Clinico-laboratory profile of haemolytic uremic syndrome

合集下载

常春藤皂苷元通过调控巨噬细胞Mincle介导的炎症减轻银屑病小鼠皮肤损伤的作用机制

常春藤皂苷元通过调控巨噬细胞Mincle介导的炎症减轻银屑病小鼠皮肤损伤的作用机制

◇基础研究◇摘要目的:观察常春藤皂苷元(hederagenin ,HDG )改善银屑病小鼠皮肤损伤和炎症的作用与机制。

方法:通过在C57小鼠背部祛毛并连续涂抹咪喹莫特7d 建立小鼠银屑病动物模型,造模后1h 给予HDG 灌胃治疗。

总计设置正常组、模型组、模型+HDG 低剂量(25mg ·kg -1·d -1)、模型+HDG 高剂量(50mg ·kg -1·d -1)和模型+卤米松阳性对照组(每组8只小鼠)。

给药7d 后,对患处皮肤进行病理检测,以及炎症指标进行ELISA 、实时定量PCR 检测,Mincle 及其下游信号进行免疫组织化学、免疫荧光和Western blot 检测。

结果:与模型组比较,HDG 干预组皮肤病理损伤以及炎性细胞浸润均得到不同程度改善;实时定量PCR 和皮肤组织悬液ELISA 结果证实HDG 干预后小鼠皮肤中炎症因子IL-1β、IL-6和TNF-α的mRNA 及蛋白水平均比模型组降低(P <0.01),说明HDG 具有显著抗炎症作用;免疫组织化学和Western blot 结果表明,与正常组相比,模型组小鼠皮肤中Min-cle 的蛋白表达量显著增加(P <0.01),给予HDG 干预后明显下调(P <0.01);免疫荧光证实模型组皮肤中Mincle 表达与巨噬细胞标志物F4/80共定位;Western blot 实验发现,HDG 在治疗组中不仅下调了Mincle 的蛋白表达,同时也下调了Mincle 下游信号Syk 和NF-κB 的蛋白磷酸化水平。

结论:HDG 可显著改善银屑病小鼠皮肤损伤和巨噬细胞相关炎症,其潜在分子机制可能与下调Min-cle/Syk/NF-κB 信号途径相关。

关键词常春藤皂苷元;Mincle ;皮肤损伤;炎症;银屑病中图分类号:R965.2文献标志码:A文章编号:1009-2501(2023)12-1339-08doi :10.12092/j.issn.1009-2501.2023.12.003银屑病是一种慢性丘疹鳞状皮肤病,其主要特点是遗传性和复发性,还可能并发其他疾病,如心血管疾病、糖尿病和关节炎等[1-4]。

