1-1几何光学的基本原理

合集下载

第1章 几何光学的基本原理1

第1章 几何光学的基本原理1
15
二、费马原理的原始表述: 光从空间的一点到另一点的实际路径是沿着
光程为极值的路径传播的。或者说,光沿着光 程为极大、极小或者常量的路径传播。
B
( AB) A n dl 0
在光线的实际路径上,光程的变分为0。
16
如果ACB代表光线的实际路径,如图,光线ACB 的光程(或者说所需的时间)与邻近的任何可能路 径 AC'B 相比为极值(极大、极小或常数)。
25
• 物空间和像空间不仅一 一对应,而且根据光的可 逆性,如果将物点移到原来像点的位置上,使光 线沿反反向射入光学系统,则它的像将成在原来 的物点上。这样的一对相应的点称为共轭点。
• 由费马原理可以得出一个重要结论:物点A和像 点 之间各光线的光程都相等,这便是物像之间的 等光程性。这里所说的像点是指完善像点。
当光线经过几个折射率为 n1, n2, n3, n4 的不同介质, 在各介质中经过的路程为l1, l2, l3, l4 ,从A,B,C,
D到达E时所需的时间为
tAE
i
li vi
i
nili ( ABCDE )
c
c
(ABCDE)称为光线ABCDE的光程,简写为(AE)。
( AE) ( ABCDE ) nili tAE c
28
•这一角度大于入射光线在斜面上的入射角45°所 以入射光线在斜面上不能全反射,如图所示,在斜 面AC上入射点 D处将有折射光线进入水中,其折 射角为
I2

sin
1
1.50sin 45 1.33

sin
1
0.797488

52.89096
29
第一章 作业

光学中的几何光学和光的衍射

光学中的几何光学和光的衍射

光学中的几何光学和光的衍射光学是研究光的传播、衍射和干涉等现象的科学领域,而几何光学和光的衍射是光学研究中的两个重要分支。

几何光学主要研究光的传播和折射规律,而光的衍射则涉及到光的波动性质和衍射现象。

本文将首先介绍几何光学的原理和应用,接着探讨光的衍射的基本特点和应用领域。

一、几何光学几何光学是基于光的直线传播假设的近似理论,它将光看作直线传播的光线。

在几何光学中,光的传播和折射可以用光线的传播路径和折射定律来描述。

1. 光的传播路径根据光的传播路径,可以将光线分为直线光线、反射光线和折射光线。

直线光线沿直线路径传播,反射光线是光线遇到界面时发生反射,折射光线是光线在介质之间发生折射。

2. 折射定律当光线从一个介质传播到另一个介质时,会发生折射现象。

根据斯涅尔定律,入射角、折射角和两种介质的折射率之间满足以下关系:n₁sinθ₁ = n₂sinθ₂,其中n₁和n₂分别是两种介质的折射率,θ₁和θ₂分别是入射角和折射角。

几何光学的应用非常广泛,其中最常见的是光学成像。

根据光线在透镜或者反射面上的传播特点,可以设计出各种光学仪器,如望远镜、显微镜和相机等。

二、光的衍射光的衍射是光的波动性质在绕过物体边缘或者通过孔径时产生的现象。

与几何光学不同,光的衍射需要考虑波动理论和波的干涉效应。

1. 衍射现象当光线通过孔径或者绕过物体边缘时,会发生弯曲、扩散和干涉等现象。

这些现象是波的干涉和衍射效应的结果。

2. 衍射的基本特点衍射现象有以下几个基本特点:一是衍射现象发生的条件是光波传播到物体边缘或孔径的尺度接近或小于光的波长;二是衍射现象在遮挡物、光源和观察者之间都会产生;三是衍射现象与波的波长和孔径大小有关。

光的衍射在科学研究和技术应用中有重要意义。

例如,衍射光栅可以用于光谱仪和激光光谱分析;衍射现象还被应用于干涉仪、激光干涉测量和光波导器件等领域。

总结:几何光学和光的衍射是光学研究中的两个重要分支。

几何光学主要研究光的传播和折射规律,应用广泛;光的衍射涉及到光的波动性质和衍射现象,在科学研究和应用中有重要作用。

几何光学的基本定律和费马原理

几何光学的基本定律和费马原理

主要内容一、几何光学的三个基本定律二、光路可逆原理三、全反射、光学纤维四、费马原理光线:空间的几何线。

各向同性介质中,光线即波面法线。

光的直线传播、反射和折射都可以用直线段及其方向的改变表示。

几何光学是关于光的唯象理论。

对于光线,是无法从物理上定义其速度的。

几何光学是关于物体所发出的光线经光学系统后成像的理论。

几何光学实验定律成立的条件:1.被研究对象的几何尺寸D远大于入射光波波长λD/ λ>>1 衍射现象不明显,定律适用。

D/ λ~1 衍射现象明显,定律不适用。

2.入射光强不太强在强光作用下可能会出现新的光学现象。

强光:几何光学的基本实验定律有一定的近似性、局限性。

一、几何光学的三个基本定律1.光的直线传播定律在真空或均匀介质中,光沿直线传播,即光线为2.光的独立传播定律自不同方向或由不同物体发出的光线在空间相交后,对每一光线的独立传播3.光的反射和折射定律3.1 反射定律G 3.2 折射定律入射面n光线在梯度折射率介质中的弯曲nn 5n 1n 3n 2n 4n 6海市蜃楼:沙漠中海面上光线在梯度折射率介质中的弯曲二、光路可逆原理在弱光及线性条件下,当光的传播方向逆转时,•光线如果沿原来反射和折射方向入射时,则相应的反射和折射光将沿原来的入射光的方向。

如果物点Q发出的光线经光学系统后在Q三、全反射、光学纤维1.全反射原理。

继续增大入射角,,而是按反射定律确定的方向全部反射。

全反射的应用:增大视场角毛玻璃r rr2.光纤的基本结构特性(1)光纤的几何结构光纤的几何结构(2)光纤分类①按纤芯介质分:均匀光纤,非均匀光纤。

(3)光纤的传光条件i cn 0n 2n 1(4)光纤的数值孔径四、费马原理物质运动的趋势:达到一种平衡状态或极值状态费马原理:在所有可能的光传播路径中,实际路径所需的时间取极值。

