错误!,即sin B =错误!,选B .4.在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,若错误!=错误!,则角B 的大小为错误!( B )A .错误!B .错误!C.错误!D.错误![解析]由错误!=错误!及错误!=错误!,可得sin B=cos B,又0<B<π,∴B=错误!。
5.在△ABC中,角A、B、C的对边分别为a、b、c,向量m=(3,-1),n=(cos A,sin A),若m⊥n,且a cos B+b cos A=c sin C,则角A、B的大小分别为错误!( C )A.错误!,错误!B.错误!,错误!C.π3,错误!D.错误!,错误![解析]∵m⊥n,∴错误!cos A-sin A=0,∴tan A=错误!,则A=错误!。
人教版高中数学必修五第一章《解三角形的进一步讨论-解三角形中的一类倍角问题》教学设计

解三角形的进一步讨论——解三角形中的一类倍角问题1.教学内容解析“正弦定理和余弦定理”是高中数学必修5中“解三角形”的一节内容.本节教学内容与前后知识联系紧密,涉及多种数学思想方法,主要工具是正弦定理、余弦定理、三角形面积公式和三角形内角和定理,通过对任意三角形边角关系的探究,发现并掌握三角形中边角之间的数量关系.有些问题的求解还会用到三角函数中的和、差角公式和二倍角公式.根据问题的不同类型和不同形式,广泛联想、合理选择、灵活运用公式是求解问题的关键.2.教学目标设置教学目标:(1)掌握并熟练运用正弦、余弦定理转化三角形中的边角关系;(2)理解三角形中有关边角关系的几何意义,如cos a B 、sin b A 、22a b bc 、2A B ,并对以此为背景的试题进行深入的探究,理解其数学本质;(3)通过对问题背景与变式探究学习,激发学生参与数学活动的兴趣与热情.教学重难点:(1)能够熟练运用正弦、余弦定理转化三角形中的边角关系;(2)理解三角形中有关边角关系的几何意义,如cos a B 、sin b A 、22a b bc 、2A B ,探究其数学本质.3.学生学情分析学生通过必修5的学习,已了解正弦和余弦定理的内容,但如何合理选择、灵活运用定理解决解三角形综合问题,怎样合理选择定理进行边角关系转化进而解决三角形综合问题,还需通过复习指导有待进一步提高.4.教学策略分析(1)问题引入,激发求知欲望(2)广泛联想,挖掘数形背景(3)分析例题,落实核心知识(4)重视应用,培养实践能力设计思路:(1)重视教学各环节的合理安排;(2)重视多种教学方法有效整合,以小组讨论、讲练结合、分析引导、变式训练、扩展训练等多种方法贯穿整个教学过程;(3)重视提出问题、解决问题策略的指导.在教学中引导学生发现问题、提出问题,并指导学生掌握观察、分析、归纳、类比、抽象、概括、猜想等解决问题的科学思维方法.5.教学过程过程问题驱动下的教学设计(1)问题引入【引题】人教A 版必修五第25页B 组练习3:研究一下,是否存在一个三角形具有以下性质:(1)三边是连续的三个自然数;(2)最大角是最小角的2倍.【设计意图】通过引题的解决,回顾正弦定理和余弦定理的内容,初步体问题引入揭示本质变式探究探究不止知识重建会通过三角恒等变换和正、余弦定理实现三角形边角关系转化,从而求解三角形的作用.【提问】一般地,在ABC中,由等式2B A可以得到什么结论?(2)问题探究揭示本质【探究一】一般地,在ABC中,由等式2B A可以得到什么结论?它具有什么代数特征呢?【设计意图】通过发散性探究,学生能够体会正、余弦定理在转化三角形边角关系中的作用,以及在解三角形的过程中三角恒等变换的作用.在问题的解决过程中,引导学生发现等式2B A的代数特征.【提问】反之是否成立呢?【探究二】一般地,在ABC中,若22b a ac,则2B A.【设计意图】通过探究,进一步体会正、余弦定理在转化三角形边角关系中的作用.同时,通过两次探究,我们得到了一个重要的推论:一般地,在ABC中,222a b bc A B.并能利用正弦定理和余弦定理证明该推论,感受正弦定理和余弦定理的内在联系.【提问】在ABC中,222a b bc A B,这个代数恒等式具有怎么样的几何意义呢?【设计意图】引导学生发现其几何背景,从几何角度看清问题本质,感受在三角形中的数与形的统一性,培养数学抽象与数形结合的能力,了解此类问题的命题策略,(3)应用探究尝试解决【练习】在ABC中,,,a b c分别为角,,A B C所对的边,已知B C A,且2,4,8B A c a b,求,a b的值.【设计意图】通过微调题目条件,增加了思维容量,培养学生综合运用正弦定理和余弦定理的能力,并在问题的解决过程中,引导学生体会等式2B A的代数特征.【高考链接】(2019年高考北京卷(理))在ABC中,,,a b c分别为角,,A B C 所对的边,若3,26,2a b B A.(I)求cos A的值; (II)求c的值.【高考链接】(2019年浙江高考)在ABC中,内角,,A B C所对的边分别为,,a b c.已知2cosb c a B.(I)证明:2A B;(II)若ABC的面积2=4aS,求角A的大小.