家族性乳糜微粒血症综合征的研究进展

家族性乳糜微粒血症综合征的研究进展

㊃综述㊃家族性乳糜微粒血症综合征的研究进展梁芙萌㊀王方芳㊀唐熠达100191北京大学第三医院心内科㊁血管医学研究所,血管稳态与重构全国重点实验室,国家卫生健康委心血管分子生物学与调节肽重点实验室,心血管受体研究北京市重点实验室通信作者:王方芳,电子信箱:doctorfancy@DOI:10.3969/j.issn.1007-5410.2024.01.015㊀㊀ʌ摘要ɔ㊀家族性乳糜微粒血症综合征是一种罕见的常染色体隐性遗传疾病,主要由脂蛋白脂肪酶基因突变引起,导致血浆中乳糜微粒浓度和三酰甘油水平显著升高㊂目前国内尚无有关家族性乳糜微粒血症综合征的诊疗指南,因此本文重点回顾并总结其流行病学㊁发病机制及临床诊疗进展㊂ʌ关键词ɔ㊀家族性乳糜微粒血症综合征;㊀多因素乳糜微粒血症综合征;㊀脂蛋白脂肪酶;㊀三酰甘油;㊀胰腺炎基金项目:首都卫生发展科研专项(2022-2Z-40916)Research progress in familial chylomicronemia syndrome㊀Liang Fumeng,Wang Fangfang,Tang YidaDepartment of Cardiology and Institute of Vascular Medicine,Peking University Third Hospital;State KeyLaboratory of Vascular Homeostasis and Remodeling,Peking University;NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides,Peking University;Beijing Key Laboratory of Cardiovascular Receptors Research,Beijing100191,ChinaCorresponding author:Wang Fangfang,Email:doctorfancy@ʌAbstractɔ㊀Familial chylomicronemia syndrome is a rare autosomal recessive disease,mainly causedby mutations in the lipoprotein lipase gene,leading to a significant increase of plasma chylomicrons and triglyceride levels.So far there is no guidelines on the diagnosis and treatment of familial chylomicronemia syndrome in China,this review summarized the epidemiology,pathogenesis,and clinical diagnosis and treatment progress of this disease.ʌKey wordsɔ㊀Familial chylomicronemia syndrome;㊀Multifactorial chylomicronemia syndrome; Lipoprotein lipase;㊀Triglyceride;㊀PancreatitisFund program:Capital Health Development Scientific Research Project(2022-2Z-40916)㊀㊀家族性乳糜微粒血症综合征(familial chylomicronemia syndrome,FCS),也被称为Ⅰ型原发性高脂蛋白血症(T1HLP)(OMIM#238600),或脂蛋白脂肪酶缺乏症(lipoprotein lipase deficiency,LPLD),是一种罕见的常染色体隐性遗传疾病[1-2],最早于1932年由Bürger和Grütz提出㊂1㊀流行病学特点随着人们对FCS的不断深入研究,很多学者认为其实际发病率高于1/100万㊂2018年Khavandi等[3]分析了2008 2017年纽约州385000份电子病历记录,发现FCS的发病率约为1/10万㊂Pallazola等[4]回顾性分析了2013 2017年在约翰霍普金斯医院就诊的1627763例患者,统计FCS患病率高达13/100万㊂Shah等[5]回顾性分析了2006 2016年在克利夫兰诊所脂质中心就诊的70201例患者,发现FCS患病率至少为1/5000,比报告的发病率高出200倍㊂目前我国尚无FCS发病率相关数据报道㊂FCS多由脂蛋白脂肪酶(lipoprotein lipase,LPL)基因的双等位基因(纯合)变异引起[6],从而使LPL的活性下降或功能缺失,导致血浆中乳糜微粒(chylomicron,CM)浓度升高和高三酰甘油血症(hypertriglyceridemia,HTG)㊂到目前为止,已知参与CM脂肪分解且与FCS相关的基因有5种,即LPL㊁载脂蛋白C2(apolipoprotein C-Ⅱ,APOC2)㊁载脂蛋白A5 (apolipoprotein A-Ⅴ,APOA5)㊁脂肪酶成熟因子1(lipase maturation factor1,LMF1)和甘油磷酸肌醇锚定高密度脂蛋白结合蛋白1(glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein1,GPIHBP1),其中LPL基因突变率在欧美FCS人群中高达80%以上[7-8]㊂大多数导致家族性LPL功能缺陷的基因突变位于LPL基因的外显子4㊁5和6上[9]㊂2㊀发病机制CM是在摄入高脂肪食物后,由肠壁细胞合成的富含三酰甘油(triglyceride,TG)的巨大脂蛋白,是循环血液中外源性TG及胆固醇的主要运输形式㊂在外周血中成熟的CM借助APOC2激活LPL,TG在LPL的作用下水解为甘油一酯和脂肪酸,然后被肌肉㊁脂肪组织㊁心肌组织等摄取或利用㊂CM中的载脂蛋白和磷脂转移到高密度脂蛋白中,而剩下的CM残粒,分别被肝脏低密度脂蛋白(low-density lipoprotein, LDL)受体和清道夫受体识别后摄取[10]㊂健康人血浆中的CM在空腹12h后会被完全清除,因此健康人血浆中几乎无CM㊂但在FCS患者中,由于缺乏功能性的LPL(如LPL基因突变),或其他相关基因编码的蛋白质与LPL相互作用等,使血浆中CM的清除能力受损,导致TG堆积在血浆中而使血浆呈乳糜状[8,11]㊂2018年Hegele等[12]对52例FCS患者的临床研究发现,41例(79%)患者携带LPL双等位基因突变;在11例(21%)非LPL基因突变FCS患者中,1例携带APOC2基因突变,5例发生GPIHBP1基因突变,1例包含LMF1基因突变,2例发生APOA5基因突变,2例携带双杂合子突变㊂2020年葡萄牙一所医学研究中心对26例FCS患者进行研究,其中7例患者进行的基因检测结果显示,3例为LPL纯合子突变,3例为LPL复合杂合子突变,1例为APOC2纯合子突变[13]㊂2018年法裔加拿大人一项队列研究显示,在25例FCS患者中,8例携带LPL207(P234L)纯合突变,7例包含LPL188(G215E)纯合突变,6例患者为LPL杂合子携带者(LPL207+LPL188),1例发生GPIHBP1移码纯合突变[14]㊂总之,对欧美人群FCS患者的基因突变检测分析表明,LPL 基因相关的纯合或双重杂合突变是最常见的患病机制㊂2018年中国医学科学院阜外医院报道了其血脂门诊既往7年来就诊的45例极高TG血症(ȡ11.3mmol/L)患者的基因检测结果,包括11.1%的LPL变异和17.8%的LPL 调控基因(APOA5㊁APOC2㊁GPIHBP1和LMF1)变异[15]㊂另外,最近研究报道,载脂蛋白C3(apolipoprotein C-Ⅲ, APOC3)和血管生成素样3(angiopoietin-like proteins3, ANGPTL3)在脂质代谢中也发挥重要作用,可作为FCS患者的药物治疗靶点[16-21]㊂FCS相关基因及各基因作用机制见表1㊂3㊀临床表现和诊断FCS是一种罕见的常染色体隐性遗传病,通常由多种单基因突变引起,区别于多因素乳糜微粒血症综合征(multifactorial chylomicronemia syndrome,MCS),后者是一种多基因疾病,通常与危险因素或合并疾病有关,如饮酒㊁富含碳水化合物(果糖)的饮食㊁控制不佳的糖尿病㊁甲状腺功能减退㊁胆道疾病㊁肾脏疾病㊁妊娠和某些药物等[22-23]㊂所以相比之下,MCS比FCS要多见一些㊂FCS多始于儿童期㊁青少年期或成年早期,其特征是空腹血浆TG水平非常高(未治疗情况下ȡ11.3mmol/L),这个TG阈值水平(11.3mmol/L)既是血浆中CM血症存在的水平,也是急性胰腺炎(acute pancreatitis,AP)发作的高风险阈值水平㊂FCS主要临床特征包括急性发作性腹痛㊁乏力㊁皮肤黄色瘤㊁肝脾肿大㊁视网膜脂质症㊁反复发作AP及神经症状,如易怒㊁记忆丧失和抑郁,严重者影响患者的生活质量[10-11,24]㊂国外研究报道,高三酰甘油血症性急性胰腺炎(hypertriglyceridemia-induced acute pancreatitis,HTG-AP)占所有胰腺炎发作的10%,是继饮酒和胆石症引起AP后最常见的原因,而TG水平高于11.3mmol/L也被认为是导致胰腺炎发作的必要诱因[25-27]㊂早期识别并诊断FCS患者非常关键,因为这些患者发生严重AP的风险很高,而且更有可能出现严重的不可逆的胰腺坏死和器官衰竭㊂随着CM浓度升高,血液黏度增加及血管内皮受损,导致胰腺内的缺血性损伤和酸中毒,加上游离脂肪酸对于胰腺的直接毒性,进一步增加了AP的发作风险㊂AP除了是一种可能危及生命的紧急疾病外,还可能导致一些临床并发症,如慢性胰腺炎㊁胰腺功能不全㊁2型糖尿病等[28-29]㊂欧洲专家小组研究认为,诊断FCS的标准包括:(1)严重的原发性HTG(多次空腹TG水平>10mmol/L),对传统降低TG药物治疗无效或无反应;(2)发病起始年龄小,有早发(幼儿㊁青少年时期)AP史㊁不明原因腹痛史;(3)排除其他影响因素如妊娠㊁药物㊁酒精中毒㊁胆石症等[30-31]㊂基因检测也是支持诊断的方法之一,当临床表现强烈提示患者可能表1㊀FCS相关基因及作用机制FCS相关基因作用机制LPL促进分解TG,FCS大多数因LPL基因突变引起,缺乏会导致血浆中清除CM能力受损㊁TG分解受阻GPIHBP1在毛细血管内皮细胞上表达的蛋白质之一,可与LPL结合并将其转运至毛细血管腔的作用部位,缺乏会导致LPL与其毛细血管腔上的结合位点的结合缺陷及血管内脂肪分解缺陷,被认为是FCS的第二大常见原因APOA5促进CM和VLDL与毛细血管内皮细胞表面LDL的相互作用,缺乏会导致LPL功能下降APOC2激活骨骼肌组织㊁脂肪组织㊁心肌组织等毛细血管内皮细胞表面LPLLMF1LPL胞内正确折叠和激活所需的胞内蛋白质,缺乏可导致LPL分泌明显减少ANGPTL3调节LPL活性的重要因子,尤其是肝源性脂蛋白代谢的关键调节因子,可以抑制LPL活性,从而减少肌肉和脂肪组织中TG水解APOC3LPL的关键抑制剂,通过促进VLDL的组装和生成,从而抑制LPL的活性㊀㊀注:FCS:家族性乳糜微粒血症综合征;LPL:脂蛋白脂肪酶;TG:三酰甘油;CM:乳糜微粒;GPIHBP1:甘油磷酸肌醇锚定高密度脂蛋白结合蛋白1;APOA5:载脂蛋白A5;VLDL:极低密度脂蛋白;APOC2:载脂蛋白C2;LMF1:脂肪酶成熟因子1;ANGPTL3:血管生成素样3;APOC3:载脂蛋白C3患有FCS时,可以进行基因检测,但其也并不能百分之百确诊,如在没有临床症状的情况下可能携带基因突变,或临床症状可能提示FCS,而致病基因突变在当前检测技术下仍无法确定㊂O Dea等[32]研究报道称,对基因确诊的FCS和MCS患者进行比较,空腹低密度脂蛋白胆固醇(low-density lipoprotein cholesterol,LDL-C)㊁体质指数(body mass index, BMI)和胰腺炎病史对疾病的鉴别准确率高达91.0%,因此提出将低BMI(<26.1kg/m2)和低LDL-C(<1.01mmol/L)两项指标也纳入诊断FCS标准中㊂4 治疗FCS治疗目的包括降低发生胰腺炎的风险㊁减轻因血浆TG水平升高相关的短期临床症状㊂血浆TG水平是评估治疗效果最合适的标志物,2002年美国国家胆固醇教育计划(national cholesterol education program,NCEP)提出降低TG 水平并维持在5.65mmol/L以下,可改善患者的炎症反应程度,促进胰腺组织修复㊁改善预后,并有效预防胰腺炎复发㊂Gallo等[16]提出,FCS患者TG目标值应<11.3mmol/L,或较治疗前降低50%水平,当然首先需要根据临床实际情况来判断㊂极低脂肪(每日不高于20g)饮食是目前治疗FCS的主要方法,但多数人很难长期坚持㊂对于患有FCS的成年人,建议将饮食中的脂肪能量限制在摄入总能量的15%以内,但不建议儿童将其水平降低到20%以下[1-2,10,16,33],需综合考虑年龄增长及身体发育等具体情况来调整能量摄入量,以确保摄入相对较平衡的营养物质如维生素㊁微量元素等㊂相较于长链TG,中链TG因与CM的结合少,适量摄入可能对疾病预后有益[34]㊂虽然CM的水平取决于饮食中的脂肪含量,但仍建议限制酒精摄入量,限制摄入过量的糖,避免服用已知会升高TG水平的药物如大剂量噻嗪类药物㊁β受体阻滞剂和外源性雌激素等[35]㊂但对于FCS患者,长期坚持极低脂肪饮食显著影响其生活质量㊂FCS患者因缺乏分解代谢脂肪的能力,与绝大多数严重高三酰甘油血症(severe hypertriglyceridemia,SHTG)患者不同,对标准降脂药物反应不佳㊂Chaudhry等[36]研究发现,贝特类(纤维酸衍生物类)或Ω-3脂肪酸制剂等药物治疗对MCS患者可能有益,但对FCS患者基本无效㊂曾有研究提出高剂量(4~6g/d)的Ω-3脂肪酸类药物可降低SHTG患者的TG和APOC3水平[37],但目前未提示对FCS患者有效,可能是因为FCS患者中TG水平与脂肪摄入量增加相关, FCS患者应严格控制脂肪摄入量,应避免摄入高剂量的Ω-3脂肪酸㊂血浆置换术多用于TG非常高(如妊娠期间)的患者,以避免AP发生或降低AP并发症的风险㊂Lu等[38]研究认为,在病程早期,将TG控制到5.65mmol/L以下可能会减少胰腺炎带来的持续性器官衰竭的风险㊂萨格勒布大学曾报道1例患FCS的妊娠女性采用血浆置换来预防胰腺炎及母婴潜在并发症的治疗成功案例[39]㊂阿根廷也有一项对2002 2019年4个中心21例儿童FCS患者进行的回顾性综合研究,结果提示限制脂肪饮食及血浆置换治疗有效[40]㊂Alipogene tiparvovec(Glybera)基因替代疗法是使用腺病毒相关病毒(adeno-associated virus,AAV)作为载体将LPL基因传递到LPL缺乏(功能缺失突变)的FCS患者中,从而表达功能正常的LPL基因㊂该药通过多次肌肉注射达到治疗效果,包括降低胰腺炎发生率,但因治疗效果短暂且非常昂贵,已于2017年被公司召回[36,41]㊂微粒体三酰甘油转移蛋白(microsomal triglyceride transfer protein,MTTP)主要存在于肝细胞和肠上皮细胞,其生理功能是将TG转移到肝细胞中的载脂蛋白B100(ApoB-100)和肠上皮细胞中的载脂蛋白B48(ApoB-48),是极低密度脂蛋白和CM合成与分泌不可缺少的脂质转运蛋白㊂MTTP抑制剂洛米他滨(lomitapide)通过抑制富含TG的脂蛋白合成和分泌来降低血浆中的TG浓度㊂Cefalu等[42]研究认为,lomitapide可有效降低FCS患者的TG水平,预防AP 