1说明:费马原理是光线光学的理论基础。

① 直线传播定律:两点间的所有可能连线中,线段最短——光程取极小值。

青岛大学《应用光学》讲义 第一章

青岛大学《应用光学》讲义 第一章

1应用光学与设计第一章几何光学基本原理1-1 光波和光线1. . 光的本质电磁波(10nm~1mm )核心区域可见光380nm~780nm 2应用光学与设计第一章几何光学基本原理1-1 光波和光线可见光单色光复色光766.50706.52656.28589.29587.57486.13435.83434.05546.07404.66单位: nm 750700650600550500450400620590570475495450红橙黄绿青蓝紫颜色分界线典型谱线A ’b C Dd e F g G ’h 及波长可见光色谱带及典型谱线C ’643.9备注: 颜色的分界线有不同定义, 也与照度有关.3应用光学与设计第一章几何光学基本原理1-1 光波和光线2.波动光学的简单回顾真空中光速82.99810m sc =×介质中光速cn=v 光波在不同介质中传播,频率不变。

ν频率与波长和光速的关系cνλ=波面、波前与波线*4应用光学与设计第一章几何光学基本原理1-1 光波和光线3. 从波动光学到几何光学波线→光线λ→光线表示光波的传播方向, 在各向同性、均匀的介质中, 光线总垂直于波面. (马吕斯定律)*5应用光学与设计第一章几何光学基本原理1-1 光波和光线波面和光束的类型球面波同心光束S会聚光束S发散光束平面波平行光束6应用光学与设计第一章几何光学基本原理1-1 光波和光线非球面波像散光束7应用光学与设计第一章几何光学基本原理1-2 几何光学基本定律1.直线传播定律光在均匀透明的介质中按直线传播.2.反射定律折射定律光在两种均匀介质分界面上的规律.8应用光学与设计第一章几何光学基本原理1-2 几何光学基本定律I I ′R −角度正负的规定由光线转到法线:顺时针为正逆时针为负光路图中一律标正值. O 入射光线介质1介质2折射率n 折射率n ′N N ′折射光线反射光线sin sin n I n I ′′=I R=−入射光线、反射光线、折射光线与入射点处界面法线在同一平面内.反射可视为折射的特例:n n′=−9应用光学与设计第一章几何光学基本原理1-4 光路可逆和全反射一、光路可逆二、全反射三、费马原理四、马吕斯定律10应用光学与设计第一章几何光学基本原理1-5 基本定律的向量形式I I ′R −O 入射光线介质1介质2折射率n 折射率n ′N N ′折射光线反射光线单位矢量0Q 单位矢量′′Q 0′Q 单位矢量单位法线0N n n ′′×=×0000Q N Q N 即()00n n ′′−×=00Q Q N sin , sin , I I ′′×=×=∴0000Q N Q N ∵上式数值成立矢乘等式表明三个矢量和它们代表的三条光线共面.1.折射定律的向量形式11应用光学与设计第一章几何光学基本原理1-5 基本定律的向量形式折射定律的向量形式n n ′′×=×0000Q N Q N 令, n n ′′′==00Q Q Q Q ′×=×00Q N Q N 得()0′−×=0Q Q N 即表明与方向一致:()′−Q Q 0N 偏向系数Γ′−=0Q Q N ()cos cos n I n I Γ′′′=−=−0Q Q N i ()2222222222222cos sin sin cos n I n n I n n I n n n In n ′′′′′=−′=−′=−+′=−+0N Q ∵i ()222n n Γ′∴=−+−00N Q N Qi i Γ′=+0Q Q N 12应用光学与设计第一章几何光学基本原理1-5 基本定律的向量形式反射定律的向量形式cos cos n I n I Γ′′=−Γ′=+0Q Q N 2.直线传播定律的向量形式直线传播定律可视为折射定律的特例.n n ′=3.反射定律的向量形式′=Q Q反射定律可视为折射定律的特例.n n ′=−I I′=−()cos cos 2cos =2n I n I n I Γ∴=−−−=−−0N Qi ()2′=−00N Q N Q Q i ()222n n Γ′=−+−00N Q N Qi i13应用光学与设计第一章几何光学基本原理1-6 光学系统类别和成像的概念光轴共轴系统非共轴(离轴)系统光学系统各元件表面曲率中心在一条直线上.完善成像(点成像为点)的条件入射光是同心光束(球面波)时,出射光也是同心光束(球面波).共轴光学系统等价描述:共轭物像点间所有光线光程相等.14应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统理想像对光学系统成像的要求清晰成像(视场内)所有物点都完善成像, 每一个物点都对应唯一的像点.理想光学系统的性质(1) 直线成像为直线.O O A QQA ’理想光学系统成理想像的光学系统.15应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统理想光学系统的性质(2) 平面成像为平面.平面P A A’B’C’B C 平面P’F E E’F’16应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统子午面共轴理想光学系统的性质(1) 由系统的对称性决定的性质:共轴光学系统O O’光轴上物点的共轭像点也在光轴上.A A’子午面过光轴的某一截面, 它的共轭像平面也必过光轴. 各子午面成像性质相同. 可用一个子午面代表一个共轴系统.共轭的子午面共面.17应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统共轴光学系统O A B O’A’B’垂直于光轴的物平面,它的像平面也必然垂直于光轴.18应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统共轴理想光学系统的性质(2) 垂直于光轴的平面物所成的共轭平面像,其几何形状完全与物相似.即垂直于光轴的同一平面上各部分放大率相同.共轴光学系统注意一般来说,共轴理想成像系统的物像空间中的物与像并不一定相似.O’P’Q’Q P O A B E’G H A’B’G’H’E19应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统共轴理想光学系统的性质(3) 如果已知两对共轭面的位置和放大率; 或者一对共轭面的位置和放大率, 以及轴上两对共轭点的位置, 则其他一切物点的像点都可以确定.基面基点共轴光学系统O ’P ’P O D D ’A A ’B B ’共轴光学系统D D ’OA B Q P Q ’P ’O ’A ’B ’。