【设计意图】进一步熟悉正弦、余弦定理,注重推论的应用性,引导学生落实核心知识,培养实践能力.(4)直通自招探究不止(2019上海交大自招)是否存在三边长为连续自然数的三角形,使得(1)最大角是最小角的两倍;(2)最大角是最小角的三倍.若存在,求出该三角形;若不存在,请说明理由.【探究三】一般地,在ABC中,由等式3B A可以得到什么结论?它具有什么代数特征和几何意义呢?【设计意图】体会推论应用的广泛性,培养学生数学抽象,逻辑推理,数学运算等能力,树立用数学的眼光观察现实世界,用数学的思维思考现实世界的数学核心素养.(5)自主命题总结反思【学生命题】以三角形中有关边角关系的几何意义为背景,如cosa B、sinb A、22a b bc、2A B(或者其它自选),命制一道解答题.【学生归纳】1.正弦定理、余弦定理体现了三角形中边与角存在的一种内在联系,其主要作用是将已知的边、角互化或统一;2.理解三角形中有关边角关系的几何意义,如cosa B、sinb A、22a b bc、2A B,掌握此类问题的“源”与“流”;【设计意图】学生通过归纳,回顾自己在本节课所学得知识要点与思想方法,并与同学,老师交流,完善知识结构与思维方式;通过自主命题,旨在引导学生与命题者对话,加深对问题本质的理解,拓展探究学习的维度.(6)作业布置1.书本P25 B组练习3;2.小组合作完成探究三;3.以三角形中有关边角关系的几何意义为背景命制一道解答题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§ 正弦定理课型:新授课 编写人: 审核人:【学习目标和重点、难点】 1. 掌握正弦定理的内容; 2. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题. 【学习内容和学习过程】 一、新课导入试验:固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动.思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来二、新课导学探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ∆ABC 中,设BC =a ,AC =b ,AB =c ,∠C=90° 根据锐角三角函数中正弦函数的定义, 有sin a A c =,sin b B c =,又sin 1cC c==, 从而在直角三角形ABC 中,sin sin sin a b cA B C==.探究2:那么对于任意的三角形,以上关系式是否仍然成立可分为锐角三角形和钝角三角形两种情况:当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =sin sin a B b A =,则sin sin a b A B =,同理可得sin sin c bC B=, 从而sin sin a b A B =sin c C=.类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.请你试试导.新知:正弦定理在一个三角形中,各边和它所对角的 的比相等,即sin sin a b A B =sin cC =. 试试:(1)在ABC ∆中,一定成立的等式是( ). A .sin sin a A b B = B .cos cos a A b B = C . sin sin a B b A = D .cos cos a B b A =(2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于 .[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =;(2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B =,sin a A =sin cC . (3)正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=;b = .②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin aA B b=;sin C = .(4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形. 三、课堂巩固例1. 在ABC ∆中,已知45A =︒,60B =︒,42a =cm ,解三角形.变式:在ABC ∆中,已知45B =︒,60C =︒,12a =cm ,解三角形.例2. 在45,2,,ABC c A a b B C ∆==︒=∠∠中,求和.变式:在60,1,,ABC b B c a A C ∆==︒=∠∠中,求和.【学习小结】1. 正弦定理:sin sin a b A B =sin cC=2. 正弦定理的证明方法:①三角函数的定义,还有 ②等积法,③外接圆法,④向量法. 3.