结构力学教案-力法1
结构力学力法的计算

结构力学力法的计算在结构力学中,力法是一种常用的计算方法,用于分析和设计各种结构的受力状态和稳定性。
力法基于牛顿第二定律和结构平衡原理,通过将结构划分为多个互相独立的力学系统,再进行力学方程的求解,可以得到结构各点的受力情况。
力法的计算过程主要包括以下几个步骤:1.确定受力系统:首先,需要明确结构的受力体系,包括受力点、受力方向和受力大小。
根据结构的特点和应用要求,可以选择合适的受力系统。
2.提取受力系统:将受力系统从结构中剥离出来,形成独立的力学系统。
这样可以降低计算难度,并且便于分析结构的受力情况。
3.建立力学模型:对于每个独立的力学系统,需要建立相应的力学模型。
根据受力情况和结构的几何形状,可以选择适当的力学模型,如简支梁、悬臂梁等。
4.进行力学方程求解:通过应用牛顿第二定律和结构平衡原理,可以建立相应的力学方程。
根据方程的特点,可以选择适当的数值解法,如代数法或迭代法等。
5.求解受力分布:通过求解力学方程,可以得到结构各点的受力情况。
这包括受力方向、受力大小和受力位置等信息。
根据这些信息,可以对结构的受力状态进行分析和评估。
6.验证和优化设计:对于计算结果,需要进行验证和优化设计。
通过与理论计算或实验结果的对比,可以确认计算的准确性,并对结构的设计进行必要的调整和优化。
需要注意的是,力法的计算过程需要考虑以下几个因素:1.边界条件:在进行力法计算时,需要确定结构的边界条件。
边界条件可以影响结构的受力情况,因此对于计算结果的准确性至关重要。
2.材料性质:在建立力学模型时,需要考虑材料的性质和力学参数。
材料的性质直接影响结构的刚度和强度,因此对于计算结果的准确性有很大影响。
3.荷载条件:在进行力法计算时,需要明确结构所受的荷载条件,包括静载和动载。
不同的荷载条件会导致结构不同的受力状态和响应,因此需要准确确定。
4.结构几何形状:在进行力法计算时,需要考虑结构的几何形状。
结构的几何形状会直接影响结构的受力分布和刚度特性,因此需要准确描述和建模。
结构力学第06章 力法-1

作业: 作业:
P266 6-1 (a)(b)(h) 6-2 (a)
FP B FyB FP
FyB
3、超静定结构的类型 、 (1) 超静定梁 )
(2) 超静定刚架 )
(3)超静定拱 )
(2) 超静定桁架 )
(2) 超静定组合结构、铰接排架 ) 超静定组合结构、
二、超静定次数 • 1、超静定次数的确定及确定方法 、 • 超静定次数 n — 多余约束的个数。 多余约束的个数。
例:
X1
n=1
X1 X1
X1
X1
n=1X1 X1瞬变X1X1 X2 X3 X5 X4
n=5
X3 X2 X5
X1 X4
X1
n=1
X1 X1
n =3× 5=15
n=2
X1
X2
X1
X1
X2
X2
§6-2 力法基本概念
• 一、基本思路: 基本思路:
• 力法的三个基本概念(三要素) 力法的三个基本概念(三要素) • 1、力法的基本未知量—(与多余约束相应 、力法的基本未知量 ( 多余力。 的)多余力。 • 如图:与静定结构相比较,有一个多余力, 如图:与静定结构相比较,有一个多余力, 只要能计算出X 其余的问题为静定结构问题。 只要能计算出 1,其余的问题为静定结构问题。
X1 X1 X1 X1 X2 X1 X2 X1 X2
1 1 2 2
反力Fy 轴力FN 反力Fx Fy 轴力FN 剪力 FQ
撤除多余约束的方式
X3 X1
X2
撤除多余约 束的个数
多余力 的性质
3
X1
反力Fx,Fy,M 轴力FN 剪力FQ 弯矩M
X3 X2 X1
《结构力学》_龙驭球_第6章_力法(1)

X2=1
l M2 图
1 l l l l3 12 21 l (l l ) EI 2 2 EI
l
l
l
l
ql 2 2
EI
EI
原结构
X1=1
l
1、力法方程:
基本体系
M1 图 l
11 X 1 12 X 2 1P 0 21 X 1 22 X 2 2 P 0
3
l
1 l l 2l 5l 2、系数和自 11 ( ) 2 ( l l l ) 由项的计算: EI 2 3 3EI
解方程得: X 1 ql 2
X2=1
A
1
M2图
(
1 2 1 X 2 ql 4 3k 4
E1 I1 k) E2 I 2
1 2
1 3k 4
1 2 1 X 1 ql 2 3k 4 3. 讨论 1)当k = 0
即 E1 I1 很小或 E2 I2 很大
ql X1 8
11 X 1 12 X 2 1P 0 21 X 1 22 X 2 2 P 0
3
q=1kN/m
3m
q=1kN/m
FP = 3kN 4 2I I 2I 2 1
3m 3m
FP = 3kN
18
27
9
M P kN m
3m
X1
11
X2
6
6
§6-3 超静定刚架和排架
计算超静定刚架和排架位移时,通常忽略轴力和剪力的影响,只考虑弯 矩的影响,使计算简化。 例6-1:求图示刚架 M 图。 q q C X1 B
结构力学力法

