2011考研心理学心理统计学重点分析
《心理统计学》重要知识点

《心理统计学》重要知识点第二章统计图表简单次数分布表得编制:Excel 数据透视表列联表(交叉表):两个类别变董或等级变量得交叉次数分布,Excel 数据透视表直方图(histogram ):直观描述连续变量分组次数分布悄况,可用Excel 图表向导得柱形图来绘制 散点图(Scatter plot ):主要用于直观描述两个连续性变量得关系状况与变化趙向。
条形图(Bar chart ):用于直观描述称名数据、类别数据、等级数据得次数分布情况。
简单条形图:用于描述一个样组得类别(或等级)数据变董次数分布。
复式条形图:用于描述与比较两个或多个样组得类别(或等级)数据得次数分布。
圆形图(circle graph ).饼图(pie graph ):用于直观描述类别数据或等级数据得分布情况。
线形图(I ine graph ):用于直观描述不同时期得发展成就得变化趁势;第三章集中量数•集中趁势与离中趁势就是数据分布得两个基本特征。
•集中趟势:就就是数据分布中大董数据向某个数据点集中得趋妍。
•集中董数:描述数据分布集中趙势得统计董数。
•离中趁势:就是指数据分布中数据分散得程度。
•差异量数:描述数据分布离中趙势(离散程度)得统计董数•常用得集中量数有:算术平均数、众数(Mo ).中位数(MJ1.算术平均数(简称平均数,M 、X. Y ): X=^-Excel 统计函数AVERAGE算术平均数得重要特性: (1) 一组数据得离均差(离差)总与为0,即另(旳-x ) = 0(2) 如果变量X 得平均数为乂,将变董X 按照公式y = a + bx 转换为Y 变量后,那么,变量Y 得平均数Y=a + bX2. 中位数(median,此):在一组有序排列得数据中,处于中间位置得数值。
中位数上下得数据出现次数各占50%o3. 众数(mode, M 。
):一组数据中出现次数最多得数据。
4•算术平均数、中数、众数之间得关系。
正偏态分布M < Ma<M o 负偏态分布 正态分布 M Qi v 3 v6.调与平均数(harmon i c mean, MJ :一组数值倒数得平均数得倒数。
心理统计学知识点完整版资料整理

心理统计学知识点完整版资料整理1.数据的概念:在心理统计学中,数据是指信息的收集和组织形式。
数据可以是数字,也可以是文字或符号。
数据的收集可以通过实验、调查、观察等方式进行。
2.数据的分布:在心理统计学中,数据的分布是指通过统计方法和图表来展示数据的特征和规律。
常用的数据分布包括正态分布、偏态分布、均匀分布等。
3.描述性统计:描述性统计是用来描述和总结数据的方法。
常见的描述性统计包括均值、中位数、众数、标准差、变异系数等。
4.推论统计:推论统计是根据样本数据来对总体进行推断的方法。
推论统计主要包括参数估计和假设检验两个方面。
5.参数估计:参数估计是用样本数据来估计总体参数的值。
常见的参数估计方法包括点估计和区间估计。
6.假设检验:假设检验是用来判断总体参数是否满足一些假设的方法。
其中包括设置原假设和备择假设、选择显著性水平、计算统计量、确定拒绝域等步骤。
7.相关分析:相关分析用来研究两个或多个变量之间的关系。
其中最常用的是皮尔逊相关系数,可以用来衡量变量之间的线性相关程度。
8.回归分析:回归分析用来研究一个或多个自变量和因变量之间的关系。
通过回归分析可以得到回归方程,进而预测因变量的值。
9.方差分析:方差分析是一种用来研究多个样本之间差异的方法。
方差分析可以判断不同组之间的均值是否存在显著差异。
10.非参数统计:非参数统计是一种不依赖于总体参数的方法。
非参数统计主要包括秩次统计和分布自由度较小的统计方法。
11.实验设计:实验设计在心理统计学中扮演着重要的角色。
良好的实验设计可以保证实验的可靠性和有效性,并排除干扰因素。
12.抽样方法:抽样方法是指如何从总体中选取样本的方法。
常见的抽样方法包括随机抽样、系统抽样、整群抽样等。
以上是心理统计学的一些主要知识点的简要整理。
了解这些知识点可以帮助我们更好地理解和应用统计方法来分析心理学中的数据。