1.1_几何光学的基本定律

1.1_几何光学的基本定律

1.1_几何光学的基本定律第一节几何光学的基本定律几何光学是以光线的概念为基础,采用几何的方法研究光在介质中的传播规律和光学系统的成像特性按几何光学的观点,光经过介质的传播问题可归结为四个基本定律:光的直线传播定律、光的独立传播定律、光的反射定律和折射定律ref: 几何光学的发展先秦时代《墨经》330-260BC 欧几里德《反射光学》965-1038AD 阿勒·哈增《光学全书》十七世纪开普勒、斯涅尔、笛卡儿、费马折射定律的确立,使几何光学理论得到很快的发展。

1.光波、光线、光束light waves、raysand beams·光波光波是一种电磁波,是一定频率范围内的电磁波,波长比一般的无线电波的短可见光:400nm-760nm紫外光:5-400nm红外光:780nm-40μm近红外:780nm-3μm中红外:3μm-6μm远红外:6μm-40μm·光源light sources光源:任何能辐射光能的的物体点光源:无任何尺寸,在空间只有几何位置的光源实际中是当光源的大小与其辐射光能的作用距离相比可忽略不计,则视为点光源光学介质optical mediums光学介质:光从一个地方传至另一个地方的空间。

空气、水、玻璃?各向同性介质:光学介质的光学性质不随方向而改变各向异性介质:单晶体(双折射现象)均匀介质:光学介质的不同部分具有相同的光学性质均匀各向同性介质·波前wave front波前:某一瞬间波动所到达的位置构成的曲面波面:传播过程中振动相位相同的各点所连结成的曲面在任何的时刻都只能有一个确定的波前;波面的数目则是任意多的?球面波:波面为球面的波,点光源平面波:无穷远光源柱面波:线光源光线:传输光能的有方向的几何线在各向同性介质中,光沿着波面的法线方向传输,所以波面的法线就是光线光束光束:具有一定关系的光线的集合同心光束:同一个发光点发出或相交于同一点平行光束:发光点位于无穷远,平面光波像散光束:既不相交于一点,又不平行,但有一定关系的光线的集合,与非球面的高次曲面光波相对应同心光束平行光束ref: 像散光束·光线既不平行,又不相交,波面为曲面。