EI
2
l
M1
X1=1
MP图
d11
l
M1M1 EI
dx
1 l2 2l
EIFP=12 3
3lE3 I位 略求弯 去X矩 。自1方图向,乘位与移上的图虚相拟同单,
1P
M1MP dx 11Fll5l5Fl3
EI
EI2 2 2 6 4E 8I
力法
将 d 1和1 代 1入 力法方程 δ11X11P0
F1
F1
三次超静定
X3
X1
X2
力法
4)将刚性连接改为单铰连接或把固定端支座改为铰 支座,相当于去掉一个约束。
F1
X1
F1
一次超静定
F1 X1
力法
说明:
1)对于同一个超静定结构,撤去多余约束可以采取不 同的方式,从而得到不同的静定结构。但不论采用何种方 式,最终所去掉的多余约束的总数应该是相同的。
若X1已知,基本体系就是一个静定结构。
怎么 求X1 呢?
力法
二、力法的基本方程
位移条件:基本结构转 化为原结构的条件是:基 本结构在原有荷载和多余
A 原结构
未知力共同作用下,在去
掉多余约束处的位移应与
原结构中相应的位移相等。
A
〓
FP
B
FB
FP
B
即
1 0
基本体系
当ΔB=Δ1=0
X1 =><>=> FB
力法
n次超静定结构的力法典型方程
d11X1 d12X2 d21X1 d22X2
dn1X1 dn2X2
d1nXn 1P 0 d2nXn 2P 0
集美大学船舶结构力学(48学时)第三章 力法(1)2014(2学时)

静定基
这时原来仅受均布荷重q作用的静 不定的双跨梁变为受均布荷重q与集中 力R共同作用的静定的单跨梁;
2)比较前后两种梁的变 形情况,根据变形一致 (协调、连续)条件建 立方程式;
原超静定结构
v1 0
静定基
变形一致条件:
v1 0
静定基
变形一致条件:
v1 0
vq1 vR1 0
4
3
Rl 5ql 0 5 6 EI 24 EI R ql 4
P
M图
中点挠度大小
3
端点转角大小
2
m
Pl Pl EI , l 48EI 16EI Pl / 4 2 m ml ml ml 左 右 查单跨梁的弯曲要素表(附录A表A-2),得到: 3EI 6EI 16EI
Q
EI , l
Ql / 8
(力法基本未知数数目与结构的 静不定次数相同。)
2、在去掉约束或截断处, 列出变形一致(连续) 方程式以保证基本结构 的变形与原结构的变形 相同。
(方程数目与基本未知数数目相同。)
3、从变形一致(或连续、 协调)方程式中求出未 知“力”,进一步可求 出结构的其他弯曲要素。
五、三弯矩方程法 1、三弯矩方程式:一般来 说,在用力法的第二种方法 (截面法)解静不定杆系问 题时,列出的变形连续方程 式(或称节点转角连续方程) 是以各断面弯矩为未知数的 方程组,
1 2 M 1 ql 14
3 2 M2 ql 28
7)画弯矩图
求出了 M 1 、M 2 后, 就可以分别对两个单跨 梁1-2、2-3画弯矩图。
其中每一个单跨梁 的弯矩图都可以用叠加 法来画。最后组合起来 得到双跨梁的弯矩图, 图3-7(a)。
【课程思政优秀案例】《结构力学I》:高铁建设中的结构力学——力法基本原理