当然,心理统计学的内容还非常广泛,还有更多的知识点值得深入学习和研究。
《心理统计学》考点详解-第二、四、五章

冷二之前对心理统计学考点进行了分析,将整个统计归纳为43个知识点(戳蓝字直达→),介于心理统计学分值较大(占13分)且不易记忆,我们来逐章节进行梳理。
心理统计学共分5个章节:①(←戳蓝字进入复习)②了解了这些之后就进入第二章——对数据的分布以及总体参数进行一系列的估计【8个知识点】;③对于数据的操作要严谨,只有估计当然是不行的,所以接下来我们需要对数据进行一些假设并通过各种方法进行检验【16个知识点】;④第四章的各种研究设计的方差分析不是考察重点,我们就不过多浪费时间和精力了【1个知识点】;⑤第五章一元线性回归我们需要对几个名词解释考点进行记忆【4个知识点】。
由于第四章只有1个知识点,且在17年考察过,今年不可能重复考察,同时,第五章只有4个知识点,这篇文章中我们就将第二章、第四章和第五章的知识点一起进行梳理吧!第二章数据的分布及总体参数的估计第一节数据分布的特点【简答题-14、18年真题】正态分布的特点(14年)正态分布及曲线(18年)【选择题】正态分布总体的随机样本的关系:算术平均数±1S=68.26%算术平均数±1.645S=90%算术平均数±1.96S=95%算术平均数±2.58S=99%✔【名词解释】标准正态分布均值=0,方差=1的正态分布【选择题】标准分数的公式、二项分布的平均数、标准差(记住公式,以防计算类选择题)【选择题举例】一个班成绩平均分( ̄X)为90分,标准差(S)为3。
已知一个学生的成绩为97.5分,则该生成绩在班里的半分位是多少?解:带入标准分数公式可得:标准分数=(97.5-90)/3=2.5 2.5接近2.58,即该生的分数接近99.5%(即99%+1%÷2)第二节总体参数的估计✔【名词解释-16年真题】抽样分布样本统计量的概率分布✔【名词解释】样本平均数从正态分布的总体中可无限抽取大小为n的样本,所计算的这无限多个平均数的分布,称为样本平均数的分布。
心理统计学重点分析

心理统计学重点分析一.描述统计(一)统计图表1)统计图次数分布图:①直方图:用以矩阵的面积表示连续性随即变量次数分布的图形。
②次数多边形图:一种表示连续性随机变量次数分布的线形图,属于次数分布图。
③累加次数分布图:分为:累加直方图和累加曲线图;其中累加曲线的形状大约有三种:一种是曲线的上枝长于下枝(正偏态),另一种是下枝长于上枝(负偏态),第三种是上枝,下枝长度相当(正态分布)。
其他统计图:条形图:用于离散型数据资料;圆形图:用于间断性资料;线形图:更多用于连续性资料,凡预表示两个变量之间的函数关系,或描述某种现象在时间上的发展趋势,或一种现象随另一种现象变化的情况,用这种方法比较好。
散点图:2)统计表①简单次数分布表②分组次数分布表③相对次数分布表:将次数分布表中各组的实际次数转化为相对次数,即用频数比率表示。
④累加次数分布表⑤双列次数分布表:对有联系的两列变量用同一个表来表示其次数分布。
(二)集中量数1)算术平均数M优点:反应灵敏;计算严密;计算简单;简明易解;适合于进一步用代数方法演算;较少受抽样变动的影响;缺点:受极端数据的影响;若出现模糊不清的数据时,无法计算平均数;计算和运用平均数的原则:同质性原则;平均数与个体数值相结合的原则;平均数与标准差。
方差相结合原则;性质:①在一组数据中每个变量与平均数之差的总和等于零②在一组数据中,每一个数都加上一个常数C,所得的平均数为原来的平均数加常数C③在一组数据中,每一个数都乘以一个常数C,所得的平均数为原来的平均数乘以常数C2)中数:Md按顺序排列在一起的一组数据中居于中间位置的数,即这组数据中,一般数据比它大,一般数据比它小。
注意计算方法;3)众数:Mo是指在次数分布中出现次数最多的那个数值;三者的关系:正偏态分布中,M>Md>Mo负偏态分布中,M<Md<MoMo=3Md-2M(自己推导一下)(三)差异量数差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称为离散量数。
《心理统计学》总复习要点[]