复发,但lomitapide对FCS患者的长期疗效仍需进一步试验研究来评估㊂目前多项研究发现,长期口服lomitapide可能导致肝脏脂肪变性和肝硬化[42-44],因此尚未获得批准用于治疗FCS患者㊂Pradigastat(LCQ908)是一种二酰甘油-O-酰基转移酶同源物1(diacylglycerol acyltransferase1,DGAT1)抑制剂㊂Gaudet等[45]研究显示,20mg/d的pradigastat即可降低FCS 患者的空腹TG水平,40mg/d的pradigastat在12周治疗中有更高的应答率㊂此外,有研究报道pradigastat可以有效降低FCS患者的空腹TG水平及餐后TG[46-47],但腹泻的发生率很高㊂近年来已研发出一种第二代反义寡核苷酸药物volanesorsen,通过反义结合APOC3信使核糖核酸(mRNA)㊁抑制APOC3合成来调节TG水平[48]㊂Volanesorsen是全球第一个正式获批用于治疗FCS的药物,可有效降低TG水平(94%),并观察到胰腺炎发作明显减少[49],还可有效降低肝脏脂肪分数[50]㊂但多项报道显示其严重血小板减少的不良反应[48-49,51-53]㊂尽管存在潜在的严重不良反应,但考虑到使用volanesorsen的获益可能高于风险,在欧洲和巴西被批准用于治疗AP高风险的FCS患者㊂此外,Witztum等[54]研究显示,延长使用volanesorsen可持续降低FCS患者空腹TG 水平(48%~55%)㊂目前在研的olezarsen(AKCEA-APOCⅢ-LRx),已显示可显著降低TG水平(23%~60%),无血小板下降及肝肾功能变化等不良反应[55],2022年开展了用于FCS 患者的全球Ⅲ期BALANCE研究,可能于近期公布研究结果[56]㊂Vupanorsen(AKCEA-ANGPTL3-LRx),主要用于降低心血管风险和治疗HTG,在24周时观察到,该药所有剂量下均可显著降低非高密度脂蛋白胆固醇水平(22.0%~ 27.7%)和TG水平(41.3%~56.8%),但在安全性方面观察到,较高剂量的vupanorsen可引起注射部位反应及丙氨酸氨基转移酶㊁天门冬氨酸氨基转移酶升高,肝脏脂肪含量增加等[57]㊂小干扰RNA类药物采用新的配体耦连技术,使用N-乙酰半乳糖胺三聚体(GalNAc)修饰RNA药物后靶向结合肝细胞特异表达的去唾液酸糖蛋白受体(ASGPR),该类药物治疗效果持久,并且可以最大限度减少全身暴露,药物耐受性良好,不良反应少,为FCS患者提供了一个额外的治疗选择㊂目前临床在研的用于FCS患者的小干扰RNA类药物包括ARO-APOC3㊁LY-3561774和ALN-ANG,处于晚期临床研发阶段,尚未获批上市㊂ARO-APOC3已发表的临床数据显示,其可显著降低FCS和MCS患者的TG水平(91%和90%),显著升高高密度脂蛋白胆固醇;且患者可能只需要每3个月或6个月注射一针,耐受性良好,最常见不良事件主要为注射部位反应[58]㊂此外,重组人单克隆抗体evinacumab是一种结合并抑制ANGPTL3蛋白的全人源单克隆抗体,可以阻断ANGPTL3对多种血脂成分的调控功能,是一种新的降脂治疗方法,对LDL-C有明显疗效(40%~50%),亦可降低TG,其主要不良事件包括鼻咽炎㊁鼻漏㊁头晕㊁头痛㊁恶心㊁上腹痛㊁腹泻等,在治疗FCS患者中也可能有应用前景[59-60]㊂5 小结综上所述,FCS是一种较为罕见的疾病,多由LPL及其调控基因突变引起,主要表现为TG水平显著升高及AP发作,治疗目的包括降低发生胰腺炎的风险及减轻因血浆TG 水平升高相关的短期临床症状,治疗方式包括极低脂肪饮食㊁血浆置换术及抑制TG合成药物等,目前研发中的新型小核酸药物可能会成为该疾病的特效治疗手段㊂此外,FCS 的中国人群流行病学调研尚空白,亟待开展中国人群队列研究,以明确该疾病的中国人群诊断标准,并规范治疗及改善预后㊂利益冲突:无参㊀考㊀文㊀献[1]Falko JM.Familial chylomicronemia syndrome:a clinical guidefor endocrinologists[J].Endocr Pract,2018,24(8):756-763.DOI:10.4158/EP-2018-0157.[2]Paquette M,Bernard S,Hegele RA,et al.Chylomicronemia:Differences between familial chylomicronemia syndrome andmultifactorial chylomicronemia[J].Atherosclerosis,2019,283:137-142.DOI:10.1016/j.atherosclerosis.2018.12.019. [3]Khavandi M,Victory J,Myerson M.Prevalence of familialchylomicronemia syndrome(FCS):Are we underestimating?[J].Clin Lipidol,2018,12(2):529-530.DOI:10.1016/j.jacl.2018.03.021.[4]Pallazola VA,Sajja A,Derenbecker R,et al.Prevalence offamilial chylomicronemia syndrome in a quaternary care center[J].Eur J Prev Cardiol,2020,27(19):2276-2278.DOI:10.1177/2047487319888054.[5]Shah NP,Cho L,Ahmed HM.Familial chylomicronemiasyndrome:Clinical characteristics and long-term cardiovascularoutcomes[J].J Am Coll Cardiol,2018,72(10):1177-1179.DOI:10.1016/j.jacc.2018.06.042.[6]Santos RD,Lorenzatti A,Corral P,et al.Challenges in familialchylomicronemia syndrome diagnosis and management acrossLatin American countries:an expert panel discussion[J].J ClinLipidol,2021,15(5):620-624.DOI:10.1016/j.jacl.2021.10.004.[7]Rabacchi C,Pisciotta L,CefalùAB,et al.Spectrum ofmutations of the LPL gene identified in Italy in patients withsevere hypertriglyceridemia[J].Atherosclerosis,2015,241(1):79-86.DOI:10.1016/j.atherosclerosis.2015.04.815.[8]Hegele RA,Borén J,Ginsberg HN,et al.Rare dyslipidaemias,from phenotype to genotype to management:a EuropeanAtherosclerosis Society task force consensus statement[J].Lancet Diabetes Endocrinol,2020,8(1):50-67.DOI:10.1016/S2213-8587(19)30264-5.[9]Truninger K,Schmid PA,Hoffmann MM,et al.RecurrentAcute and Chronic Pancreatitis in Two Brothers With FamilialChylomicronemia Syndrome[J].Pancreas,2006,32(2):215-219.DOI:10.1097/01.mpa.0000202942.93578.dd. [10]Goldberg RB,Chait A.A Comprehensive Update on theChylomicronemia Syndrome[J].Front Endocrinol(Lausanne),2020,11:593931.DOI:10.3389/fendo.2020.593931. [11]陈超,黄轲,梁黎.家族性高乳糜微粒血症1例[J].中国现代药物应用,2011,5(4):198-199.DOI:10.3969/j.issn.1673-9523.2011.04.178.㊀Chen C,Huang K,Liang L.A case of familial chylomicronemiasyndrome[J].Chin J Mod Drug Appl,2011,5(4):198-199.DOI:10.3969/j.issn.1673-9523.2011.04.178. [12]Hegele RA,Berberich AJ,Ban MR,et al.Clinical andbiochemical features of different molecular etiologies of familialchylomicronemia[J].Clin Lipidol,2018,12(4):920-927(e4).DOI:10.1016/j.jacl.2018.03.093.[13]Alves AC,Abrantes LB,Sequeira S,et al.FamilialChylomicronemia Syndrome:Clinical and molecularcharacterization of individuals with clinical diagnosis in Portugal[J].Atherosclerosis,2020,315:e205-e206.DOI:10.1016/j.atherosclerosis.2020.10.643.[14]Alexis B,Martine P,Robert D.Familial ChylomicronemiaSyndrome:Description of a french canadian cohort[J].Atherosclerosis,2018,32:15.DOI:10.1016/j.atherosclerosissup.2018.04.044.[15]Jin JL,Sun D,Cao YX,et al.Intensive genetic analysis forChinese patients with very high triglyceride levels:Relations ofmutations to triglyceride levels and acute pancreatitis[J].EBioMedicine,2018,38:171-177.DOI:10.1016/j.ebiom.2018.11.001.[16]Gallo A,Béliard S,Erasmo LD,et al.Familial chylomicronemiaSyndrome(FCS):Recent Data on Diagnosis and Treatment[J].Curr Atheroscler Rep,2020,22(11):63.DOI:10.1007/s11883-020-00885-1.[17]Chen PY,Gao WY,Liou JW,et al.Angiopoietin-Like Protein3(ANGPTL3)Modulates Lipoprotein Metabolism andDyslipidemia[J].Int J Mol Sci,2021,22(14):7310.DOI:10.3390/ijms22147310.[18]Wen Y,Chen YQ,Konrad RJ.The Regulation of TriacylglycerolMetabolism and Lipoprotein Lipase Activity[J].Adv Biol(Weinh),2022,6(10):e2200093.DOI:10.1002/adbi.202200093.[19]Jin N,Matter WF,Michael LF,et al.The Angiopoietin-LikeProtein3and8Complex Interacts with Lipoprotein Lipase andInduces LPL Cleavage[J].ACS Chem Biol,2021,16(3):457-462.DOI:10.1021/acschembio.0c00954. [20]DiDonna NM,Chen YQ,Konrad RJ.Angiopoietin-like proteinsand postprandial partitioning of fatty acids[J].Curr OpinLipidology,2022,33(1):39-46.DOI:10.1097/MOL.0000000000000798.[21]Li J,Li L,Guo DM,et al.Triglyceride metabolism andangiopoietin-like proteins in lipoprotein lipase regulation[J].Clin Chim Acta,2020,503:19-34.DOI:10.1016/a.2019.12.029.[22]Warden BA,Minnier J,Duell PB,et al.Chylomicronemiasyndrome:Familial or not?[J].J Clin Lipidol,2020,14(2):201-206.DOI:10.1016/j.jacl.2020.01.014. [23]Tremblay K,Gaudet D,Khoury E,et al.Dissection of Clinicaland Gene Expression Signatures of Familial Versus MultifactorialChylomicronemia[J].J Endocr Soc,2020,4(6):bavv056.DOI:10.1210/jendso/bvaa056.[24]Baass A,Paquette M,Bernard S,et al.Familialchylomicronemia syndrome:an under-recognized cause of severehypertriglyceridaemia[J].Intern Med,2020,287(4):340-348.DOI:10.1111/joim.13016.[25]De Pretis N,De Marchi G,Frulloni L.Hypertriglyceridemicpancreatitis[J].Minerva Gastroenterol Dietol,2020,66(3):238-245.DOI:10.23736/S1121-421X.19.02641-2.[26]Valdivielso P,Ramírez-Bueno A,Ewald N.Current knowledgeof Hypertriglyceridemic pancreatitis[J].Eur J Intern Med,2014,25(8):689-694.DOI:10.1016/j.ejim.2014.08.008.[27]Webb CB,Leveno M,Quinn AM,et al.Effect of TPE vsmedical management on patient outcomes in the setting ofhypertriglyceridemia-induced acute pancreatitis with severelyelevated triglycerides[J].Clin Apher,2021,36(5):719-726.DOI:10.1002/jca.21922.