应用正弦定理解三角形: ①已知两角和一边;②已知两边和其中一边的对角.【课后作业】 基础部分1. 在ABC ∆中,若sin sin A bB a=,则ABC ∆是( ). A .等腰三角形 B .等腰三角形或直角三角形 C .直角三角形 D .等边三角形2. 已知△ABC 中,A ∶B ∶C =1∶1∶4,则a ∶b ∶c 等于( ).A .1∶1∶4B .1∶1∶2C .1∶1D .2∶23. 在△ABC 中,若sin sin A B >,则A 与B 的大小关系为( ). A. A B > B. A B <C. A ≥BD. A 、B 的大小关系不能确定4. 已知∆ABC 中,sin :sin :sin 1:3:3A B C =,则::a b c = .5. 已知∆ABC 中,∠A 60=︒,a =sin sin sin a b cA B C++++= .1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,解此三角形.提高部分2. 已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k ≠0),求实数k 的取值范围为.§1.1.2 余弦定理课型:新授课 编写人: 审核人: 【学习目标和重点、难点】1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦定理解决两类基本的解三角形问题.【学习内容和学习过程】复习1:在一个三角形中,各 和它所对角的 的 相等,即 = = .复习2:在△ABC 中,已知10c =,A =45,C =30,解此三角形.思考:已知两边及夹角,如何解此三角形呢二、新课导学 问题:在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .∵b =r , ∴b b •=r r同理可得: 2222cos a b c bc A =+-, 2222cos c a b ab C =+-.新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.思考:这个式子中有几个量从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角 从余弦定理,又可得到以下推论:222cos 2b c a A bc+-=, , .[理解定理](1)若∠C =90︒,则cos C = ,这时222c a b =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例. (2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角.试试:(1)△ABC 中,a =2c =,150B ∠=︒,求b .(2)△ABC 中,2a =,b ,1c ,求A ∠.三、课堂巩固例1. 在△ABC 中,已知a b 45B =︒,求,A C ∠∠和c .变式:在△ABC 中,若AB ,AC =5,且cos C =910,则BC =________.例2. 在△ABC 中,已知三边长3a =,4b =,c =,求三角形的最大内角.变式:在∆ABC 中,若222a b c bc =++,求∠A .【学习小结】1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围: ① 已知三边,求三角;② 已知两边及它们的夹角,求第三边.知识拓展 在△ABC 中,若222a b c +=,则角C 是直角; 若222a b c +<,则角C 是钝角; 若222a b c +>,则角C 是锐角. 【课后作业】 基础部分1. 已知a c =2,∠B =150°,则边b 的长为( ).A.B. C. D. 2. 已知三角形的三边长分别为3、5、7,则最大角为( ). A .60o ° B .75o ° C .120o ° D .150o °3. 已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ).A x <B x <5C . 2<xD <x <54. 在△ABC 中,|AB u u u r |=3,|AC u u u r |=2,AB u u u r 与AC u u u r 的夹角为60°,则|AB u u u r-AC u u u r |=________.5. 在△ABC 中,已知三边a 、b 、c 满足222b a c ab +-=,则∠C 等于 .1. 在△ABC 中,已知a =7,b =8,cos C =1314,求最大角的余弦值.提高部分2. 在△ABC 中,AB =5,BC =7,AC =8,求AB BC u u u r u u u r的值.§ 正弦定理和余弦定理(练习)课型:新授课 编写人: 审核人: 【学习目标和重点、难点】1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.