![《心理统计学》总复习要点[]](https://img.taocdn.com/s3/m/9b7d2a3652d380eb62946d3e.png)
《心理统计学》总复习要点第一章、第二章基本概念及次数分布表第一节基本概念一、基本概念1.连续变量与离散变量(不连续变量)变量分为连续变量与离散变量(不连续变量)。
连续变量则可以在量表上的任何两点加以细分,可以取得无限多个大小不同的数值。
不连续变量又称离散变量或间断变量,则在量表上的任何两点中只能取得有限个数值。
是一种只能取特殊值而不能取任何值的变量,它代表一个点,而不是一段距离。
2.总体、样本、个体总体是指具有某一种特征的一类事物的全体,构成总体的每一个基本元素称为个体,在总体中按一定规则抽取的一部分个体,称为总体的一个样本。
二、测量水平心理测量的工具一般可以分为四种水平,它们是由测量工具——量尺的水平决定的,量尺也称为尺度。
(一)量尺(Ratio Measurement)用这样的量尺测量出的数据,可以进行加、减、乘和除运算。
这种测量水平的数据特征是有相等单位和绝对零点。
用这种量尺测量得到的数据变量为比率(或等比)变量。
(二)等距量尺(Interval Measurement)只有相等单位,没有绝对零点,这种测量工具称为等距量尺。
等距量尺测出的数据可以进行加和减的运算,而不能进行乘和除的运算。
但是,等距数据的差值可以进行乘、除运算,因为等距数据的差值有一个绝对零点,两个数值相等,差值即为零。
用这种量尺测量得到的数据变量为等距变量。
(三)顺序量尺(Ordinal Measurement)顺序量尺又叫等级量尺,它的特点是:既无绝对零点,又无相等单位。
用这种量尺对研究对象进行测量,只能给对象排个顺序。
顺序量尺的测量结果原则上不能进行加、减、乘、除四则运算。
如有必要的话,只能进行不等式运算。
用这种量尺测量得到的数据变量为顺序变量。
(四)分类量尺(Nominal Measurement)分类测量不包含任何类间数量关系的假定,仅仅是把测量对象分为相同或相异,但在性质上没有哪一类较大,哪一类较小之分。
即无大小之分,也无等级之分。
心理统计学知识点完整版资料整理

心理统计学知识点完整版资料整理1描述统计:主要研究如何让整理心理与教育科学实验或调查得来的大量数据。
描述一组数据的全貌表达一件事物的性质。
2推论统计:主要研究如何通过局部数据提供的信息,推论总体的情形。
3连续数据:任意两个数据点之间都可以细分出无限个大小不同的数值。
4统计量:样本的那些特征值,代表样本的特性。
5参数:描述总体情况的统计指标。
它代表了整体特征,是一个常数。
6组限:分组区间即一个组的起点值和终点值之间的距离;组下限起点值;组下限终点值。
组限分类表述组限,精确组限散7点图:用相同大小圆点的多少或疏密表示统计资料数量大小以及变化趋势的图。
8中数:按顺序排列在一起的一组数据中居于中间位置的数。
9众数:指在次数分布中出现次数最多的那个数的数值。
10平均差:次数分布中所有原始数据平均数绝对离差的平均值。
11方差:每个数据与该组数据平均数之差乘方后的均值12标准差:方差的平方根,反应一个次数分布的离散程度13概率:用一个比值来概括某事件出现可能性大小14置信区间:指总参数在一定置信度下的面积距离或面积长度。
置信区间的上下端点值称为置信限。
15组内变异:由组内各受试者因变量的差异范围决定,主要指实验误差引起的变异或组内受试者之间的差异。
16组间差异:不同实验处理引起的组间差异可以用两个平均值之间的偏差来表示。
两组之间的平均差异越大,地层变化越大17二项分布:试验仅有两种不同性质结果的概率分布。
样本分布:指样本统计的分布,是统计推断的重要依据。
19回归模型:用来表示变量之间规律的数学模型20标准分数:又称基分数或z分数,是以标准差为单位表示一个原始分数在团体中所处位置的相对位置量数。
优点:可比性可加性明确性稳定性21符号测试:这是一种以正负符号为数据的非参数测试程序。