基本光学原理

基本光学原理

基本光学原理第一节几何光学的基本原理几何光学的含义及其范畴;是以光的直线传播性质为基础;研究光在透明介质中传播的光学..几何光学的理论基础;就是建立在通过观察和实验得到的几个基本定律..由于光的直线传播性对于光的实际行为只有近似的意义;所以;以它作为基础的几何光学;就只能应用于有限的范围和给出近似的结果..但这些对于了解与摄影有关的光学系统而言;已是足够的了..一、光线在几何光学中可用一条表示光传播的方向的几何线来代表光;并称这条线为光线..二、光的传播定律1.光的直线传播定律:光在均匀透明的介质中;光沿直线传播..2.光的反射和折射定律:当光线由一均匀介质进入另一介质时;光线在两个介质的分界面上被分为反射光线和折射光线..这两条光线的进行方向;可分别由反射定律和折射定律来表述..反射定律:反射线在入射线和法线所决定的平面上;反射线和入射线分别位于法线的两侧;反射角和入射角相等..在反射现象里光路是可逆的..折射定律:折射线在入射线和法线所决定的平面内;折射线和入射线分别位于法线的两侧入射角i的正弦与折射角r的正弦的比;对于给定的两种媒质来说;是一个常数;叫做第二媒质对于第一种媒质的折射率;在这里我们用n21来表示..前面所讲的n21是第二种媒质对于第一种媒质的折射率;叫做这两种媒质的相对折射率;即某种媒质对于真空的折射率叫做这种媒质的绝对折射率;简称媒质的折射率;用n表示..因为光在空气中传播的速度与光在真空中传播的速度相差很小;所以通常用媒质对空气的折射率代替媒质的折射率..n=1..光在任何媒质中传播的速度都小于在真空中的速度;所以;任何媒质的折射率都大于1..由此可以推论;光在一种媒质中传播的速度越小;这种媒质的折射率越大..两种媒质相比较如第一种媒质的折射率大于第二种媒质的折射率;则光在第一种媒质中的传播速度小于光在第二种媒质中的传播速度;相对而言第一种媒质称为光密媒质;第二种媒质称为光疏媒质.. 当光线从光疏媒质射进光密媒质时∴Sini>Sinr i>r这时;r<i说明光线近法线折射..当光从光密媒质射进光疏媒质时∴i<r这时r>i 说明光线远法线折射..在折射现象里;光路是可逆的..光路的可逆性是几何光学中很重要的一条规律..三、光的反射和折射光线射到两种媒质的分界面上时;入射光线一般分为两部分;一部分返回原媒质产生反射;一部分进入第二媒质产生折射..反射光的强度随入射角的增大而增大;折射光的强度随入射角的增大而减小..在这部分里我们主要以平面镜和球面镜这两种和摄影直接相关的事物来分析光的反射现象..1.平面镜成象1象的概念和意义..由物体上某一点发出的光线;经过媒质界面的反射;反射光线如能交于一点;相交之点叫做物体上这一点的实象..如反射光线是发散的;不能相交;而反射线的反方向延长线交于一点;直接观察光线好像是从这一点发出的;这相交点就叫做物体上这一点的虚象..一个物体是由很多个点组成的;这些点的象组成物体的象..实象可以直接用眼观察;也可以映在屏幕上显示出来..虚象只能直接用眼观察而不能映在屏幕上..2平面镜成像..根据光的反射定律;可以得出发光点或物体在平面镜里的象..取物体的端点A发出的任意两条光线;反射后它们的延长线交于一点;这一点就是物体端点A的象;如图1—3所示..同样;物体的任何一点;通过做图都可以得出它所对应的象..平面镜成的是直立的虚象;物体和象分别在镜面的两侧;并以镜面为对称;象和物大小相等;左右相反..2.球面镜成象1球面镜的概念..镜子的反射面是球面的一部分时;叫做球面镜..凹面镜:用球的内表面做反射面..凸面镜:用球的外表面做反射面..顶点:镜面的中心点..曲率半径:球面镜所属球面的半径..曲率中心:球面镜所属球面的中心..主轴:通过顶点和曲率中心的直线..近轴光线:一般使用的球面镜;都是它所属球面的很小的一部分即图1—4中的θ角所对应的那部分球面;而镜前的物体又都放在主轴附近;这样射到镜面上的光线叫近轴光线..2球面镜的焦点和焦距..凹面镜:平行于主轴的近轴光线;射到凹面镜上;反射线相交于主轴上的一点;这一点叫做凹面镜的焦点;用F来表示;F是实焦点..凹面镜有实焦点说明它有会聚光线的作用如图1—5..焦点F到顶点0的距离;叫做焦距;用f表示..一个凹面镜的焦距到底有多大;用直接测量的办法所得到的结果往往误差很大;但是;球面镜的曲率半径却是很容易得知的;用简单的几何方法很容易计算出一个球面镜的曲半径..根据圆弧上任意三点可确定圆心的方法求出圆心所在的坐标;圆心到圆的外缘任意一点就是这个圆的半径;而凹面镜的焦距等于它的曲率半径的一半;因此很方便的就可得知凹面镜的焦距..分析图1—6;光AB平行于主轴;作B点的法线BC;根据光的反射定律∠CBD=∠ABC作反射线BD;BD交主轴于F..∵∠FBC=∠CBA;∠BCF=∠CBA平行线内错角相等∴∠FBC=∠BCF BF=CF等腰三角形又∵AB是近轴光线;BO之间相距很近∴BF=OF OF=CF凸面镜:平行于主轴的近轴光线射到凸面镜上;反射光线向外散开;这一现象说明凸面镜有发散光线的作用..反射光线的反向延长线交在主轴的一点F如图1—7所示..这一点也叫焦点;是虚焦点..OF是它的焦距;用f表示..当光从光密媒质进入光疏媒质时Sini<Sinr r>i所以光线远离法线折射..入射角增大;折射角也随之增大..当入射角增加到某一值时;折射角增加到90°..入射角再增加;就没有折射现象发生了..在这种情况下;入射光线全部反射回到原媒质..这就是全反射现象.. 使全反射现象发生的入射光线的入射角叫做临界角;用字母A 表示..SinA=Sin90·n21SinA=n21由此可见;临界角是由两种媒质决定的..反射现象和折射现象是摄影实践中经常会遇到和利用的情况;只要我们对这一现象有一定的了解;就能在实践中避免它或利用它..