课程思政优秀案例——《结构力学I》:高铁建设中的结构力学——力法基本原理一、课程和案例的基本情况课程名称:结构力学I授课对象:本科二年级课程性质:专业基础课课程简介:《结构力学I》是土木工程、铁道工程等专业学生必修的一门专业基础课。
该课程以培养“品德优秀、基础宽厚、思维创新、能力卓越”的土木工程人才为根本任务,主要研究工程上常见杆系结构的基本力学特征、内力分析与位移计算的基本原理和基本方法。
案例简介:本案例为结构力学教学大纲中的第38节课(共64节),时长50分钟,教学内容是介绍求解超静定结构的第一种基本方法—力法。
它是从静定结构过渡到超静定结构的第一节基本原理课,具有非常重要的承上启下作用。
本节课的教学目标主要包含以下三个层次:知识传授:重点掌握力法的基本原理和力法方程的物理含义能够应用力法基本原理求解一次超静定结构的内力能力培养:培养学生对超静定结构进行内力分析和计算的能力应用理论知识分析和解决实际工程问题的能力价值塑造:从我国高铁建设的巨大成就中厚植学生的家国情怀和职业使命通过启发引导培养学生的工程思维和解决实际问题的科学方法从不断的拓展思考中培养学生的深度学习能力和钻研精神二、案例蕴含的思政元素分析将结构力学课程与我国的高铁建设紧密结合,本案例打破“就力学谈力学”的局限性,从国家交通强国战略的角度充分挖掘了蕴含在力学基本原理中的育人元素,通过启发引导式的授课方式培养学生运用理论知识分析求解实际工程问题的工程思维和科学方法,拓展延伸培养学生的科研探索和创新精神,激发学生科技报国的家国情怀。
本案例主要包含以下思政元素:(1)交通强国、民族自信、职业使命通过北京奥运会、京张高铁引出中国速度和中国势力,一座座宏伟的高铁桥梁凝聚了一代又一代土木人的智慧和创新。
提出问题引入主题:如何计算连续梁桥的内力进行高铁桥梁的设计?让学生在感受民族自豪的同时思考土木工程师的职业使命。
(2)解决问题的工程思维和科学方法超静定结构的内力求解是面临的未知工程问题,如何利用已经掌握的静定结构的知识来分析求解呢?采用启发引导式的教学方法培养学生的工程思维和解决实际问题的科学方法。
结构力学教案

结构力学教案【篇一:结构力学教案】结构力学“十二五”普通高等教育本科国家级试讲人姓名:规划教材第六章 6-1超静定次数的确定 6-2力法的基本概念力法的基本概念教案教学目的:1. 掌握超静定次数的确定;2. 掌握力法的基本原理;3. 了解超静定结构的力学特征。
教学重点、难点: 1.判断超静定次数; 2.选取力法基本体系; 3. 了解力法基本方程。
教学方法:讲授法、演示法教学时数:1课时教学内容:导入:一、 6-1超静定次数的确定——力法的前期工作【板书】(一)超静定结构的静力平衡特征和几何特征为了认识超静定结构的特性,我们需要把它与静定结构作一些对比。
1. 在几何组成方面:静定结构是没有多余约束的几何不变体系,而超静定结构则是有多余约束的几何不变体系。
【板书】2. 在静力分析方面:静定结构的支座反力和截面内力都可以用静力平衡条件唯一地确定,而超静定结构的支座反力和截面内力不能完全由静力平衡条件唯一地加以确定。
总起来说,约束有多余的,内力(或支座反力)是超静定的,这就是超静定结构区别于静定结构的两大基本特征。
凡符合这两个特征的结构,就称为超静定结构。
(二)超静定次数的确定力法是以结构中的多余约束力为基本未知量的,一个结构的基本未知量数目就等于结构的多余约束数目。
因此,力法计算首先要找出结构的多余约束。
确定结构超静定次数最直接的方法是解除多余约束法,即将原结构的多余约束移去,使其成为一个(或几个)静定结构,则所解除的多余约束数目就是原结构的超静定次数。
解除超静定结构的多余约束,归纳起来有以下几种方式:例图【板书】 1. 移去一根支杆或切断一根链杆,相当于解除一个约束。
2.移去一个不动铰支座或切开一个单铰,相当于解除两个约束。
3.移去一个固定支座或切断一根梁式杆,相当于解除三个约束。
4.将固定支座改为不动铰支座或将梁式杆中某截面改为铰结,相当于解除一个转动约束。
对于框架,可采用下式计算超静定次数【板书】n=3f?h式中 f 为框格数,h 为单铰数注意:先将结构中每个框格都看作是无铰的,每个单铰的存在就减少1次超静定。
结构力学——力法