这是一种简单的非参数检验方法,适用于检验两个配对样本分布之间的差异,并与参数检验中配对样本之间差异显著性的t检验相对应22事物之间的相互关系:因果关系,共变关系,相关关系r取值范围-1到123根据数据所反映的测量水平对数据进行分类,名称数据、序列数据、等距数据和比率数据是否具有连续性、离散数据和连续数据24。
统计心理学主要知识点归纳

统计心理学主要知识点归纳统计心理学是一门综合应用统计方法于心理学研究中的学科,通过收集、整理和分析大量的数据,旨在揭示心理学现象的规律和关联性。
本文将对统计心理学的主要知识点进行归纳和总结。
一、概率与统计基础概率与统计是统计心理学的基石。
研究者需要了解概率理论和统计学基本概念,如随机变量、概率分布、假设检验等。
概率理论提供了对事件发生概率的量化描述,统计学则提供了对数据的分析和解释的方法。
二、标准化和测量在统计心理学中,测量是一个核心概念。
研究者需要了解不同测量尺度(如名义尺度、顺序尺度、间隔尺度、比例尺度)的特点及其应用。
此外,标准化也是一项重要技术,它可以将原始分数转化为具有标准分布特征的分数,以便进行比较和分析。
三、相关性分析相关性分析用于研究变量之间的关联程度。
研究者经常使用皮尔逊相关系数或斯皮尔曼等级相关系数来度量变量之间的相关性。
这项分析可以帮助研究者确定变量之间的关系,并进一步推断其之间可能存在的因果关系。
四、假设检验假设检验是统计心理学中最常用的方法之一。
它用于检验研究者对事物的某种假设是否成立。
在进行假设检验时,研究者需要明确研究假设、选择适当的统计检验方法,并进行显著性检验以确定结果的可靠性。
五、方差分析方差分析用于比较两个或更多组之间的均值差异,常用于处理实验数据。
研究者需要选择适当的方差分析方法,并进行后续的事后比较分析以确定组间差异是否显著。
六、回归分析回归分析是研究变量之间关系及其影响程度的重要方法。
通过回归分析,研究者可以确定自变量对因变量的解释程度,并进行预测。
常见的回归方法包括线性回归、多元回归和逐步回归等。
七、因子分析因子分析是一种用于研究多个变量之间共同性的方法。
通过因子分析,研究者可以探索变量之间的内在结构,并将其归纳为几个共同的因子,以简化变量的复杂性。
八、统计软件的应用在统计心理学研究中,统计软件的应用非常广泛。
研究者可以使用SPSS、R、Python等工具进行数据分析和处理。
统计心理学主要知识点总结

统计心理学主要知识点总结统计心理学是心理学的一个重要分支领域,它通过运用统计学的方法和技术,研究人类心理现象及其规律。
本文将对统计心理学的主要知识点进行总结,旨在帮助读者更好地理解和应用统计心理学的理论和方法。
一、概述统计心理学是一门应用性较强的学科,它利用统计学的概念和方法,对心理学中的数据进行分析和解释。
统计心理学的主要任务是帮助心理学研究者进行数据处理和统计推断,从而揭示心理现象背后的规律和原因。
二、描述性统计描述性统计是统计心理学的基础,用于对心理学数据进行描述和概括。
描述性统计主要包括以下几个方面:1. 集中趋势:用于描述数据的集中程度,常用的指标包括均值、中位数和众数。
2. 离散程度:用于描述数据的离散程度,主要有标准差、方差和极差等指标。
3. 分布形态:用于描述数据的分布形态,例如正态分布、偏态分布和峰态分布。
三、概率与统计推断概率与统计推断是统计心理学的核心内容,它涉及到从样本数据中推断总体特征和进行假设检验等内容。
1. 概率原理:概率是描述事件发生可能性的数值,统计心理学利用概率理论解释和推断心理学现象。
2. 抽样与总体推断:从总体中随机选择样本,并利用样本数据推断总体特征。
3. 假设检验:用于检验研究假设的有效性,常见的方法包括t检验、方差分析和卡方检验等。
四、相关与回归分析相关与回归分析是统计心理学中用于研究变量间关系的重要方法。
1. 相关分析:用于衡量两个变量之间的相关程度,常用的指标有皮尔逊相关系数和斯皮尔曼相关系数。
2. 线性回归分析:用于建立一个或多个自变量与一个因变量之间的关系模型,通过回归方程进行预测和解释。
五、实验设计与数据分析实验设计与数据分析是统计心理学研究中关键的一环,它包括实验设计和数据分析方法的选择。
1. 随机分组与控制:在实验中使用随机分组和控制变量的方法,以降低其他因素对实验结果的影响。