四、透镜折射面是两个球面或一个球面;一个平面的透明体;叫透镜..1.透镜的种类1凸透镜..中央部分比边缘厚的透镜叫凸透镜..凸透镜能会聚光线;也叫会聚透镜..2凹透镜..中央部分比边缘薄的透镜叫凹透镜..凹透镜能发散光线;也叫发散透镜.. 2.关于透镜的一些基础概念薄透镜如果一片透镜的厚度;比该透镜两折射面所属球面半径小得很多;这片透镜叫做薄透镜..我们一般见到和使用的透镜都是薄透镜..以下所介绍的也只限于薄透镜..主光轴两个折射面球心的连线叫做透镜的主光轴..光心:在主光轴上有一个特殊点叫光心;射入透镜的光线通过光心;光进行的方向不改变;即射出透镜的光线和射入透镜的光线保持平行..副光轴:通过光心的其它直线叫副光轴..凸透镜的焦点和焦距:跟凸透镜主轴平行的平行光束经凸透镜折射后会聚在主轴上的一点F;叫凸透镜的主焦点;主焦点到光心的距离叫焦距;用f表示..平行光可以从凸透镜的两方入射;所以在它的两方各有一个主焦点F1和F2;因此有相对应的两个焦距f1和f2..只要透镜两边是相同的媒质;f1=f2=f如图1—8..跟主轴成一定角度与某一副轴平行的平行光束;经凸透镜折射后会聚在副轴上的一点;叫副焦点..很明显副焦点有很多..对于近轴光线;副焦点都在通过主焦点与主轴垂直的平面内;这个平面叫做焦平面如图1—8..每个凸透镜都有两个焦平面..凹透镜的焦点和焦距:凹透镜和凸透镜相似;也有主焦点、副焦点和焦平面..所不同的是凹透镜发散光线;平行光束经过它的折射散开的光线不能交于一点;而在光线的反向延长线上交于一点F;这一点也叫焦点;是虚焦点;从焦点到光心的距离叫焦距f如图1—9..一般为区别焦点的实虚;凸透镜的焦距取正值;凹透镜的焦距取负值..3.透镜成象规律1凸透镜成象..凸透镜成象可运用几条特殊光线来描述:经过光心的光线不改变方向;平行于主轴的近轴光线折射后通过焦点..通过焦点的光线折射后平行于主轴..求一发光点S的象S’..求一物体AB的象A’B’..u和f是正值;如果v是正值;象就是实象;v是负值;象就是虚象..凸透镜成象公式是利用相似三角形对应边成比例的关系得出的..同理也可得出放大率公式..放大率公式:结合上图可知式中:U=OB 叫物距;V=OB’叫象距;f=OF是焦距..当K>1时;说明象比物长;当K<1时;说明象比物短..2凹透镜成象..凹透镜成象可用以下几条特殊光线来描述:经过光心的光线不改变方向..平行于主轴的近轴光线折射后;它的反方向延长线交于虚焦点..通过虚焦点的光线折射后平行于主轴..凹透镜成象作图法如图1—13、1—14..因透镜有两个焦点;作图时必须注意什么情况要用哪一侧的焦点;所以凹透镜应特别注意求一发光点S的象S’;求一物体AB的象A’B’..凹透镜成象公式:式中u是正值;v和f是负值放大率公式:凸透镜的成象公式和凹透镜的成象公式以及放大率公式是完全相同的..因此;这两个公式只要在不同的情况下u、v、f取不同的符号即能适应两种透镜各种情况..一般将实物放在镜前;因此u取正值..f的正负;决定于焦点的实虚..凸透镜:f>0;凹透镜:f<0..V的正负;决定象的实虚..V>0:成实象..V<0;成虚象..3透镜象的各种情况凸透镜:凸透镜的成象情况可用表1—1说明:表1-1在第5种情况中;u=f;v=∞;可以说在无限远成象..u=f是凸透镜成实象和成虚象的分界点..凹透镜:实物放在凹透镜前无论什么地方都成正立缩小的虚象..第二节色度学原理色度学确切的讲它是研究人眼对颜色感觉规律的一门科学..每个人的视觉并不是完全一样的..在正常视觉的群体中间;也有一定的差别..目前在色度学上为国际所引用的数据;是由在许多正常视党人群中观测得来的数据而得出的平均结果..就技术应用理论上来说;已具备足够的代表性和可靠的准确性..一、颜色的确切含意在日常生活中;人们习惯把颜色归属于某一物体的本身;把它作为某一物体所具有的属于自身的基本性质..比如人们所常讲的那是一块红布;那是一张白纸等等..但在实际上;人们在眼中所看到的颜色;除了物体本身的光谱反射特性之外;主要和照明条件所造成的现象有关..如果一个物体对于不同波长的可视光波具有相同的反射特性;我们则称这个物体是白色的..而这物体是白色的结论是在全部可见光同时照射下得出的..同样是这个物体;如果只用单色光照射;那这个物体的颜色就不再是白色的了..同样的道理;一块红布如果是我们在白天日光下得出的结论;那同样是这块布在红光的照射下;在人们眼中反映出的颜色就不再是红色的而是白色的..这些现象说明;在人们眼中所反映出的颜色;不单取决于物体本身的特性;而且还与照明光源的光谱成分有着直接的关系..所以说在人们眼中反映出的颜色是物体本身的自然属性与照明条件的综合效果..我们用色度学来评价的结论就是这种综合效果..二、色彩三要素任何色彩的显示;实际上都是色光刺激人们的视觉神经而产生感觉;我们把这种感觉称之为色觉..色别、明度和饱合度是色彩的三个特征;也是色觉的三个属性;通常将色别、色彩明度和色饱合度称为“色彩三要素”..1.色别色彩所具有的最显着特征就是色别;也称色相..它是指各种颜色之间的差别..从表面现象来讲;例如一束平行的白光透过一个三棱镜时;这束白光因折射而被分散成一条彩色的光带;形成这条光带的红、橙、黄、绿、青、蓝、紫等颜色;就是不同的色别..从物理光学的角度上来讲;各种色别是由射入人眼中光线的光谱成分所决定的;色别即色相的形成取决于该光谱成分的波长.. 我们所讲的光是电磁波谱中的一小部分;波长范围大约为400~700毫微米;在这个范围内各种波长的光呈现出各种不同的色彩..在自然界中所呈现出的各种色彩大都是由不同波长和强度的光波混合在一起而显示出来的;有的则是某个单一波长的固有特性色彩..