【学习内容和学习过程】 一、新课导入复习1:在解三角形时已知三边求角,用 定理;已知两边和夹角,求第三边,用 定理; 已知两角和一边,用 定理.复习2:在△ABC 中,已知 A =6π,a =b =二、新课导学探究:在△ABC 中,已知下列条件,解三角形.① A =6π,a =25,b =② A =6π,a ,b =③ A =6π,a =50,b =思考:解的个数情况为何会发生变化新知:用如下图示分析解的情况(A为锐角时).已知边a,b和∠A有两个解仅有一个解无解CH=bsinA<a<ba=CH=bsinAa<CH=bsinA试试:1. 用图示分析(A为直角时)解的情况2.用图示分析(A为钝角时)解的情况三、课堂巩固例1. 在∆ABC中,已知80a=,100b=,45A∠=︒,试判断此三角形的解的情况.变式:在∆ABC中,若1a=,12c=,40C∠=︒,则符合题意的b的值有_____个.例2. 在∆ABC 中,60A =︒,1b =,2c =,求sin sin sin a b c A B C++++的值.【学习小结】1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况).在∆ABC 中,已知,,a b A ,讨论三角形解的情况 :①当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解;②当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论:(1)若sin a b A >,则有两解;(2)若sin a b A =,则只有一解;(3)若sin a b A <,则无解.【课后作业】基础部分1. 已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且sin 2sin 3A B =,则a b b+的值=( ). A. 13 B. 23 C. 43 D. 532. 已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大角是( ).A .135°B .90°C .120°D .150°3. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ).A .锐角三角形B .直角三角形C .钝角三角形D .由增加长度决定4. 在△ABC 中,sin A :sin B :sin C =4:5:6,则cos B = .5. 已知△ABC 中,cos cos b C c B =,试判断△ABC 的形状 .1. 在∆ABC 中,a xcm =,2b cm =,45B ∠=︒,如果利用正弦定理解三角形有两解,求x 的取值范围.提高部分2. 在∆ABC 中,其三边分别为a 、b 、c ,且满足2221sin 24a b c ab C +-=,求角C .§应用举例—①测量距离课型:新授课编写人:审核人:【学习目标和重点、难点】能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题【学习内容和学习过程】一、新课导入复习1在△ABC中,b=10,A=30°,问a取何值时,此三角形有一个解两个解无解二、新课导学例1. 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=51︒,∠ACB=75︒. 求A、B两点的距离(精确到0.1m).提问1:∆ABC中,根据已知的边和对应角,运用哪个定理比较适当提问2:运用该定理解题还需要那些边和角呢分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边.新知1:基线在测量上,根据测量需要适当确定的叫基线.例2. 如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法.分析:这是例1的变式题,研究的是两个的点之间的距离测量问题.首先需要构造三角形,所以需要确定C、D两点.根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC和BC,再利用余弦定理可以计算出AB的距离.变式:如上图若在河岸选取相距40米的C、D两点,∠BCA=60°,∠ACD=30°∠CDB=45°,∠BDA =60°求AB.练:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30°,灯塔B在观察站C南偏东60°,则A、B之间的距离为多少【学习小结】1. 解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.2.基线的选取:测量过程中,要根据需要选取合适的基线长度,使测量具有较高的精确度.【课后作业】基础部分1. 水平地面上有一个球,现用如下方法测量球的大小,用锐角45︒的等腰直角三角板的斜边紧靠球面,P 为切点,一条直角边AC 紧靠地面,并使三角板与地面垂直,如果测得PA =5cm ,则球的半径等于( ). A .5cmB.C.1)cmD .6cm2. 