[28]Deng LH,Xue P,Xia Q,et al.Effect of admissionhypertriglyceridemia on the episodes of severe acute pancreatitis[J].World J Gastroenterol,2008,14(28):4558-4561.DOI:10.3748/wjg.14.4558.[29]Lu ZH,Li M,Guo F,et al.Timely reduction of triglyceridelevels is associated with decreased persistent organ failure inhypertriglyceridemic pancreatitis[J].Pancreas,2020,49(1):105-110.DOI:10.1097/MPA.0000000000001463. [30]Moulin P,Dufour R,Averna M,et al.Identification anddiagnosis of patients with familial chylomicronaemia syndrome(FCS):expert panel recommendations and proposal of an FCSscore [J].Atherosclerosis,2018,275:265-272.DOI:10.1016/j.atherosclerosis.2018.06.814.[31]P Moulin P,Dufour R,Averna M,et al.Characterisation ofpatients with familial chylomicronaemia syndrome(FCS)andmultifactorial chylomicronaemia syndrome(MCS):Establishmentof an FCS clinical diagnostic score[J].Data Brief,2018,21:1334-1336.DOI:10.1016/j.dib.2018.10.125. [32]O Dea LSL,MacDougall J,Alexander VJ,et al.Differentiatingfamilial chylomicronemia syndrome from multifactorial severehypertriglyceridemia by clinical profiles[J].J Endocr Soc,2019,3(12):2397-2410.DOI:10.1210/js.2019-00214. [33]Paragh G,Némethá,Harangi M,et al.Causes,clinicalfindings and therapeutic options in chylomicronemia syndrome,aspecial form of hypertriglyceridemia[J].Lipids Health Dis,2022,21(1):21.DOI:10.1186/s12944-022-01631-z. [34]Williams L,Rhodes KS,Karmally W,et al.Familialchylomicronemia syndrome:Bringing to life dietaryrecommendations throughout the life span[J].J Clin Lipidol,2018,12(4):908-919.DOI:10.1016/j.jacl.2018.04.010.[35]Davidson M,Stevenson M,Hsieh A,et al.The burden offamilial chylomicronemia syndrome:Results from the global IN-FOCUS study[J].J Clin Lipidol,2018,12(4):898-907.e2.DOI:10.1016/j.jacl.2018.04.009.[36]Chaudhry R,Viljoen A,Wierzbicki AS.Pharmacologicaltreatment options for severe hypertriglyceridemia and familialchylomicronemia syndrome[J].Expert Rev Clin Pharmacol,2018,11(6):589-598.DOI:10.1080/17512433.2018.1480368.[37]Roth EM.ω-3carboxylic acids for hypertriglyceridemia[J].Expert Opin Pharmacother,2015,16(1):123-133.DOI:10.1517/14656566.2015.991307.[38]Lu ZH,Li M,Guo F,et al.Timely Reduction of TriglycerideLevels Is Associated With Decreased Persistent Organ Failure inHypertriglyceridemic Pancreatitis[J].Pancreas,2020,49(1):105-110.DOI:10.1097/MPA.0000000000001463. [39]Leskovar D,Šabic'M,Perica D,et al.Pregnancy in FamilialChylomicronemia Syndrome:Plasmapheresis as TherapeuticApproach[J].Endocr Soc,2021,5(suppl1):A311.DOI:10.1210/jendso/bvab048.635.[40]Araujo MB,Pacheco G,Etcheverri N,et al.Familalchylomicronemia syndrome in children and adolescents inArgentina[J].Atherosclerosis,2020,315:e148.DOI:10.1016/j.atherosclerosis.2020.10.457.[41]ReinerŽ.Triglyceride-Rich Lipoproteins and Novel Targets forAnti-atherosclerotic Therapy[J].Korean Circ J,2018,48(12):1097-1119.DOI:10.4070/kcj.2018.0343. [42]Cefalu A,D Erasmo L,Giammanco A,et al.LomitapideEffectively Reduces Triglyceride(TG)Levels in FamilialChylomicronemia Syndrome(FCS)[J].Clin Lipidol,2022,16(Suppl1):e17.DOI:10.1016/j.jacl.2021.09.024. [43]D Erasmo L,Bini S,Arca M.Rare Treatments for RareDyslipidemias:New Perspectives in the Treatment of HomozygousFamilial Hypercholesterolemia(HoFH)and FamilialChylomicronemia Syndrome(FCS)[J].Curr Atheroscler Rep,2021,23(11):65.DOI:10.1007/s11883-021-00967-8.[44]Brahm AJ,Hegele RA.Lomitapide for the treatment ofhypertriglyceridemia[J].Expert Opin Investig Drugs,2016,25(12):1457-1463.DOI:10.1080/13543784.2016.1254187.[45]Gaudet D,Bernelot-Moens S,Zhou Y,et al.Pradigastat,aDiacylglycerol Acyltransferase1Inhibitor,Reduces FastingTriglyceride Levels in Familial Chylomicronemia[J].ClinLipidol,2015,9(3):449-450.DOI:10.1016/j.jacl.2015.03.065.[46]Upthagrove A,Chen J,Meyers CD,et al.Pradigastat dispositionin humans:in vivo and in vitro investigations[J].Xenobiotica,2017,47(12):1077-1089.DOI:10.1080/00498254.2016.1263405.[47]Gras J.Pradigastat Diacylglycerol O-acyltransferase1(DGAT1)inhibitor Treatment of lipoprotein disorders[J].Drugs of theFuture,2016,41(2):123-129.DOI:10.1358/dof.2016.041.02.2443235.[48]Kolovou G,Kolovou V,Katsiki N.Volanesorsen:A New Era inthe Treatment of Severe Hypertriglyceridemia[J].J Clin Med,2022,11(4):982.DOI:10.3390/jcm11040982. [49]Paik J,Duggan S.Volanesorsen:First Global Approval[J].Drugs,2019,79(12):1349-1354.DOI:10.1007/s40265-019-01168-z.[50]Prohaska TA,Alexander VJ,Prokopczuk EK,et al.APOC3inhibition with volanesorsen reduces hepatic steatosis in patientswith severe hypertriglyceridemia[J].J Clin Lipidol,2023,17(3):406-411.DOI:10.1016/j.jacl.2023.04.007. [51]Gesner M,Frishman WH.Drug Therapy for Hypertriglyceridemiaand Familial Chylomicronemia Syndrome:Focus on Volnesorsen[J].Cardiol Rev,2023,31(6):325-329.DOI:10.1097/CRD.0000000000000468.[52]Khetarpal SA,Wang M,Khera AV.Volanesorsen,familialchylomicronemia syndrome,and thrombocytopenia[J].N Engl JMed,2019,381(26):2582-2584.DOI:10.1056/NEJMc1912350.[53]Lazarte J,Hegele RA.Volanesorsen for treatment of familialchylomicronemia syndrome[J].Expert Rev Cardiovasc Ther,2021,19(8):685-693.DOI:10.1080/14779072.2021.1955348.[54]Witztum JL,Gaudet D,Arca M,et al.Volanesorsen andtriglyceride levels in familial chylomicronemia syndrome:Long-term efficacy and safety data from patients in an open-labelextension trial[J].Clin Lipidol,2023,17(3):342-355.DOI:10.1016/j.jacl.2023.03.007.[55]Tardif JC,Karwatowska-Prokopczuk E,Amour ES,et al.Apolipoprotein C-III reduction in subjects with moderatehypertriglyceridaemia and at high cardiovascular risk[J].EurHeart J,2022,43(14):1401-1412.DOI:10.1093/eurheartj/ehab820.[56]Alexander V,Prokopczuk E,Stroes ESG,et al.Rationale anddesign of the balance study:a randomized,double-blind,placebo-controlled,phase3study of Olezarsen in patients withfamilial chylomicronemia syndrome[J].American College ofCardiology,2023,81(8):1764.DOI:10.1016/s0735-1097(23)02208-8.[57]Bergmark BA,Marston NA,Bramson CR,et al.Effect ofVupanorsen on Non-High-Density Lipoprotein Cholesterol Levelsin Statin-Treated Patients With Elevated Cholesterol:TRANSLATE-TIMI70[J].Circulation,2022,145(18):1377-1386.DOI:10.1161/CIRCULATIONAHA.122.059266. [58]Peter C,David S,John b,et al.ARO-APOC3,anInvestigational RNAi Therapeutic,Shows Similar Efficacy andSafety in Genetically Confirmed FCS and Non-FCS Participantswith Severe Hypertriglyceridemia[J].Circulation,2021,144(1):A10357.DOI:10.1161/circ.144.suppl_1.10357. [59]Markham A.Evinacumab:First Approval[J].Drugs,2021,81(9):1101-1105.DOI:10.1007/s40265-021-01516-y. [60]Rosenson RS,Gaudet D,Ballantyne CM.Evinacumab in severehypertriglyceridemia with or without lipoprotein lipase pathwaymutations:a phase2randomized trial[J].Nat Med,2023,29(3):729-737.DOI:10.1038/s41591-023-02222-w.(收稿日期:2023-05-19)(本文编辑:谭潇)。