总之;色别就是指不同颜色之间质的差别;它们是可见光谱中不同波长的电磁波在视觉上的特有标志..2.明度明度是指色彩的明暗程度..每一种颜色在不同强弱的照明光线下都会产生明暗差别;我们知道;物体的各种颜色;必须在光线的照射下;才能显示出来..这是因为物体所呈现的颜色;取决于物体表面对光线中各种色光的吸收和反射性能..前面提到的红布之所以呈现红色;是由于它只反射红光;吸收了红光之外的其余色光..白色的纸之所以呈现白光;是由于它将照射在它表面上的光的全部成分完全反射出来..如果物体表面将光线中各色光等量的吸收或全部吸收;物体的表现将呈现出灰色或黑色..同一物体由于照射在它表面的光的能量不同;反射出的能量也不相同;因此就产生了同一颜色的物体在不同能量光线的照射下呈现出明暗的差别.. 白颜料属于高反射率物质;无什么颜色掺入白颜料;可以提高自身的明度..黑颜料属于反射率极低的物质;因此在各种颜色的同一颜色中黑除外掺黑越多明度越低..在摄影中;正确处理色彩的明度很重要;如果只有色别而没有明度的变化;就没有纵深感和节奏感;也就是我们常说的没层次..3.饱和度饱和度是指构成颜色的纯度;它表示颜色中所含彩色成分的比例..彩色比例越大;该色彩的饱和度越高;反之则饱和度越低..从实质上讲;饱和度的程度就是颜色与相同明度有消色的相差程度;所包含消色成分越多;颜色越不饱和..色彩饱和度与被摄物体的表面结构和光线照射情况有着直接的关系..同一颜色的物体;表面光滑的物体比表面粗糙的物体饱和度大;强光下比阴暗的光线下饱和度高.. 不同的色别在视觉上也有不同的饱和度;红色的饱和度最高;绿色的饱和度最低;其余的颜色饱和度适中..在照片中;高饱和度的色彩能使人产生强烈、艳丽亲切的感觉;饱和度低的色彩则易使人感到淡雅中包含着丰富..三、三原色和三补色之间的关系自然界中各种物体所表现出的不同色彩;都是由蓝色、绿色和红色光线按适当比例混合起来即作用不同的吸收或反射而呈现在人们眼中的..所以;蓝色、绿色和红色就是组成各种色彩的基本成分..因此我们把这三个感色单元称为三原色..三原色的光谱波长如下:435.8Nm波长约400~500毫微米的范围属蓝光范围;546.1Nm波长约500~600毫微米的范围属绿光范围;700Nm波长约600~700毫微米的范围属红光范围..这三个原色的光波在可见光光谱中各占三分之一..三个原色中的一个与另外两个原色或其中一个原色等量相加;就可得到其它的色彩;其规律可用下式表示:由此可见;三原色的构成和叠加可以概括为以下四点:1.自然界的色彩是由三原色为基本色构成的;三原色按不同的比例相混合可以合成出自然界中的任何颜色..2.蓝、绿、红这三种原色是互相独立的;它们中的任何一种颜都不能用另外两种颜色混合得到..3.三种原色的混合比例决定色别..4.混合色光的亮度等于各原色光的亮度和..根据上述色光叠加的规律;我们分别将123式代入到4式中..可得由R+G=Y得 R=Y-G55代入4得Y-G+G+B=WY+B=W 黄光+蓝光=白光由R+B=M得 R=M-B66代入4得M-B+G=B=WM+G=W 品红光+绿光=白光由 G+B=C得G=C-B77代入4得R+C-B+B=WR+C=W 红光+青光=白光两种色光相加后如果得到白光;则该两色光互为补色..与蓝光、绿光和红光互为补色的三色光分别为黄色、品红光和青光..我们通常称这三色光为“三补色”..这三个补色;在可见光谱中;各约占三分之二..第三节亮度与照度摄影离不开光线;光的本质实际上就是以光源发射出的能被人眼看到的辐射能..摄影镜头实际上是一个收集光能并把景物清晰的成象在感光胶片上的工具..而真正需要在光能量的作用下发生化学变化的是感光胶片;照相机只不过是一台控制光通量的阀门..怎样才能控制好这台起阀门作用的机器;使得感光胶片上所得到的光能恰到好处的使感光乳剂发生变化呢光讲要正确的曝光;这个概念实际上是很模糊的..要科学的解答这个问题;就应从光的本质和表示光能强度等方面有一个了解..通过对色度学原理的介绍;我们知道光的本质是在整个电磁频谱中的一小部分;波长范围约为400~700毫微米..我们知道电磁波是同热能、电能一样也是能量的一种表现形式;所以;光具有光能也是不容置疑的了..有一个小实验可以证明光是具有能量的..将一片硅光电池的两极接上一只电流表;当没有光照在硅光电池上时;电流表指针指示为零;当把一束光照在硅光电池上时;电流表的指针偏移..根据实验和能量守恒规律可以说明;当电流表的指针发生偏移时;说明有电流通过电流表;这个电流从哪里来;无疑是从光电转化元件硅光电池中来;硅光电池中的电流从何产生;那就是光能使硅电池内部的电子发生了流动..所以说光也是能量的一种表现方式.. 光既是一种能量的表现形式;就必然有度量它强弱的标准;这个标准就是我们所要讲的亮度和照度以及它们之间的关系..一、亮度与照度的概念在讲亮度与照度前;我们先引进几个相关的物理量..1.光通量:光通量是在单位时间内通过的辐射能量;用符号Ω表示..在光度学中它是按强弱来度量的一种辐射能;以“流明”为单位..2.立体角:立体角是球面上任一面积相对球心所张的角度;用符号Ω表示..S:球面上任一球面积R:球的半径单位:立弧立体弧度3.发光强度:发光强度是光源发出的光能量在观察方向上的强弱程度;用单位立体角范围内发出的光通量来度量;用符号I表示..发光强度的单位称为“烛光”..下面我们就介绍一下什么叫亮度;什么叫照度以及它们之间的关系如图1—18..亮度是发光物体表面或被照射物体的反光表面;在人眼观察方向所看到的亮暗程度..用符号B表示..在这里S表示发光表面的面积;α代表观察方向与发光表面垂线的夹角..面积上接收到的光通量来度量..用符号E表示..S:表示被照明面积的大小照度的单位称为“勒克斯”流明/米2 LX..二、常见物体照度和亮度表三、常见的光源亮度表。