X1 X2
ql 2 / 40 M
∆1 = 0 ∆ 2 = 0 δ11 ⋅ X1 + δ12 ⋅ X2 + ∆1P = 0 δ21 ⋅ X1 +δ22 ⋅ X2 + ∆2P = 0
q
X1 = −3ql / 20, X 2 = −ql 2 / 40
将未知问题转化为 已知问题, 已知问题,通过消除已 知问题和原问题的差别, 知问题和原问题的差别, 使未知问题得以解决。 使未知问题得以解决。 这是科学研究的 基本方法之一。 基本方法之一。
二.力法的基本体系与基本未知量 力法的基本体系与基本未知量 超静定次数: 超静定次数: 多余约束个数.
若一个结构有N个多余约束,则称其为N次超静定结构. . 几次超静定结构? 几次超静定结构
X
= 3 ql / 8 ( ↑ )
⋅ X
+ M
P
ql
2
/ 2
l
MP
M1
力法步骤: 力法步骤: 1.确定基本体系 4.求出系数和自由项 确定基本体系 求出系数和自由项 2.写出位移条件 力法方程 写出位移条件,力法方程 5.解力法方程 写出位移条件 解力法方程 3.作单位弯矩图 荷载弯矩图 6.叠加法作弯矩图 作单位弯矩图,荷载弯矩图 作单位弯矩图 荷载弯矩图; 叠加法作弯矩图 练习 P EI l EI l 作弯矩图. 作弯矩图
M1
3 Pl 8 5 Pl 8
=0 δ 11 = 4l / 3EI ∆1P = − Pl 3 / 2 EI
X 1 = 3 P / 8(↑)
M = M1 ⋅ X 1 + M P
P
MP
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.1 力法:超静定次数的确定
本章主要介绍超静定结构的计算方法——力法。
介绍如何选择力法的基本结构、建立力法典型方程,以求出超静定结构的内力图。
重点掌握力法的基本原理、基本结构的选择方法和力法解超静定结构的三方面因素。
同时对一些特殊结构,如:对称结构、两铰拱等也作了基本的介绍。
超静定结构中多余约束的数目称为超静定次数。
判断超静定次数可以用去掉多余约束使原结构变成静定结构的方法进行。
去掉多余约束的方式一般有以下几种:
(1) 去掉一根支座链杆或切断一根链杆等于去掉一个约束。
(2) 去掉一个铰支座或拆去联结两刚片的单铰等于去掉两个约束。
(3) 将固定端支座改成铰支座,或将刚性联结改成单铰联结,等于去掉一个约束。
(4) 去掉一个固定端支座或切开刚性联结等于去掉三个约束。
按所去掉的约束数目可以很简便地算出结构的超静定次数。
如从原结构中去掉n 个约束结构就成为静定的,则原结构称为n次超静定结构。
15.2.1 力法的基本原理
图19.7(a)所示为一次超静定梁,EI为常数。
图中虚线表示梁在受力后的弹性变形情况。
由图中可见梁A端的线位移及角位移为零,B端竖向位移也为零。
现拆去多余约束B端的支座链杆并用多余未知力X1代替B端的约束对原结构的作用,得到如图19.7(b)所示静定梁。
这种去掉多余约束后所得到的静定结构,称为原结构的基本结构,待求的多余未知力X1为力法的基本未知量。
基本结构在B端不再受约束限制,因此在外力P作用下B点竖向位移向下(图19.7(c)),在X1作用下B点竖向位移向上(图19.7(d))。
显然在二者共同作用下B点竖向位移将随X1的大小不同而异,由于X1是取代了被拆去约束对原结构的作用,因此基本结构的变形位移状态应与原结构完全一致,即B点的竖向位移Δ1必须为零,也就是说基本结构在已知荷载与多余未知力X1共同作用下;在拆除约束处沿多余未知力X1作用方向产生的位移应与原
结构在X1方向的位移相等。
即 Δ1=0 (a) 这就是基本结构应满足的变形谐调条件,又称位移条件。
若用Δ1P 和Δ11分别表示荷载q 和多余未知力X1单独作用下基本结构在X1作用处沿X1方向产生的位移,则由叠加原理根据位移条件可得下列方程
Δ1=Δ11+Δ1P=0 (b)
若X1=1时在X1方向产生的位移为δ11,则有Δ11=δ11X1,于是(b)式可以写成
δ11X1+Δ1P=0 (19.1)
这就是求解多余未知力的补充方程,称为力法方程。
为了计算δ11和Δ1P ,分别作基本结构在荷载q 作用下的弯矩图MP(图19.8(a))和在单位力X1=1作用下的单位弯矩图M1(图19.8(b)),应用图乘法可得
代入力法方程式(19.1)得
多余未知力X1求得后,即可由静力平衡条件求得其余的约束反力和内力。
最后弯矩图也可以利用已经绘出的基本结构的M1图和MP 图由叠加原理按下式求得
M=M1X1+MP
也就是将M1图的竖标乘以X1倍,再与MP 图中的对应竖标相加。
例如
MA=MAX1+MAP=l ×3/8ql-1/2ql2
=-1/8ql2 (上侧受拉)
最后内力图如图19.9所示。
综上所述,我们把这种取多余未知力作为基本未知量,通过基本结构,利用计算静定结构的位移,达到求解超静定结构的方法,称为力法。
用力法计算超静定结构时,解除超静定结构的多余约束而得到静定的基本结构后,整个计算过程自始至终都是在基本结构上进行的,这就把超静定结构的计算问题,转化为静定结构的位移和内力计算问题。
321111112()233l M dx l l l EI EI EI δ==⨯⨯=⎰24111113()3248P P ql ql M M dx l l l EI EI EI
∆==-⨯⨯⨯=-⎰3421130388l ql X X ql EI EI -== 得
图19.7
图19.8 图19.8。