免疫组化的英语

免疫组化的英语

免疫组化的英语English:Immunohistochemistry (IHC) is a technique used to detect the presence and localization of specific proteins in tissue sections. The process involves the use of antibodies that specifically bind to the target protein, which are then visualized using a variety of detection methods. This technique is widely used in both research and clinical settings to help identify and diagnose diseases, determine the prognosis of patients, and guide treatment decisions. IHC is particularly valuable in cancer diagnostics, as it can help identify the type of cancer and provide information about the aggressiveness of the disease. Additionally, IHC can be used to study the expression patterns of various proteins in normal and diseased tissues, helpingto elucidate the underlying mechanisms of disease and identify potential therapeutic targets.中文翻译:免疫组化(IHC)是一种用于检测组织切片中特定蛋白质存在和定位的技术。

牛磺鹅去氧胆酸对大鼠血清IL-1β、IL-6、TNF-α和IgG的影响

牛磺鹅去氧胆酸对大鼠血清IL-1β、IL-6、TNF-α和IgG的影响
何 秀玲 , 培 锋 , 李 关 红 , 少琳 金
( 内蒙 古 农 业 大 学 动 物科 学 与 医 学 学 院 兽 医学 院 实验 研 究 中 心 , 蒙古 呼 和 浩 特 0 0 1 ) 内 1 08

要 : 究牛磺 鹅 去氧 胆 酸 ( C C 对 佐 剂性 关 节炎 大 鼠血 清 中 I - ̄ I 一 、 NF &和 IG含 量 的 研 T D A) L I 、L 6 T - g
活性 [ ] 1 。我 们 在 前 期 的试 验 中 已 经 证 实 T D A C C
1 1 3 实验 动物 . .
1 2 方 法 .
清洁 级 Witr 鼠 , 性 , 重 sa 大 雄 体
1 0g 0g 由内蒙古 大 学实验 动 物研究 中心提供 。 5 ±2 ,
1 2 1 动 物模 型 的 建立 及给 药 2 . . O只 大 鼠随 机 分
t as不 同 时期 的足跖 肿胀 , i rt) s 显著 降低 AA 大 鼠血 清 中 NO和 L 4 量[ 。本 试 验 采 用 AA 大 鼠作 TB 含 7 ] 为动 物模 型 , 分子 水 平 上 揭 示 Tc C 对 AA 大 在 D A
鼠外 周血 中 I - ̄ I - 、 L I 、L 6 TNF a和 IG的 的 抗 炎 、 痛 作 用 和 免 疫 调 节 功 能 [ ] 同 镇 4,
时 , C C 可显著 抑制 AA 大 鼠( j v n tr T D A Adu a t Arh i —
成 2组 , 组 1 每 O只 。模 型组 , 1 / g灌 胃给 蒸 按 0g k
馏 水 ; C C 组 , 0 2g k T D A 按 . / g灌 胃给药 。参 照文 献
2 结 果