台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( ).A .小时B .1小时C .小时D .2小时3. 在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +-=-+,则ABC ∆的形状( ).A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形4.在ABC ∆中,已知4a =,6b =,120C =o ,则sin A 的值是 .5. 一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60o ,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15o ,这时船与灯塔的距离为 km .1.的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,A 、B 、C 、D 在同一个平面,求两目标A 、B 间的距离.提高部分2. 某船在海面A处测得灯塔C与A相距海里,且在北偏东30︒方向;测得灯塔B与A相距75︒方向. 船由A向正北方向航行到D处,测得灯塔B在南偏西60︒方向. 这时灯塔C与D相距多少海里§应用举例—②测量高度课型:新授课编写人:审核人:【学习目标和重点、难点】1. 能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题;2. 测量中的有关名称.【学习内容和学习过程】一、新课导入复习1:在∆ABC中,cos5cos3A bB a==,则∆ABC的形状是怎样复习2:在∆ABC中,a、b、c分别为∠A、∠B、∠C的对边,若::a b c,求A:B:C的值.二、新课导学新知:坡度、仰角、俯角、方位角方位角---从指北方向顺时针转到目标方向线的水平转角;坡度---沿余坡向上的方向与水平方向的夹角;仰角与俯角---视线与水平线的夹角当视线在水平线之上时,称为仰角;当视线在水平线之下时,称为俯角.探究:AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法.分析:选择基线HG,使H、G、B三点共线,要求AB,先求AE在ACE∆中,可测得角,关键求AC在ACD∆中,可测得角,线段,又有α故可求得AC三、课堂巩固例1. 如图,在山顶铁塔上B处测得地面上一点A的俯角α=5440'︒,在塔底C处测得A处的俯角β=501'︒. 已知铁塔BC部分的高为27.3 m,求出山高CD(精确到1 m)例2. 如图,一辆汽车在一条水平的公路上向正东行驶,到A 处时测得公路南侧远处一山顶D 在东偏南15︒的方向上,行驶5km 后到达B处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD .问题1:欲求出CD ,思考在哪个三角形中研究比较适合呢问题2:在∆BCD 中,已知BD 或BC 都可求出CD ,根据条件,易计算出哪条边的长变式:某人在山顶观察到地面上有相距2500米的A 、B 两个目标,测得目标A 在南偏西57°,俯角是60°,测得目标B 在南偏东78°,俯角是45°,试求山高.【学习小结】利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.在湖面上高h 处,测得云之仰角为α,湖中云之影的俯角为β,则云高为sin()sin()h αβαβ+-g . 【课后作业】基础部分1. 在∆ABC 中,下列关系中一定成立的是( ).A .sin a b A >B .sin a b A =C .sin a b A <D .sin a b A ≥2. 在ABC 中,AB =3,BC AC =4,则边AC 上的高为( ).A B C .32D .3. D 、C 、B 在地面同一直线上,DC =100米,从D 、C 两地测得A 的仰角分别为30o 和45o ,则A 点离地面的高AB 等于( )米.A .100B .C .501)D .501)4. 在地面上C 点,测得一塔塔顶A 和塔基B 的仰角分别是60︒和30︒,已知塔基B 高出地面20m ,则塔身AB 的高为_________m .5. 在∆ABC 中,b =2a =,且三角形有两解,则A 的取值范围是 .1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,则塔AB 的高度为多少m提高部分2. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南偏西15°距离300米的地方,在A 侧山顶的仰角是30°,求山高.§应用举例—③测量角度课型:新授课 编写人: 审核人: 【学习目标和重点、难点】能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题. 