2. 方差分析:用于比较两个或多个组之间的差异,并确定差异是否显著。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
心理统计学重点分析一.描述统计(一)统计图表1)统计图次数分布图:①直方图:用以矩阵的面积表示连续性随即变量次数分布的图形。
②次数多边形图:一种表示连续性随机变量次数分布的线形图,属于次数分布图。
③累加次数分布图:分为:累加直方图和累加曲线图;其中累加曲线的形状大约有三种:一种是曲线的上枝长于下枝(正偏态),另一种是下枝长于上枝(负偏态),第三种是上枝,下枝长度相当(正态分布)。
其他统计图:条形图:用于离散型数据资料;圆形图:用于间断性资料;线形图:更多用于连续性资料,凡预表示两个变量之间的函数关系,或描述某种现象在时间上的发展趋势,或一种现象随另一种现象变化的情况,用这种方法比较好。
散点图:2)统计表①简单次数分布表②分组次数分布表③相对次数分布表:将次数分布表中各组的实际次数转化为相对次数,即用频数比率表示。
④累加次数分布表⑤双列次数分布表:对有联系的两列变量用同一个表来表示其次数分布。
(二)集中量数1)算术平均数M1nii XX N==∑优点:反应灵敏;计算严密;计算简单;简明易解;适合于进一步用代数方法演算;较少受抽样变动的影响;缺点:受极端数据的影响;若出现模糊不清的数据时,无法计算平均数;计算和运用平均数的原则:同质性原则;平均数与个体数值相结合的原则;平均数与标准差。
方差相结合原则;性质:①在一组数据中每个变量与平均数之差的总和等于零②在一组数据中,每一个数都加上一个常数C,所得的平均数为原来的平均数加常数C ③在一组数据中,每一个数都乘以一个常数C,所得的平均数为原来的平均数乘以常数C 2)中数:Md 按顺序排列在一起的一组数据中居于中间位置的数,即这组数据中,一般数据比它大,一般数据比它小。
注意计算方法;3)众数:Mo 是指在次数分布中出现次数最多的那个数值;三者的关系:正偏态分布中,M>Md>Mo负偏态分布中,M<Md<MoMo=3Md-2M (自己推导一下)(三)差异量数差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称为离散量数。
1)离差与平均差离差:分布中的某点到均值得距离,其符号表示了某分数与均值之间的位置关系,而数值表示了它们之间的绝对距离。
所有的离差之和始终为零。
X µ=−x 平均差:次数分布中所有原始数据与平均数绝对离差的平均值。
..iX XA D n−=∑2)方差与标准差(1)总体的方差和标准差方差:每个数据与该组数据平均数之差乘方后的均值,即离均差平方后的均数。
作为样本统计量用符号s 2表示,作为总体参数用符号σ2表示,也叫均方。
2SS Nσ=标准差:方差的平方根作为样本统计量用符号s 表示,作为总体参数用符号σ表示。
σ=(2)样本的方差和标准差样本的变异性往往比它来自的总体的变异性要小。
为了校正样本数据带来的偏差,在计算样本方差时,我们用自由度来矫正样本误差,从而有利于对总体参数更好的无偏差估计:21SS S n =−S =(3)性质①每一个观测值都加一个相同的常数C 之后,计算得到的标准差等于原来的标准差;②每一个观测值都乘以一个相同的常数C,所得到的标准差等于原标准差乘以这个常数。
3)变异系数当遇到下列情况时,不能用绝对差异量来比较不同样本的离散程度,而应当使用相对差异量数,最常用的就是差异系数。