几何光学基本定律

几何光学基本定律

几何光学基本定律一、引言几何光学是研究光线在透明介质中传播的规律和现象的一门学科,它是光学的基础。

几何光学基本定律是几何光学理论的核心,也是解决实际问题的关键。

二、光线传播的基本原理1. 光线传播方式在均匀透明介质中,光线沿直线传播,且在相同介质中传播方向不变。

2. 入射角和反射角当光线从一个介质射入另一个介质时,入射角和反射角分别定义为入射光线和法线之间的夹角以及反射光线和法线之间的夹角。

根据斯涅尔定律可知,入射角等于反射角。

3. 折射率折射率是一个介质对光的折射能力大小的量度。

通常用n表示。

当两个介质之间的折射率不同时,会发生折射现象。

根据斯涅尔定律可知,两个介质之间入射角与折射角之比等于两个介质之间折射率之比。

三、几何光学基本定律1. 费马原理费马原理是几何光学的核心原理之一。

它是指光线在传播过程中,总是沿着使光程达到极小值的路径传播。

这个路径称为光线的传播路径或者光程最小路径。

2. 斯涅尔定律斯涅尔定律是描述折射现象的基本规律。

它表明,当一束光从一个介质射入另一个介质时,入射角、折射角和两个介质之间的折射率之间有如下关系:n1sinθ1=n2sinθ2。

3. 全反射定律当一束光从一个折射率较大的介质入射到折射率较小的介质中,如果入射角大于一个特定角度(临界角),则发生全反射现象。

全反射定律规定了临界角与两个介质之间的折射率之比有关。

四、应用举例几何光学基本定律在实际应用中具有广泛的应用价值。

以下是一些常见应用:1. 透镜成像透镜成像是利用凸透镜或凹透镜对物体进行成像的过程。

根据几何光学基本定律,通过透镜成像时,物距、像距和焦距之间有如下关系:1/f=1/v+1/u。

2. 全息术全息术是一种记录和再现物体三维信息的技术。

它利用光的干涉原理和衍射原理进行图像记录和重建。

全息术的基本原理就是费马原理。

3. 光纤通信光纤通信是一种利用光纤传输信息的通信方式。

在光纤中,由于折射率不同而导致光线发生反射、折射等现象,从而实现信息传输。

几何光学的基本原理和成像的概念

几何光学的基本原理和成像的概念

反射成像具有虚实互换、物像等大、 物像等距等特点。
光线传播
光线在反射镜上遵循反射定律,即入 射角等于反射角。
折反射镜成像系统
折反射镜构成
由透镜和反射镜组合而成,兼具 透射和反射成像特性。
光线传播
光线在折反射镜系统中同时受到折 射和反射作用。
优缺点
折反射镜成像系统具有结构紧凑、 成像质量高等优点,但也存在装调 复杂、成本较高等缺点。
数码成像系统
成像原理
数码成像系统通过光电转换器件 (如CCD或CMOS)将光信号转 换为电信号,再经过模数转换和
处理后形成数字图像。
像素与分辨率
像素是数码成像系统的基本单元, 分辨率则决定了图像的清晰度和
细节表现能力。
色彩表现
数码成像系统通过色彩滤波阵列 (CFA)和插值算法等技术实现
彩色成像。
05
感光元件
相机内的感光元件(如CCD或CMOS)接收透过 镜头的光线,并将其转化为数字信号。
图像处理器
图像处理器对数字信号进行处理,生成可视化的 图像。
显微镜成像原理
物镜
显微镜的物镜负责将物体放大,形成一个倒立、放大的实像。
目镜
目镜进一步放大物镜所成的像,提供一个正立、放大的虚像供观 察者观察。
照明系统
相干光波的条件
两束光波要产生干涉现象,必须满足相干条件,即频率相同、振动方向相同、相位差恒定。
干涉条纹的特点
干涉条纹是等间距的明暗相间的条纹,其间距与光波长和干涉装置有关。
光的衍射原理
衍射现象的分类
根据衍射屏的尺寸与光波长的关系,衍 射现象可分为菲涅尔衍射和夫琅禾费衍 射。
VS
衍射条纹的特点
衍射条纹是不等间距的明暗相间的条纹, 其间距与光波长、衍射角和衍射屏尺寸有 关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物空间 光 学 系 统
像空间
光 学 系 统 实物成虚实象
实物成实象
光 学 系 统 虚物成实象
二、球面透镜
(一)厚透镜和薄透镜 1、厚透镜:一切真实的透镜都有一定的中心 厚度,因此都是厚透镜。 2、薄透镜:透镜厚度为零的透镜。 3、薄透镜组:两个或两个以上的薄透镜组合 而成的光学系统。
平行光线通过凸透镜会聚于一点(焦点); 从焦点发出的光线通过凸透镜而平行。
(2)二次反射棱镜 相当于双面镜。其出射光线与入射光线的 夹角取决于两反射面的夹角,像与物一致, 不存在镜像。
(3)三次反射棱镜 常用为施密特棱镜 出射光线与入射光线夹角为45度,奇次反 射成镜像。 最大特点:因为光线在棱镜中的光路很长, 可以折叠光路,使仪器结构更紧凑。
2、屋脊棱镜


正透镜:具有正的光焦度,对光束有会聚作用,又叫会聚 透镜或凸透镜。 应用:望远镜、准直仪、光学收发器、放大器、辐射计等 负透镜:具有负的光焦度,对光束有发散作用,又叫发散 透镜或凹透镜。 应用:激光光束扩展器\光学特征读取器\观察器和发射 系统等。




凸透镜有:平凸、双凸、月凸。 凹透镜有:平凹、双凹、月凹。
光的本质

光的波粒二象性 光是一种电磁辐射,由于光的折射、 反射、衍射等现象,说明光具有波动性; 同时光还具有热辐射、光电效应等作用, 又说明光具有粒子性,因此可以把光的这 种性质叫作光的波粒二象性。 光学分:波动光学和几何光学。

波动光学的起源

以波动理论研究光的传播及光与物质相互作用的 光学分支。17世纪,R.胡克和C.惠更斯创立了光 的波动说。惠更斯曾利用波前概念正确解释了光 的反射定律、折射定律和晶体中的双折射现象。 这一时期,人们还发现了一些与光的波动性有关 的光学现象,例如F.M.格里马尔迪首先发现光遇 障碍物时将偏离直线传播,他把此现象起名为 “衍射”。胡克和R.玻意耳分别观察到现称之为 牛顿环的干涉现象。这些发现成为波动光学发展 史的起点。
§1-1 几何光学的基本原理


几何光学——撇开光的波动本性,以几何 定律和某些实 定律为基础的光学称为几何 光学。 本质:几何光学是光学学科中以光线为基 础,研究光的传播和成像规律的一个重要 的实用性分支学科。在几何光学中,把组 成物体的物点看作是几何点,把它所发出 的光束看作是无数几何光线的集合,光线 的方向代表光能的传播方向。
3
γ’
E
C
i’
B
1 B
D
五、全反射
(一)全反射现象
光由光密介质射入光疏介 质,当入射角增大到某一角度 时,折射光线完全消失,只剩 反射光线,光被全部反回。 空气
γ
i
玻璃
(二)发生全反射的条件
1、光密 光疏 2、条件:i>C C为临界角
1 c arcsin n
例:水深度为60cm处有一 个青蛙,在水面上方看到的 青蛙上升了多少cm?
n1
ic
n1 n2
临界角。
(三)应用 1、判断射入三角棱镜 的光路走向(n=2)
全反射棱镜
2、分析:水下 人的视野范围
θ
3 arcsin 4
1-2 光学元件
光学系统通常由若干个光学元件构成。
1-1-1 透镜元件
透镜:由透明物质(如玻璃、石英、岩 盐、水晶、树脂等)制成的一种光学元件。 一、正透镜和负透镜

1、简单棱镜 (1)一次反射棱镜


相当于单块平面镜,对物成镜像。 在主截面内的坐标改变方向,垂直于主截面的坐 标不改变方向,而O’Z’始终沿出射光轴方向。 常用有直角棱镜、等腰棱镜和道威棱镜。
道威棱镜是一种像旋转器。光线经过此棱镜后,此像被颠倒180°。 另外,使此棱镜以其光轴为轴旋转时,像的旋转角为棱镜旋转角的两倍。 一般而言,道威棱镜是利用临界角原理实现内部全反射,所以场角 有限。同时,保持反射面清洁和使用平行光很重要。
折射现象中光路可逆
A
(二)折射率
折射率是反映媒质光学性质的物理量
sin i n sin
——折射率
C n V
光疏媒质 光疏媒质 光密媒质 光密媒质
i>γ
i<γ
A
(三)应用
1、光从玻璃砖的一面射 入将从另一面射出
i
O
γ
AO∥EB 光线发生侧移
2、如图1、2、3为三条光 2 线请根据光路走向判断 •1、2、3哪条为入射光线、 折射光线、反射光线? • AB、CD哪个是界面?哪 A 条是法线?
1-2-2 反射元件