【学习内容和学习过程】 一、新课导入复习1:在ABC △中,已知2c =,3C π=,且1sin 32ab C a b ,.二、新课导学例1. 如图,一艘海轮从A 出发,沿北偏东75︒的方向航行 n mile 后到达海岛B ,然后从B 出发,沿北偏东32︒的方向航行 n mile 后达到海岛C.如果下次航行直接从A 出发到达C ,此船应该沿怎样的方向航行,需要航行多少距离(角度精确到︒,距离精确到 mile) 分析:首先由三角形的内角和定理求出角∠ABC , 然后用余弦定理算出AC 边,再根据正弦定理算出AC 边和AB 边的夹角∠CAB .例2. 某巡逻艇在A处发现北偏东45︒相距9海里的C处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追需要多少时间才追赶上该走私船手试试练1. 甲、乙两船同时从B点出发,甲船以每小时10(3+1)km的速度向正东航行,乙船以每小时20km的速度沿南偏东60°的方向航行,1小时后甲、乙两船分别到达A、C两点,求A、C两点的距离,以及在A点观察C点的方向角.练2. 某渔轮在A处测得在北偏东45°的C处有一鱼群,离渔轮9海里,并发现鱼群正沿南偏东75°的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上鱼群【学习小结】1. 已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.; 2.已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解. 拓展已知∆ABC 的三边长均为有理数,A =3θ,B =2θ,则cos5θ是有理数,还是无理数 因为5C πθ=-,由余弦定理知222cos 2a b c C ab+-=为有理数, 所以cos5cos(5)cos C θπθ=--=-为有理数.【课后作业】 基础部分1. 从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ). A .α>β B .α=β C .α+β=90o D .α+β=180o2. 已知两线段2a =,b =a 、b 为边作三角形,则边a 所对的角A 的取值范围是( ).A .(,)63ππB .(0,]6πC .(0,)2πD .(0,]4π3. 关于x 的方程2sin 2sin sin 0A x B x C ++=g g 有相等实根,且A 、B 、C 是∆ABC 的三个内角,则三角形的三边a b c 、、满足( ). A .b ac = B .a bc = C .c ab = D .2b ac =4. △ABC 中,已知a :b :c =(+1) :(-1): ,则此三角形中最大角的度数为 .5. 在三角形中,已知:A ,a ,b 给出下列说法: (1)若A ≥90°,且a ≤b ,则此三角形不存在 (2)若A ≥90°,则此三角形最多有一解(3)若A <90°,且a =b sin A ,则此三角形为直角三角形,且B =90° (4)当A <90°,a <b 时三角形一定存在(5)当A <90°,且b sin A <a <b 时,三角形有两解 其中正确说法的序号是 . 提高部分1. 我舰在敌岛A 南偏西50︒相距12海里的B 处,发现敌舰正由岛沿北偏西10︒的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰§应用举例—④解三角形课型:新授课编写人:审核人:【学习目标和重点、难点】1. 能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题;2. 掌握三角形的面积公式的简单推导和应用;3. 能证明三角形中的简单的恒等式.【学习内容和学习过程】复习1:在∆ABC中(1)若1,120a b B==︒,则A等于.(2)若a=2b=,150C=︒,则c=_____.复习2:在ABC∆中,a=,2b=,150C=︒,则高BD= ,三角形面积= .二、新课导学探究:在∆ABC中,边BC上的高分别记为ha,那么它如何用已知边和角表示ha=b sin C=c sin B根据以前学过的三角形面积公式S=12 ah,代入可以推导出下面的三角形面积公式,S=12ab sin C,或S= ,同理S= .新知:三角形的面积等于三角形的任意两边以及它们夹角的正弦之积的一半.三、课堂巩固例1. 在∆ABC中,根据下列条件,求三角形的面积S(精确到2):(1)已知a=,c=,B=︒;(2)已知B=︒,C=︒,b=;(3)已知三边的长分别为a=,b=,c=38.7cm.变式:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m ,88m ,127m ,这个区域的面积是多少(精确到2)例2. 在∆ABC 中,求证:(1)222222sin sin sin a b A B c C++=;(2)2a +2b +2c =2(bc cos A +ca cos B +ab cos C ).