marked manuscript

marked manuscript

Quality evaluation of Flos Lonicerae through a simultaneous determination of seven saponins by HPLC with ELSDXing-Yun Chai1, Song-Lin Li2, Ping Li1*1Key Laboratory of Modern Chinese Medicines and Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China2Institute of Nanjing Military Command for Drug Control, Nanjing, 210002, People’s Republic of China*Corresponding author: Ping LiKey Laboratory of Modern Chinese Medicines and Department of Pharmacognosy, China Pharmaceutical University, Nanjing 210009, People’s Republic of China.E-mail address: lipingli@Tel.: +86-25-8324-2299; 8539-1244; 135********Fax: +86-25-8532-2747AbstractA new HPLC coupled with evaporative light scattering detection (ELSD) method has been developed for the simultaneous quantitative determination of seven major saponins, namely macranthoidinB (1), macranthoidin A (2), dipsacoside B (3), hederagenin-28-O-β-D-glucopyranosyl(6→1)-O-β-D- glucopyranosyl ester (4), macranthoside B (5), macranthoside A (6), and hederagenin-3-O-α-L-arabinopyranosyl(2→1)-O-α-L-rhamnopyranoside (7)in Flos Lonicerae, a commonly used traditional Chinese medicine (TCM) herb.Simultaneous separation of these seven saponins was achieved on a C18 analytical column with a mixed mobile phase consisting of acetonitrile(A)-water(B)(29:71 v/v) acidified with 0.5% acetic acid. The elution was operated from keeping 29%A for 10min, then gradually to 54%B from 10 to 25 min on linear gradient, and then keep isocratic elution with 54%B from 25 to 30min.The drift tube temperature of ELSD was set at 106℃, and with the nitrogen flow-rate of 2.6 l/min. All calibration curves showed good linear regression (r2 0.9922) within test ranges. This method showed good reproducibility for the quantification of these seven saponins in Flos Lonicerae with intra- and inter-day variations of less than 3.0% and 6.0% respectively. The validated method was successfully applied to quantify seven saponins in five sources of Flos Lonicerae, which provides a new basis of overall assessment on quality of Flos Lonicerae.Keywords: HPLC-ELSD; Flos Lonicerae; Saponins; Quantification1. IntroductionFlos Lonicerae (Jinyinhua in Chinese), the dried buds of several species of the genus Lonicera (Caprifoliaceae), is a commonly used traditional Chinese medicine (TCM) herb. It has been used for centuries in TCM practice for the treatment of sores, carbuncles, furuncles, swelling and affections caused by exopathogenic wind-heat or epidemic febrile diseases at the early stage [1]. Though four species of Lonicera are documented as the sources of Flos Lonicerae in China Pharmacopeia (2000 edition), i.e. L. japonica, L. hypoglauca,L. daystyla and L. confusa, other species such as L. similes and L. macranthoides have also been used on the same purpose in some local areas in China [2]. So it is an important issue to comprehensively evaluate the different sources of Flos Lonicerae, so as to ensure the clinical efficacy of this Chinese herbal drug.Chemical and pharmacological investigations on Flos Lonicerae resulted in discovering several kinds of bioactive components, i.e. chlorogenic acid and its analogues, flavonoids, iridoid glucosides and triterpenoid saponins [3]. Previously, chlorogenic acid has been used as the chemical marker for the quality evaluation of Flos Lonicerae,owing to its antipyretic and antibiotic property as well as its high content in the herb. But this compound is not a characteristic component of Flos Lonicerae, as it has also been used as the chemical marker for other Chinese herbal drugs such as Flos Chrysanthemi and so on[4-5]. Moreover, chlorogenic acid alone could not be responsible for the overall pharmacological activities of Flos Lonicerae[6].On the other hand, many studies revealed that triterpenoidal saponins of Flos Lonicerae possess protection effects on hepatic injury caused by Acetaminophen, Cd, and CCl4, and conspicuous depressant effects on swelling of ear croton oil [7-11]. Therefore, saponins should also be considered as one of the markers for quality control of Flos Lonicerae. Consequently, determinations of all types of components such as chlorogenic acid, flavonoids, iridoid glucosides and triterpenoidal saponins in Flos Lonicerae could be a better strategy for the comprehensive quality evaluation of Flos Lonicerae.Recently an HPLC-ELSD method has been established in our laboratory for qualitative and quantitative determination of iridoid glucosides in Flos Lonicerae [12]. But no method was reported for the determination of triterpenoidal saponins in Flos Lonicera. As a series studies on the comprehensive evaluation of Flos Lonicera, we report here, for the first time, the development of an HPLC-ELSD method for simultaneous determination of seven triterpenoidal saponins in the Chinese herbal drug Flos Lonicerae, i.e.macranthoidin B (1), macranthoidin A (2), dipsacoside B (3), hederagenin-28-O-β-D-glucopyranosyl(6→1)-O-β-D- glucopyranosyl ester (4), macranthoside B (5), macranthoside A (6), and hederagenin-3-O-α-L-arabinopyranosyl(2→1)-O-α-L-rhamnopyranoside (7) (Fig. 1).2. Experimental2.1. Samples, chemicals and reagentsFive samples of Lonicera species,L. japonica from Mi county, HeNan province (LJ1999-07), L. hypoglauca from Jiujang county, JiangXi province (LH2001-06), L. similes from Fei county, ShanDong province (LS2001-07), L. confuse from Xupu county, HuNan province (LC2001-07), and L. macranthoides from Longhu county, HuNan province (LM2000-06) respectively, were collected in China. All samples were authenticated by Dr. Ping Li, professor of department of Pharmacognosy, China Pharmaceutical University, Nanjing, China. The voucher specimens were deposited in the department of Pharmacognosy, China Pharmaceutical University, Nanjing, China. Seven saponin reference compounds: macranthoidin B (1), macranthoidin A (2), dipsacoside B (3), hederagenin-28-O-β-D-glucopyranosyl(6→1)-O-β-D- glucopyranosyl ester (4), macranthoside B (5), macranthoside A (6), and hederagenin-3-O-α-L-arabinopyranosyl(2→1)-O-α-L-rhamnopyranoside (7) were isolated previously from the dried buds of L. confusa by repeated silica gel, sephadex LH-20 and Rp-18 silica gel column chromatography, their structures were elucidated by comparison of their spectral data (UV, IR, MS, 1H- NMR and 13C-NMR) with references [13-15]. The purity of these saponins were determined to be more than 98% by normalization of the peak areas detected by HPLC with ELSD, and showed very stable in methanol solution.HPLC-grade acetonitrile from Merck (Darmstadt, Germany), the deionized water from Robust (Guangzhou, China), were purchased. The other solvents, purchased from Nanjing Chemical Factory (Nanjing, China) were of analytical grade.2.2. Apparatus and chromatographic conditionsAglient1100 series HPLC apparatus was used. Chromatography was carried out on an Aglient Zorbax SB-C18 column(250 4.6mm, 5.0µm)at a column temperature of 25℃.A Rheodyne 7125i sampling valve (Cotati, USA) equipped with a sample loop of 20µl was used for sample injection. The analog signal from Alltech ELSD 2000 (Alltech, Deerfield, IL, USA)was transmitted to a HP Chemstation for processing through an Agilent 35900E (Agilent Technologies, USA).The optimum resolution was obtained by using a linear gradient elution. The mobile phase was composed of acetonitrile(A) and water(B) which acidified with 0.5% acetic acid. The elution was operated from keeping 29%A for 10min, then gradually to 54%B from 10 to 25 min in linear gradient, and back to the isocratic elution of 54%B from 25 to 30 min.The drift tube temperature for ELSD was set at 106℃and the nitrogen flow-rate was of 2.6 l/min. The chromatographic peaks were identified by comparing their retention time with that of each reference compound tried under the same chromatographic conditions with a series of mobile phases. In addition, spiking samples with the reference compounds further confirmed the identities of the peaks.2.3. Calibration curvesMethanol stock solutions containing seven analytes were prepared and diluted to appropriate concentration for the construction of calibration curves. Six concentrationof the seven analytes’ solution were injected in triplicate, and then the calibration curves were constructed by plotting the peak areas versus the concentration of each analyte. The results were demonstrated in Table1.2.4. Limits of detection and quantificationMethanol stock solution containing seven reference compounds were diluted to a series of appropriate concentrations with methanol, and an aliquot of the diluted solutions were injected into HPLC for analysis.The limits of detection (LOD) and quantification (LOQ) under the present chromatographic conditions were determined at a signal-to-noise ratio (S/N) of 3 and 10, respectively. LOD and LOQ for each compound were shown in Table1.2.5. Precision and accuracyIntra- and inter-day variations were chosen to determine the precision of the developed assay. Approximate 2.0g of the pulverized samples of L. macranthoides were weighted, extracted and analyzed as described in 2.6 Sample preparation section. For intra-day variability test, the samples were analyzed in triplicate for three times within one day, while for inter-day variability test, the samples were examined in triplicate for consecutive three days. Variations were expressed by the relative standard deviations. The results were given in Table 2.Recovery test was used to evaluate the accuracy of this method. Accurate amounts of seven saponins were added to approximate 1.0g of L. macranthoides,and then extracted and analyzed as described in 2.6 Sample preparation section. The average recoveries were counted by the formula: recovery (%) = (amount found –original amount)/ amount spiked ×100%, and RSD (%) = (SD/mean) ×100%. The results were given in Table 3.2.6. Sample preparationSamples of Flos Lonicerae were dried at 50℃until constant weight. Approximate 2.0g of the pulverized samples, accurately weighed, was extracted with 60% ethanol in a flask for 4h. The ethanol was evaporated to dryness with a rotary evaporator. Residue was dissolved in water, followed by defatting with 60ml of petroleum ether for 2 times, and then the water solution was evaporated, residue was dissolved with methanol into a 25ml flask. One ml of the methanol solution was drawn and transferred to a 5ml flask, diluted to the mark with methanol. The resultant solution was at last filtrated through a 0.45µm syringe filter (Type Millex-HA, Millipore, USA) and 20µl of the filtrate was injected to HPLC system. The contents of the analytes were determined from the corresponding calibration curves.3. Results and discussionsThe temperature of drift tube and the gas flow-rate are two most important adjustable parameters for ELSD, they play a prominent role to an analyte response. In ourprevious work [12], the temperature of drift tube was optimized at 90°C for the determination of iridoids. As the polarity of saponins are higher than that of iridoids, more water was used in the mobile phase for the separation of saponins, therefore the temperature for saponins determination was optimized systematically from 95°C to 110°C, the flow-rate from 2.2 to 3.0 l/min. Dipsacoside B was selected as the testing saponin for optimizing ELSD conditions, as it was contained in all samples. Eventually, the drift tube temperature of 106℃and a gas flow of 2.6 l/min were optimized to detect the analytes. And these two exact experimental parameters should be strictly controlled in the analytical procedure [16].All calibration curves showed good linear regression (r2 0.9922) within test ranges. Validation studies of this method proved that this assay has good reproducibility. As shown in Table 2, the overall intra- and inter-day variations are less than 6% for all seven analytes. As demonstrated in Table 3, the developed analytical method has good accuracy with the overall recovery of high than 96% for the analytes concerned. The limit of detection (S/N=3) and the limit of quantification (S/N=10) are less than 0.26μg and 0.88μg respectively (Table1), indicating that this HPLC-ELSD method is precise, accurate and se nsitive enough for the quantitative evaluation of major non- chromaphoric saponins in Flos Lonicerae.It has been reported that there are two major types of saponins in Flos Lonicerae, i.e. saponins with hederagenin as aglycone and saponins with oleanolic acid as the aglycone [17]. But hederagenin type saponins of the herb were reported to have distinct activities of liver protection and anti-inflammatory [7-11]. So we adoptedseven hederagenin type saponins as representative markers to establish a quality control method.The newly established HPLC-ELSD method was applied to analyze seven analytes in five plant sources of Flos Lonicerae, i.e. L. japonica,L. hypoglauca,L. confusa,L. similes and L. macranthoides(Table 4). It was found that there were remarkable differences of seven saponins contents between different plant sources of Flos Lonicerae. All seven saponins analyzed could be detected in L. confusa and L. hypoglauca, while only dipsacoside B was detected in L. japonica. Among all seven saponins interested, only dipsacoside B was found in all five plant species of Flos Lonicerae analyzed, and this compound was determined as the major saponin with content of 53.7 mg/g in L. hypoglauca. On the other hand, macranthoidin B was found to be the major saponin with the content higher than 41.0mg/g in L. macranthoides,L. confusa, and L. similis, while the contents of other analytes were much lower.In our previous study [12], overall HPLC profiles of iridoid glucosides was used to qualitatively and quantitatively distinguish different origins of Flos Lonicerae. As shown in Fig.2, the chromatogram profiles of L. confusa, L. japonica and L. similes seem to be similar, resulting in the difficulty of clarifying the origins of Flos Lonicerae solely by HPLC profiles of saponins, in addition to the clear difference of the HPLC profiles of saponins from L. macranthoides and L. hypoglauca.Therefore, in addition to the conventional morphological and histological identification methods, the contents and the HPLC profiles of saponins and iridoids could also be used as accessory chemical evidence toclarify the botanical origin and comprehensive quality evaluation of Flos Lonicerae.4. ConclusionsThis is the first report on validation of an analytical method for qualification and quantification of saponins in Flos Lonicerae. This newly established HPLC-ELSD method can be used to simultaneously quantify seven saponins, i.e. macranthoidin B, macranthoidin A, dipsacoside B, hederagenin-28-O-β-D-glucopyranosyl(6→1)-O-β-D- glucopyranosyl ester, macranthoside B, macranthoside A, and hederagenin-3-O-α-L-arabinopyranosyl(2→1)-O-α-L-rhamnopyranoside in Flos Lonicerae. Together with the HPLC profiles of iridoids, the HPLC-ELSD profiles of saponins could also be used as an accessory chemical evidence to clarify the botanical origin and comprehensive quality evaluation of Flos Lonicerae.AcknowledgementsThis project is financially supported by Fund for Distinguished Chinese Young Scholars of the National Science Foundation of China (30325046) and the National High Tech Program(2003AA2Z2010).[1]Ministry of Public Health of the People’s Republic of China, Pharmacopoeia ofthe People’s Republic of China, V ol.1, 2000, p. 177.[2]W. Shi, R.B. Shi, Y.R. Lu, Chin. Pharm. J., 34(1999) 724.[3]J.B. Xing, P. Li, D.L. Wen, Chin. Med. Mater., 26(2001) 457.[4]Y.Q. Zhang, L.C. Xu, L.P. Wang, J. Chin. Med. Mater., 21(1996) 204.[5] D. Zhang, Z.W. Li, Y. Jiang, J. Pharm. Anal., 16(1996) 83.[6]T.Z. Wang, Y.M. Li, Huaxiyaoxue Zazhi, 15(2000) 292.[7]J.ZH. Shi, G.T. Liu. Acta Pharm. Sin., 30(1995) 311.[8]Y. P. Liu, J. Liu, X.SH. Jia, et al. Acta Pharmacol. Sin., 13 (1992) 209.[9]Y. P. Liu, J. Liu, X.SH. Jia, et al. Acta Pharmacol. Sin., 13 (1992) 213.[10]J.ZH. Shi, L. Wan, X.F. Chen.ZhongYao YaoLi Yu LinChuang, 6 (1990) 33.[11]J. Liu, L. Xia, X.F. Chen. Acta Pharmacol. Sin., 9 (1988) 395[12]H.J. Li, P. Li, W.C. Ye, J. Chromatogr. A 1008(2003) 167-72.[13]Q. Mao, D. Cao, X.SH. Jia. Acta Pharm. Sin., 28(1993) 273.[14]H. Kizu, S. Hirabayashi, M. Suzuki, et al. Chem. Pharm. Bull., 33(1985) 3473.[15]S. Saito, S. Sumita, N. Tamura, et al. Chem Pharm Bull., 38(1990) 411.[16]Alltech ELSD 2000 Operating Manual, Alltech, 2001, p. 16. In Chinese.[17]J.B. Xing, P. Li, Chin. Med. Mater., 22(1999) 366.Fig. 1 Chemical structures of seven saponins from Lonicera confusa macranthoidin B (1), macranthoidin A (2), dipsacoside B (3), hederagenin-28-O-β-D-glucopyranosyl(6→1)-O-β-D- glucopyranosyl ester (4), macranthoside B (5), macranthoside A (6), and hederagenin-3-O-α-L-arabinopyranosyl(2→1)-O-α-L-rhamnopyranoside (7)Fig. 2Representative HPLC chromatograms of mixed standards and methanol extracts of Flos Lonicerae.Column: Agilent Zorbax SB-C18 column(250 4.6mm, 5.0µm), temperature of 25℃; Detector: ELSD, drift tube temperature 106℃, nitrogen flow-rate 2.6 l/min.A: Mixed standards, B: L. confusa, C: L. japonica, D: L. macranthoides, E: L. hypoglauca, F: L. similes.Table 1 Calibration curves for seven saponinsAnalytes Calibration curve ar2Test range(μg)LOD(μg)LOQ(μg)1 y=6711.9x-377.6 0.9940 0.56–22.01 0.26 0.882 y=7812.6x-411.9 0.9922 0.54–21.63 0.26 0.843 y=6798.5x-299.0 0.9958 0.46–18.42 0.22 0.724 y=12805x-487.9 0.9961 0.38–15.66 0.10 0.345 y=4143.8x-88.62 0.9989 0.42–16.82 0.18 0.246 y=3946.8x-94.4 0.9977 0.40–16.02 0.16 0.207 y=4287.8x-95.2 0.9982 0.42–16.46 0.12 0.22a y: Peak area; x: concentration (mg/ml)Table 2 Reproducibility of the assayAnalyteIntra-day variability Inter-day variability Content (mg/g) Mean RSD (%) Content (mg/g) Mean RSD (%)1 46.1646.2846.2246.22 0.1346.2245.3647.4226.33 2.232 5.385.385.165.31 2.405.285.345.045.22 3.043 4.374.304.184.28 2.244.284.464.024.255.204 nd1)-- -- nd -- --5 1.761.801.821.79 1.701.801.681.841.77 4.706 1.281.241.221.252.451.241.341.201.26 5.727 tr2)-- -- tr -- -- 1): not detected; 2): trace. RSD (%) = (SD/Mean) ×100%Table 3 Recovery of the seven analytesAnalyteOriginal(mg) Spiked(mg)Found(mg)Recovery(%)Mean(%)RSD(%)1 23.0823.1423.1119.7122.8628.1042.7346.1351.0199.7100.699.399.8 0.722.692.672.582.082.913.164.735.515.7698.197.6100.698.8 1.632.172.152.091.732.182.623.884.404.6598.8103.297.799.9 2.94nd1)1.011.050.980.981.101.0297.0104.8104.1102.0 4.250.880.900.910.700.871.081.561.752.0197.197.7101.898.9 2.660.640.620.610.450.610.751.081.211.3397.796.796.096.8 0.97tr2)1.021.101.081.031.111.07100.9102.799.1100.9 1.81): not detected; 2): trace.a Recovery (%) = (Amount found –Original amount)/ Amount spiked ×100%, RSD (%) = (SD/Mean) ×100%Table 4 Contents of seven saponins in Lonicera spp.Content (mg/g)1 2 3 4 5 6 7 L. confusa45.65±0.32 5.13±0.08 4.45±0.11tr1) 2.04±0.04tr 1.81±0.03 L. japonica nd2)nd 3.44±0.09nd nd nd nd L. macranthoides46.22±0.06 5.31±0.13 4.28±0.10 tr 1.79±0.03 1.25±0.03 tr L. hypoglauca11.17±0.07 nq3)53.78±1.18nd 1.72±0.02 2.23±0.06 2.52±0.04 L. similes41.22±0.25 4.57±0.07 3.79±0.09nd 1.75±0.02tr nd 1): trace; 2): not detected.. 3) not quantified owing to the suspicious purity of the peak.。