反射元件是利用反射面反射光线的光学元件 反射系统至少有一个反射面,反射面是指按 照反射定律使光线有规则反射的光线表面。 作用:折转光路、缩小仪器体积、改变像的 正倒关系等。
一、反射镜 1、平面反射镜(平面镜) 是光学系统中唯一能成完善象的最简单光 学零件。 如:穿衣镜、化妆镜。
理想光学系统:也叫近轴光学系统, 就是能对任意宽空间内的点以任意宽的光 束成完善象的光学系统。
一、物与象的概念
• 物:入射光线会聚点的集合或入射光线延长线会聚点的集合
• 像:出射光线会聚点的集合或出射光线延长线会聚点的集合。
• 实物或实像:由实际光线会聚成的点构成的物或像。 • 虚物或虚像:由实际光线延长线会聚成的点构成的物或像。 实物→发散 虚物→会聚 实象→会聚的心 象:出射光束的心 虚象→发散的心
讨论:一束太阳光斜射到平面镜的 表面,平面镜的另一侧可看到耀眼 的光亮,为什么? 讨论:一束太阳光斜射到粗糙的木 板表面,则无论从哪个方向观察, 都看不到耀眼的亮光,为什么?
问???
1、电影银幕为什么要用粗布做? 2、黑板的问题~ 3、雨后天睛的夜晚,为了不踩到地上的积水,有经 验的人往往这样做: (1)迎着月光走,地上发亮处是积水,所以 千万别往上踩; (2)背着月光走,地上暗处是积水,所以千 万别往上踩。 你能解释这样做的道理吗?
二、反射棱镜
定义:将一个或多个反射工作平面制作在同一块 玻璃上的光学零件。 用途:转折光轴、转像、倒像、扫描等 名次解释 棱镜的光轴:棱镜光轴为折线。 光轴的折射次数 = 棱镜反射面数 棱:工作面间的交线。 主截面:垂直于棱线的平面。 光轴位于主截面内——光轴截面 分类:简单棱镜、屋脊棱镜、立方角锥棱镜和复 合棱镜。
C
i改变,r也随之改变 i增大,r增大 i减小,r减小
O
空气 玻璃
ß
N’ B 折射光线
2、折射定律
•折射光线在入射光线和法线所在的平面上,折射光 线和入射光线分居在法线的两侧。 •入射角的正弦跟折射角的正弦之比为一常数。
sin i 常数 sin r
3、折射现象解释
视深比实深浅
空气 水
A’
4、光路可逆

带有屋脊面得棱镜 屋脊面:由两个互成直角的反射面组成,作用是 不改变光轴方向和主截面内成像方向的条件下, 增加一次反射,使系统总的反射次数由奇数变为 偶数,使物象相似。
三、光锥

是一种圆锥体状的聚光镜,可制成空心和实心两 种类型。 是一种非成像的聚光元件,与场景类似,可增加 光照度或减小探测器面积。
光污染 光污染比较常见的是眩光。如汽车夜 间行驶时产生的车灯光,电焊产生的 强光会使人的视觉瞬间下降。大城市 高层建筑的玻璃幕墙会产生很强烈的 镜面反射,使局部地区温度升高,同 时强烈的反射光使人双目难睁,影响 车辆行驶和行人安全。
四、光的折射
(一)光的折射
入射光线 法线 光从一种媒质射入另一 A N 种媒质时,传播方向发 生改变的现象。 i 1、光的折射 反射光线
P是烛焰顶上的 一点,P´点不 是实际的发光 点,也不是光 的会聚点,因 而把P´点叫做 发光点P的虚像
P
P′
实像:由实际光线会聚而成的,可以在光屏 上显现出来。 虚像:由实际光线的反向延长线相交而成 的,不可以在光屏上显现出来。

平面镜成像规律 (1)平面镜所成的像是虚像; (2)像和物体到平面镜的距离相等; (3)像和物体的大小相等; (4)它们的连线与镜面垂直。
2、反射种类
M
M
镜面反射
漫反射
都遵循反射定律
3、光路可逆
在反射现象中光路是可逆的
镜面反射: 1、反射面是光滑的。 2、入射光线是平行光线,反射光线也是平行光线。 也就是说入射光线朝一个方向入射,反射光线也 向一个方向传播 漫反射: 1、反射面是粗糙不平的。 2、入射光线是平行光线,反射光线却向各个不同 的方向传播。也就是说入射光线朝一个方向入射, 反射光线向不同的镜叫场镜。 它是在不改变光学系统光学特性的前提下, 改变成像光束位置。 应用:常用于红外光学系统中。
五 浸没透镜
是粘接在探测器表面的高折射率冠状透镜。 一般制成半球状或超半球的透镜,使像面浸没在 折射率较高的介质中。 它是二次聚光元件,主要作用是显著减小探 测器的光敏面积,提高信噪比。
二 柱面透镜
一个柱面和一个平面或一个柱面和一个球面 组成的透镜都叫柱面透镜。 应用:只要求在一个尺寸上进行放大的场合,比如 将一个点图像转换成一个线图像,或者只改变一个 图像的高度而不改变它的宽度等。 如:线照明,条纹号码扫描,激光投影等
三 阶梯透镜(菲涅耳透镜)
应用:电视放大镜,书写投影仪的聚 光镜,照相机取景器的场景等
四、分束元件
是将入射光通量分割成反射 和透射两部分并保证两者有 适当比例关系的元件。 应用:分色棱镜用于彩色 电视摄像机中。 分色棱镜根据各种彩色光 的波长不同,把光分解为 红、绿、蓝光。分色的作 用是通过在棱镜的分光面 上蒸镀的金属薄膜来完成 的。这层薄膜叫做分色膜。

1-3 典型光学元件的物象关系
想 一 想 1.“床前明月光,疑是地上霜。”明亮的 月球是光源吗? 为什么? 2.萤火虫、正在放映电影的银幕都是光源 吗? 为什么?
相关文档
最新文档