小结:证明三角形中恒等式方法: 应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.※ 动手试试练1. 在∆ABC 中,已知28a cm =,33c cm =,45B =o ,则∆ABC 的面积是 .练2. 在∆ABC 中,求证: 22(cos cos )c a B b A a b -=-.【学习小结】1. 三角形面积公式:S =12ab sin C = = . 2. 证明三角形中的简单的恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.识拓展三角形面积S =这里1()2p a b c =++,这就是着名的海伦公式.【课后作业】 基础部分1. 在ABC ∆中,2,60a b C ︒===,则ABC S ∆=( ).A. B.C. D.32 2. 三角形两边之差为2,夹角的正弦值为35,面积为92,那么这个三角形的两边长分别是( ).A. 3和5B. 4和6C. 6和8D. 5和73. 在ABC ∆中,若2cos sin sin B A C ⋅=,则ABC ∆一定是( )三角形. A. 等腰 B. 直角 C. 等边 D. 等腰直角4. ABC ∆三边长分别为3,4,6,它的较大锐角的平分线分三角形的面积比是 .5. 已知三角形的三边的长分别为54a cm =,61b cm =,71c cm =,则∆ABC 的面积是 .6. 已知在∆ABC 中,∠B =30︒,b =6,c a 及∆ABC 的面积S .提高部分2. 在△ABC 中,若sin sin sin (cos cos )A B C A B +=⋅+,试判断△ABC 的形状.第一章 解三角形(复习)课型:新授课 编写人: 审核人: 【学习目标和重点、难点】能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题 【学习内容和学习过程】 一、新课导入复习1: 正弦定理和余弦定理 (1)用正弦定理:①知两角及一边解三角形;②知两边及其中一边所对的角解三角形(要讨论解的个数). (2)用余弦定理:①知三边求三角;②知道两边及这两边的夹角解三角形.复习2:应用举例① 距离问题,②高度问题, ③ 角度问题,④计算问题.练:有一长为2公里的斜坡,它的倾斜角为30°,现要将倾斜角改为45°,且高度不变. 则斜坡长变为___ .二、新课导学例1. 在ABC ∆中tan()1A B +=,且最长边为1,tan tan A B >,1tan 2B =,求角C 的大小及△ABC 最短边的长.例2. 如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30o,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1o)例3. 在∆ABC中,设tan2,tanA c bB b-=求A的值.北2010ABC手试试练1. 如图,某海轮以60 n mile/h 的速度航行,在A 点测得海面上油井P 在南偏东60°,向北航行40 min 后到达B 点,测得油井P 在南偏东30°,海轮改为北偏东60°的航向再行驶80 min 到达C 点,求P 、C 间的距离.练2. 在△ABC 中,b =10,A =30°,问a 取何值时,此三角形有一个解两个解无解【学习小结】1. 应用正、余弦定理解三角形;2. 利用正、余弦定理解决实际问题(测量距离、高度、角度等); 3.在现实生活中灵活运用正、余弦定理解决问题. (边角转化).设在ABC ∆中,已知三边a ,b ,c ,那么用已知边表示外接圆半径R 的公式是RC【课后作业】 基础部分1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,则△ABC 的面积为( ).A .9B .18C .9D .2.在△ABC 中,若222c a b ab =++,则∠C =( ). A . 60° B . 90° C .150° D .120°3. 在∆ABC 中,80a =,100b =,A =30°,则B 的解的个数是( ). A .0个 B .1个 C .2个 D .不确定的4. 在△ABC 中,a =b =1cos 3C =,则ABC S =△_______5. 在∆ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,若2222sin a b c bc A =+-,则A =___ ____.1. 已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若1cos cos sin sin 2B C B C -=.(1)求A ;(2)若4a b c =+=,求ABC ∆的面积.提高部分2. 在△ABC 中,,,a b c 分别为角A 、B 、C 的对边,22285bca cb -=-,a =3, △ABC 的面积为6,(1)求角A 的正弦值; (2)求边b 、c .。