血清唾液酸与羟脯氨酸联合检测在恶性肿瘤诊断中的临床价值

血清唾液酸与羟脯氨酸联合检测在恶性肿瘤诊断中的临床价值

血清唾液酸与羟脯氨酸联合检测在恶性肿瘤诊断中的临床价值余辉艳;白雪梅;于培红;张家淮【摘要】目的探讨血清唾液酸与羟脯氨酸联合检测在恶性肿瘤诊断中的临床价值.方法选取共296例标本,其中肿瘤患者142例、非肿瘤类疾病患者55例、健康人99例,比色法检测血清唾液酸与羟脯氨酸浓度.比较在不同疾病下该指标的检测结果,统计分析各组间结果差异,探讨其对肿瘤的诊断价值.结果肿瘤组唾液酸与羟脯氨酸浓度明显高于非肿瘤疾病组和健康组,且差异具有统计学意义(P<0.05).结论测定血清中唾液酸与羟脯氨酸浓度,有利于临床上恶性肿瘤的辅助诊断.【期刊名称】《标记免疫分析与临床》【年(卷),期】2016(023)001【总页数】3页(P26-28)【关键词】血清唾液酸与羟脯氨酸浓度;恶性肿瘤诊断;临床应用价值【作者】余辉艳;白雪梅;于培红;张家淮【作者单位】首都医科大学右安门临床检验中心,北京100069;首都医科大学右安门临床检验中心,北京100069;首都医科大学右安门临床检验中心,北京100069;首都医科大学右安门临床检验中心,北京100069【正文语种】中文当恶性肿瘤细胞发生增殖、转移、浸润时,细胞粘附性降低,血清中唾液酸(sialic acid,SA)含量会升高,测定唾液酸含量对恶性肿瘤的辅助诊断有重要作用[1-2];肿瘤浸润或转移可破坏胶原蛋白、弹性蛋白和骨组织,其特异性组成成分羟脯氨酸(hydroxyproline,Hyp)在血清中会出现显著升高[3-4]。

本文对 142例恶性肿瘤患者、55例非肿瘤类疾病患者及99例健康体检者进行血清唾液酸与羟脯氨酸浓度检测,通过对肿瘤组、非肿瘤疾病组及健康组灵敏度、特异性及一致性分析,探讨血清唾液酸与羟脯氨酸浓度联合检测对恶性肿瘤临床辅助诊断的应用价值。

1 样本共计296例样本,其中男性173例,女性123例。

年龄分布为:18~39岁102例;40~59岁82例;60岁以上112例。

用作嗜中性白细胞弹性蛋白酶抑制剂的2-吡啶酮衍生物及其用途[发明专利]

用作嗜中性白细胞弹性蛋白酶抑制剂的2-吡啶酮衍生物及其用途[发明专利]

专利名称:用作嗜中性白细胞弹性蛋白酶抑制剂的2-吡啶酮衍生物及其用途
专利类型:发明专利
发明人:彼得·汉森,卡罗里娜·劳威兹,汉斯·洛恩,安东尼奥斯·尼基蒂迪斯
申请号:CN200480027517.4
申请日:20040915
公开号:CN1856467A
公开日:
20061101
专利内容由知识产权出版社提供
摘要:本发明提供了新颖的式(I)的化合物以及其光学异构体、外消旋体以及互变体,以及其可药用盐,其中R、R、R、R、G、G、L、Y和n如说明书中定义;以及其制备方法、包含这些化合物的组合物以及其在治疗中的用途。

所述的化合物为嗜中性白细胞弹性蛋白酶抑制剂。

申请人:阿斯利康(瑞典)有限公司
地址:瑞典南泰利耶
国籍:SE
代理机构:北京市柳沈律师事务所
更多信息请下载全文后查看。

Prusiner等应用化学方法提纯瘙痒病原因子.

Prusiner等应用化学方法提纯瘙痒病原因子.

2.目前诊断朊粒感染的依据主要依 赖神经病理学检查,海绵状病变稀 疏地分布整个大脑皮层,神经元消 失,星状细胞增生,典型病变为融 合性海绵状空泡,空泡周围有大量 淀粉样斑块,用 HE和PAS染色清晰 可见。PrP淀粉斑也是朊粒的特异标 志, CJD病人中约有10%阳性。
3.快速简易的免疫学方法
prpSC是人朊粒感染的特异标志,用 病人的脑组织经蛋白酶有限消化去除 正常细胞的PrPC,然后用斑点免疫
PrP )
微生物检验
1.标本采集 以检测蛋白酶抗性的PrPRES为诊断 标志,取脑脊液和病变组织等标本, 应立即检测或冻存待用,非固定标 本用做免疫印迹,固定标本用作染 色镜检,或做免疫组化检测。
标本直接检查
1.电子显微镜检查 羊瘙痒病相关 纤维(SAF)是朊粒感染的标志之一。 有两种存在形式: I型纤维直径为 11~14nm,Ⅱ型纤维直径为27~34nm。
可用猴、羊、豹、猫及豚鼠等动物进 行感染试验,但用动物分离人朊粒成 功率较低,最近制备的含有人PrP基 因的转基因小鼠对人朊粒敏感,但用 动物分离朊粒的时间的较长,一般需 200天以上,不适于实验室检查。目 前仍以病理检查作为诊断朊粒感染的 手段。
或蛋白质因检测
取病变神经组织细胞或外周血白细胞 测定第20号染色体短臂上的PrP基因 序列,可诊断遗传型朊粒感染性疾病。 用PCR扩增出PrP全基因,用位点特异 性的寡核苷酸探针杂交,筛选出突变 基因,再进行序列分析,找出PrP基 因突变的位点。
5.朊粒的分离
Prusiner等应用化学方法提纯瘙痒病原因子, 分离得到了具有高度感染性的组分— 一种分 子量为27-30kd的特殊糖蛋白,将其定名为“ 糖蛋白侵染子”(缩写为prion)过去的中文 译名为朊病毒,现译为朊粒,其对应的单体 称为“朊粒蛋白”(PrP)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Original Article Clinico-laboratory profile of haemolytic uremic syndromeJha DK1, Singh R2, Raja S3, Kumari N4, Das BK51,2,3,5Department of Pediatrics and Adolescent Medicine, 4Microbiology, B P Koirala Institute of Health Sciences, Dharan, NepalAbstractObjective: To study the clinical profile, the spectrum of functional abnormalities, prognostic factors and outcome of children with haemolytic uremic syndrome (HUS).Materials and methods: This is a prospective, descriptive, single centre, cohort study, conducted on 42 children during the period of January 2004 to January 2005.Results: The maximum numbers of cases were below 24 months of age with mean age of 26.6 months and male: female ratio of 2.8:1. Most of the cases (79%) occurred in the warmer months (April-September). The common clinical presentations were bloody diarrhoea, pallor, oliguria & anuria, fever, vomiting, abdominal distension and pain, involvement of central nervous system, chest and cardiovascular system and bleeding manifestations. The common haematological abnormalities were leucocytosis, thrombocytopenia, anaemia and features of haemolysis in the peripheral blood. Electrolyte abnormalities observed were in the form of hyponatremia, hypokalemia and hyperkalemia. Arterial blood gas analysis showed metabolic acidosis in 64% cases, where the estimations were done. The mean blood urea and serum creatinine levels were 113.7 mg/dL and 2.5 mg/dL, respectively. Stool examination showed blood in all cases. Urine examination showed microscopic haematuria and significant proteinuria in 74% and 38% cases, respectively. E. coli and Shigella were isolated in stool in three cases each and one case showed mixed growth of E. coli and Salmonella. The mortality rate was 21%. Significantly higher mortality was observed in females, patients presenting with complete anuria, leucocytosis, hyperkalemia and systemic involvement like central nervous system, cardio vascular system and chest.Conclusions: Female sex, complete anuria, leucocytosis, extra renal involvement and hyperkalemia were associated with poor outcome.Key words: Haemolytic Uremic Syndrome, Clinical Features, Outcome, Prognostic Factorsemolytic Uremic Syndrome (HUS) is defined asmicroangiopathic haemolytic anaemia, thrombocytopenia and acute renal failure1. It is the leading cause of acute renal failure in young children,but can occur in adults as well. Two broad sub groupsof HUS have been recognized. The first form is associated with diarrhoea prodrome (D+ HUS) and the second form is not associated with antecedent diarrhoea (D- HUS). D+ HUS are the most common form. It occurs in healthy young children between 6 months to 5 years of age and is preceded by watery diarrhoea that can evolve to hemorrhagic colitis. The diarrhoea precedes the haemolysis and thrombocytopenia by 5 to 7 days; oligo/anuria follows several days later2. In developed country, E. coli is the most common organism causing D+ HUS.In the Indian subcontinent, dysentery associated HUS has been chiefly observed3. Shigella dysenteriae serotype 1 is the main pathogen responsible.HUS is a syndrome widely accepted and there are many causes and associations of the disease. There have been enormous advances in defining the aetiology, epidemiology, pathogenesis and histopathological features of shiga toxin associated HUS. However, the review of literature shows no study on the HUS, in this country. So, the study was planned to see the clinico laboratory profile of haemolytic uremic syndrome in this part of the world and to identify some important risk factors in relationto disease severity and outcome.CorrespondenceDhirendra Kumar JhaDepartment of Pediatrics and Adolescent MedicineB P Koirala Institute of Health SciencesDharan, NepalHKathmandu University Medical Journal (2007), Vol. 5, No. 4, Issue 20, 468-474Material and methodsThe study was conducted in the Department of Pediatrics and Adolescent Medicine, B P Koirala Institute of Health Sciences, Dharan, Nepal during the period January 2004 to January 2005. It is a prospective, descriptive, single centre, cohort study. All the children below 15 years with diagnosis of haemolytic uremic syndrome were included in the study.Case DefinitionAny child presenting with at least three of the following features were enrolled.1.Oliguria/anuria more than 24 hours withincreased blood urea and serum creatinine.2.Peripheral blood examination suggestive ofhaemolytic anaemia (haemoglobin < 10g/dl).3.Thrombocytopenia (platelet count <1,00,000/mm3).4.History of bloody diarrhoea.The epidemiological data, detailed history and clinical examination findings were noted in all the cases which met the inclusion criteria. All the children were subjected to the following investigations:Haemogram (Hb, TLC, DLC, Platelet counts, Reticulocyte counts), Peripheral blood smears for features of haemolysis (i.e. schistocytes, burr cell, fragmented RBC, nucleated RBC), stool routine and microscopic examination, stool culture and sensitivity, urine routine and microscopic examination, urine culture and sensitivity, blood urea, serum creatinine, serum sodium, serum potassium, arterial blood gas analysis and blood culture. Statistical Method:The data collected was compiled and entered in MS -Excel and analysis was done using EPI 2000 version and SPSS CP+11.5 version software to find chi - square values. P value <0.05 is taken as statistically significant.ResultsForty two children admitted to the Paediatric ward, B.P. Koirala Institute of Health Sciences, Dharan, Nepal during the period January 2004 to January 2005 with a diagnosis of haemolytic uremic syndrome were enrolled for the present study.The demographic profile of the patients studied is depicted in Table 1. The maximum numbers of cases were below 24 months of age (69%). There was predominance of males (73.8%) and most cases were observed during summer months (April–September). Majority of the patients were Non vegetarian (69%). Table 2 shows the clinical presentations of haemolytic uremic syndrome patients. All the patients (100%) presented with history of blood mixed stools and oliguria/anuria. However, complete anuria was noted in 48% cases. Other common presentations were fever (94%), vomiting (86%), abdominal distension (83%) and abdominal pain (71%). About 17% patients presented with generalized seizures and 14% had bleeding manifestations like skin and mucous membrane bleedsAnaemia was noted in all the patients and in 10 (24%) patients, it was of severe degree. Edema was noted in 93% of patients. Ascites was noticed in 31% patients. Hepatomegaly was noted in 11 (26%) cases and in 10 (24%) cases, the bowel sounds were absent. Central nervous system involvement in the form of seizures, altered sensorium and irritability was noted in 16 (38%) cases. Examination of chest showed crepitations in 14 (33%) patients. Cardiovascular system was involved in 8 (19%) cases in the form of cardiomegaly and features of congestive cardiac failure.Table 3-4 show the laboratory investigations of the cases studied. Leucocytosis (> 15000/mm3) was found in 95% cases. Counts more than 30,000 per mm3 were observed in 62% of cases. The mean total leucocytes count was 38021 (range 9100-80,000 per mm3) and polymorphs percentage was 75 (range 44-93). The mean platelet count was 84500 with a range of 13400-303000 per mm3. The platelet count was below 50,000 per mm3 only in 9 (21%) cases. Six patients presented with skin and mucous membrane bleeds. The mean platelet count of these patients was 42833 ± 13151. Four out of these six patients had platelet count less than 50,000 per mm3. The mean haemoglobin was 6.7 g/dL (range 3-9.8 g/dL). However, severe anaemia (< 5 g/dL) was observed in only 9 (21%) cases. The mean reticulocyte count was 2.26 and was more than 2% in 19 (45%) cases. Peripheral blood smear showed features of haemolysis 81% cases. The blood culture was positive only in two patients; enterococcus in one case while in other Streptococcus pneumoniae was grown.The mean serum sodium was 126.6 m mol/L (Range 107-161mmol/L). Hyponatremia (<135 m mol/L) was found in 91% cases. Similarly, mean serum potassium was 4.12 m mol/L (range 2.1-8.7 m mol/L). The level was low (<3.5 m mol/L) in 45%cases and high (>5 m mol/L) in 26% cases. Arterial blood gas analysis showed the mean pH as 7.3 and mean bicarbonate as 12.4 m mol/L. Bicarbonate less than 10 m mol/L was observed in 25% cases where it was estimated. Most of the cases were of metabolic acidosis (64%). The mean serum creatinine level was 2.5 mg/dL (range 0.9-5.8 mg/dL). In 40 (95%) cases serum creatinine level was above 1 mg/dL. The blood urea was high in all cases with a mean of 114 mg/dL (range 56-187 mg/dL).Routine examination of stool showed RBC in all (100%) cases and pus cells in 81% cases. In 7 (17%) patients, cysts were found; E. histolytica in 6 and Giardia in 1 patient. Stool culture was positive in 7 (17%) cases; E. coli in 3, Shigella in 3 and in one case mixed organisms were grown.Urine examination showed significant albuminuria (> ++) in 16 (38%) cases while in 11 (26%) cases, the proteinuria was mild. Microscopic haematuria (> 5 /hpf) and pyuria (> 5/ hpf) were observed in 29% and 24% cases, respectively. Epithelial cells and casts were observed in 19% and 7% patients, respectively. Urine culture was positive in 11 (26%) cases; E. coli in 7, Citrobacter and Enterobacter in 1 each. In 2 patients urine culture showed growth of Candida. All the patients received antibiotics in the form of ceftriaxone. In 55% of patients, additional antibiotics were needed. Thirty two patients (76%) needed blood transfusion and 15 (36%) patients were subjected to peritoneal dialysis. Out of 42 patients, 30 (71%) improved while 9 (21%) died during hospital stay. Three (7%) patients left against medical advice.The mortality was significantly higher in female sex (p <0.05) and in those who had anuria (p<0.01), abdominal distension (p<0.001), CNS (p<0.001), CVS (p<0.001) and chest (p<0.05) involvement. Similarly, the mortality was significantly higher in those who had TLC more than 30,000 per mm3 (p < 0.05) and serum potassium of more than 5 m mol/L (p <0.05). The mortality was significantly higher in patients treated with peritoneal dialysis (p<0.001). In the peritoneal dialysis group, mortality was higher (p<0.01) in patients who developed secondary infection after the peritoneal dialysis.Table 1: Demographic profile of Haemolytic uremic syndrome (N=42) Parameters Number(%) Age (Months)< 1213-24 25-36 > 37 03 (07) 26 (62) 08 (19) 05 (12)SexMale Female 31 (74) 11 (26)SeasonApril – JuneJuly – September October – December January – March 21 (50) 12 (29) 03 (07) 06 (14)Feeding habitVegetarianNon vegetarian 13 (31) 29 (69)Table 2: Clinical presentation of haemolytic uremic syndrome (N = 42) Sign and symptoms Number (%)Bloody Diarrhoea≤ 10 days > 10 days 22 (52) 20 (48)FeverAbsent≤ 10 days > 10 days 03 (07) 22 (52) 17 (41)Urine OutputOliguria Anuria 22 (52) 20 (48)Vomiting 36(86) Abdominal distension 35 (83)Abdominal pain 30 (71)Bleeding manifestations 06 (14)Seizures 07(17) PallorModerate Severe 32 (76) 10 (24)Edema 39(93) Ascites 13(31) Hepatomegaly 11(26) Absent bowel sound 10 (24)CNS involvement 16 (38)CVS involvement 08 (19)Chest involvement 14 (33)Table 3. Haematological Findings of Haemolytic Uremic Syndrome (N=42).Parameter Number (%) Mean ± 1 SD (Range)TLC (103/mm3)<1500015000 - 30,000 >30,000 42 (100)02 (05)14 (33)26 (62)38.02±17.05 (.91 -80.0)Polymorphs (%) 42 (100) 75.4 ± 13.7 (44-93)Platelet count (lac/mm3) <50,00050,000-1,00,000 >1,00,000 42 (100)09 (21)24 (57)09 (21).845 ±.516 (.134-3.03 )Haemoglobin (g/dL) < 55-8 >8 42 (100)09 (21)19 (45)14 (33)6.7 ± 1.9 (3.0-9.8)Reticulocyte count 42 (100) 2.26 ± 1.4 (0.8-7.3) PBS features of haemolysis 34 (81)Table 4. Blood Biochemistry of Haemolytic Uremic Syndrome (N=42).Parameter Number (%) Mean ± SD (range)Sodium (m mol/L) <135135-145 >145 42 (100)38 (91)03 (07)01 (02)126.6 ± 9.5 (107-161)Potassium (m mol/L) <3.53.5-5>5 42 (100)19 (45)12 (28)11 (26)4.12 ± 1.58 (2.1-8.7)Bicarbonate (m mol/L) 28 (100) 12.46 ± 3.98 (6.4-20.5)pH 28 (100) 7.30 ± 0.05 (7.2-7.51)Creatinine (mg/dL) 42 (100) 2.51 ± 1.59 (0.9-5.8)Urea (mg/dL) 42 (100) 113.7 ± 45.2 (56-187) DiscussionHaemolytic uremic syndrome (HUS) is an important cause of acute renal failure in young children leading to significant morbidity and mortality. The present work was designed to investigate and correlate clinical presentation, laboratory findings, functional abnormalities and the outcome of HUS patients. The study was conducted in a tertiary care centre in Eastern Nepal over a 12 months period.In the present study, majority (69%) of the patients were below the age of two years; while most (95%) were below the age of five years. The mean age of presentation was 26.6±13.6 months. Srivastava et al3also observed that 59% of their patients were below the age of two years while 92% were below five years. Tozzi et al4 from Italy reported higher incidence in children less than five years of age (mean = 0.75 cases per 1, 00,000 population, range = 0.33-1.10). Elliott et al5 from Australia reported HUS in children under five years as 1.35 (95% CI 1.06 to 1.72) per 105 population. The annual incidence is highest in young children with an age specific incidence per 1,00,000 children as 3.1 for Canadian children less than five years of age6 and 7.1 for children of Utah, aged 1 to 2 years7.In the present study, males (74%) were more affected with a male: female ratio of 2.8: 1. Srivastava et al3 also reported HUS more in males (72.6%) with a male: female ratio of 2.5: 1. However, other workers6, 8, 9 reported that female gender is a modest risk factor;while Cimolai et al10 refute gender predisposition.In the present study, maximum number of cases occurred in summer months (April to September), which is similar to other studies where the authors11-15 observed haemolytic uremic syndrome more frequently during warmer months. However, Brandt et al16 report that North West epidemic did not occur in summer.The common clinical presentations of patients in our study were bloody diarrhoea (100%), oliguria / anuria (100%) and fever (93%). Other presentations were vomiting (86%), abdominal distension (83%) and abdominal pain (71%). About 17% patients presented with generalized seizures and 14% had bleeding manifestation like skin and mucous membrane bleeds. Srivastava et al3 reported bloody diarrhoea in 80% of their patients and 12% had watery diarrhoea. Oliguria/anuria was documented in 86% patients. Elliott et al5 in their study found that all patients had diarrhoea prodrome while vomiting was observed in 80% of patients. Tozzi et al4 reported bloody diarrhoea in 48% cases while 30% presented with non bloody diarrhoea. Siegler et al7 reported that majority of their patients had oliguria and almost half were anuric. They also reported that vomiting usually accompanied the diarrhoea. Patients had fever and occasionally petechiae or purpura, while 10% of patients presented with seizures. In our study also about 17% of patients presented with seizures. Chang et al17 reported bloody stool in 82%, fever in 64% and vomiting in 54% of cases.In the present study, CNS involvement in the form of seizures, altered sensorium and irritability was noted in 38% cases. Other systemic involvement included chest (33%) and cardiovascular system (19%). Siegler18 reported that the brain was the most commonly involved extra renal organ. These include alteration of consciousness and disorder of movement, muscle tone and posture. Seizure was common and was generalized in nature.Common laboratory findings of the present study were leucocytosis, thrombocytopenia, anaemia, reticulocytosis and features of haemolysis in peripheral blood smear. Common electrolyte disturbances were hyponatremia, hypo and hyperkalemia. The cause of hyponatremia could be dilutional. Hypokalemia may be due to excessive loss of potassium in the stool while the hyperkalemia may be due to renal failure. Similar to the present study, Srivastava et al3 also reported leucocytosis in 85% of cases. Chang et al17 in their study found thrombocytopenia in 95% of cases and 85% had haemolytic anaemia with microangiopathic changes on peripheral blood smear. Brilliant et al19 reported haemolytic uremic syndrome without evidence of microangiopathic haemolytic anaemia on peripheral blood smear.In the present study, urine microscopy showed significant albuminuria (38%) and haematuria (26%). Stool culture was positive in about 17%cases. E. coli and Shigella were the common organisms. Chang et al17 in their study found haematuria in 80% and protein in urine in 80% cases. In our study, previous antibiotic therapy and a delay in stool examination for several days after the onset of dysentery could account for the low isolation rate of organisms. Srivastava et al3 in their study showed that out of 73 patients, 27 (37%) were stool culture positive; E. coli and Shigella being the main pathogens.Fifteen (36%) of our patients were subjected to renal replacement therapy and 32 (76%) patients received blood transfusion. Almost all patients received antimicrobial therapy. During the treatment, three (7%) patients left against medical advice, 30 (71%) patient’s improved and 9 (21%) died. Srivastava et al3 from India reported mortality in 60% of cases while other authors7, 17, 20 from reported mortality between 4-10%.In the present study, poor outcome was significantly associated with female sex, patients presenting with anuria, systemic involvement, high leukocyte count and hyperkalemia. Those patients subjected to peritoneal dialysis had significantly higher mortality. The high mortality in peritoneal dialysis group may be due to the fact that very sick patients had received the peritoneal dialysis. Other reason could be the secondary infections following peritoneal dialysis. Srivastava et al3 reported that the mortality was chiefly related to the duration of renal failure and presence of renal cortical necrosis, whereas persistent dysentery and infections were complicating factors. The presence of convulsions and coagulation defects had no relation to the outcome. Walters et al21, observed that polymorph nuclear cell count was significantly higher in their diarrhoea associated HUS patients who had a poor outcome. Trompeter et al20 observed that younger age, presentation in the summer months, diarrhoea at onset and, in those patients who were dialyzed, a short prodromal illness were associated with a good outcome. They alsoreported that diarrhoea favoured a good outcome among boys but not girls.D’ Souza et al22 reviewed literature and reported bad prognostic factors as higher age (>3 years) at presentation, leucocytosis, systemic involvement, anuria or prolonged oliguria, and prolonged duration of prodromal illness.Reference1.Remuzzi G, Ruggenti P. The haemolyticuremic syndrome. Kidney Int 1995; 48: 2-19. 2.Corrigan JJ Jr, Boineau G. Hemolytic uremicsyndrome. Pediatr Rev 2001; 22:365-9.3.Srivastava RN, Moudgil A, Bagga A,Vasudev AS. Hemolytic uremic syndrome inchildren in north India. Pediatr Nephrol 1991;5: 284-288.4.Tozzi AE, Caprioli A, Minelli F et al. ShigaToxin-Producing Escherichia coli InfectionsAssociated with Hemolytic Uremic Syndrome,Italy, 1988-2000. Emerging Infec Dis 2003;9: 106 -108.5.Elliott EJ, Robins-Browne RM, Loughlin EVOet al. Nationwide study of haemolytic uremicsyndrome, clinical microbiological andepidemiological features: Arch Dis child 2001;85: 125 -131.6.Rowe PC, Orrbine E, Wells GA, Mc LainePN. Epidemiology of haemolytic-uremicsyndrome in Canadian children from 1987 to1988. J Pediatr 1991; 119: 218 - 224.7.Siegler RL, Ryan D, Christofferson RD,Milligan MK, Pavia AT. A 20 year population– based study of post diarrheal haemolyticuremic syndrome in Utah. Pediatrics 1994;94: 35 - 40.8.Kinney JS, Gross TP Porter CC, Rogers MF,Schonberger LB, Hurwitz ES. Hemolytic-uremic syndrome: A population based study inWashington, DC and Baltimore, Maryland.Am J Public Health 1988; 78: 64 - 65.9.Rogers MF, Rutherford GW, Alexander SR, etal: A population based study of haemolyticuremic syndrome in Oregon, 1979-1982. Am JEpidemiol 1986; 123: 137-142.10.Cimolai N, Basalyga S, Mah DG, MorrisonBJ, Carter JE. A continuing assessment of riskfactors for the development of Escherichia coliO157: H7 – associated haemolytic uremicsyndrome. Clin Nephrol 1994; 42: 85 - 89. 11.Koster F, Levin J, Waker L, et al. Hemolyticuremic syndrome after shigellosis; relation toendotoxemia and circulating immune complex.N Engl J Med 1978; 192: 927-933. 12.Malik GH, Sirwal IA, Pandit KA, Kaul PA,Najar MS. Hemolytic uremic syndromeexperience at Srinagar. Indian Pediatr 1990;27: 1098 - 1100.13.Kaplan BS, Proesmans W. The haemolyticuremic syndrome of childhood and its variants.Sem Hematol 1987; 24: 148 -160.14.Morel-maroger L. Adult haemolytic uremicsyndrome. Kidney Int 1980; 18: 125 -134.15.Pickering LK, Obrig TG, Stapleton FB.Hemolytic-uremic syndrome and enterohemorrhagic Escherichia coli. PediatrInfect Dis J 1994; 13: 459 - 476.16.Brandt JR, Fouser LS, Watkins SL et al.Escherichia coli O 157: H7 associatedhaemolytic uremic syndrome after ingestion ofcontaminated hamburgers. J Pediatr 1994; 125:519-26.17.Chang H-G H, Tserenpuntsag B, Kacica M,Smith PF, Morse DL. Hemolytic UremicSyndrome Incidence in New York. EmergingInfec. Dis 2004; 10: 928 -930.18.Siegler RL. Spectrum of extra renalinvolvement in post diarrheal haemolyticuremic syndrome. J Pediatr 1994; 125: 511 -518.19.Brilliant SE, Lester PA, Ohno AK, Karlon MJ,et al: Hemolytic uremic syndrome withoutevidence of microangiopathic haemolyticanaemia on peripheral blood smear. SouthMed J 1996; 89: 342 -5.20.Trompeter RS, Schwartz R, Chantler C, et al:Hemolytic Uremic Syndrome: an analysis ofprognostic features. Arch Dis Child 1983; 58:101 -105.21.Walters MDS, Matthei IV, Kay R, Dillon KJ,Barratt M. The polymorphonuclear leukocytecount in childhood haemolytic uremicsyndrome. Pediatr Nephrol 1989; 3: 130 -134.22.D ‘Souza IE, Phadke KD, Subba Rao SD.Atypical haemolytic uremic syndrome. IndianPediatr 2002; 39: 162-167.。

相关文档
最新文档