①两个或两个以上样本所使用的观测工具不同,所测的特质相同②两个或两个以上样本使用的是同种观测工具,所测的特质相同,但样本间水平差异较大差异系数:一种最常用的相对差异量,为标准差对平均数的百分比100%sCV X=×注题目:变异系数与标准差的区别于联系?标准差反映了一个次数分布的离散程度,当对同一个特质,使用同一种测量工具进行测量,所测样本水平比较接近时,直接比较标准差的大小即可以知道样本间离散程度的大小;但是当遇到下列情况,则不能直接比较标准差:(1)两个或两个以上的样本所使用的观测工具不同,所测的特质不同;(2)两个或两个以上的样本使用的是同一种观测工具,测量的也是同一种特质,但样本间的水平相差较大;在第一种情况下,标准差的单位不同,显然不能直接进行比较;第二种情况下,虽然标准差单位相同,但样本的水平不同,通常情况下,平均数的值较大,其标准差的值一般也较大;平均数的值越小,其标准差的值也越小;(四)相对量数1)百分位数:第P 百分位数就是指在其值为P 的数值以下,包括分布中全部数据的百分之p,其符号是Pp;2)百分等级:常模团体中低于该分数的人所占总体的百分比;百分位数的逆运算;3)标准分数(1)定义标准分数:以标准差为单位表示一个原始分数在团体中所处位置的相对位置量数,也叫Z 分数离平均数有多远,即表示原始分数在平均数以上或以下几个标准差的位置。
X XZ s−=(2)性质①Z 分数无实际单位,是以平均数为参照点,以标准差为单位的一个相对量②一组原始分数转换得到的Z 分数可正可负,所有原始分数的Z 分数之和为零③原始数据的Z 分数的标准差为1④若原始分数呈正态分布,则转换得到的所有Z 分数均值为0,标准差为1的标准正态分布(3)优点①可比性——不同性质的成绩,一经转换为标准分数,就可在同一背景下比较;②可加性——不同性质的原始数据具有相同的参照点,因此可相加;③明确性——知道了标准分数,利用标准正态分布表就能知道其百分等级;④稳定性——转换成标准分数之后,规定了标准差为1,保证了不同性质分数在总分数中权重一样。
(4)缺点①标准分数过于抽象不易理解;②在非正态分布下,分布形态不同的分数,仍然不能进行比较,也不能相加求和;(五)相关量数相关系数:两列变量间相关程度的数字表现形式作为样本的统计量用r 表示,作为总体参数一般用ρ表示。
正相关:两列变量变动方向相同负相关:两列变量中有一列变量变动时,另一列变量呈现出与前一列变量方向相反的变动零相关:两列变量之间没有关系,各自按照自己的规律或无规律变化1)积差相关(1)前提①数据要成对出现,即若干个体中每个个体都有两种不同的观测值,并且每队数据与其它对子相互独立,N 应不小于30对;②两列变量各自总体的分布都是正态的,至少接近正态;③两个相关的变量是连续变量,也即两列数据都是测量数据;④两列变量之间的关系应是直线性的;(2)公式(注意协方差:∑xy/N)X YXY r −=∑∑∑2)等级相关(就是Spearman 等级相关)适用范围适用于只有两列变量,而且是等级变量性质的具有线性关系的资料,若原始数据为等比或等距,则先转化为顺序型数据3)肯德尔等级相关(1)肯德尔W 系数(等级评定法)也叫肯德尔和谐系数,原始数据资料的获得一般采用等级评定法,即让K 个被试对N 件实物进行等级评定。
其原理是评价者评价的一致性除以最大变异可能性。
()()2223112i iR RNW K N N −=−∑∑R i :评价对象获得的K 个等级之和,N:等级评定的对象的数目,K:等级评定者的数目。
(2)肯德尔U 系数#其与肯德尔W 系数所处理的问题相同,但评价者采用对偶比较法,即将N 件事物两两配对分别进行比较。
()281(1)(1)ijij r K r U N n K K −=+−⋅−∑∑r ij 为对偶比较记录表中i>j 格中的择优分数。
当完全一致时U=1.当完全不一致时,U=-1/K(K 为奇数)U=-1/(K-1)(K 为偶数)4)点二列相关与二列相关(1)点二列相关适用于一列数据为等距或等比数据,而且其总体分布为正态,另一列为离散型二分称名变量。
多用于评价是非类测验题组成的测验的内部一致性等问题;p qpb tX X r s −=是与二分称名变量的一个值对应的连续变量的平均数,是与二分称名变量的另一个p X q X 值对应的连续变量的平均数,p 与q 是二分称名变量两个值各自所占的比率,s t 是连续变量的标准差(2)二列相关适用于两列变量都是正态等距变量,但其中一列变量被人为地分成两类。
p q b t X X pqr s y−=⋅注:两者之间的区别:二分变量是否为正态分布,总的原则是,如果不是十分明确,观测数据的分布形态是否为正态分布,这是不管观测数据代表的是一个真正的二分变量还是基于正态分布的人为的二分变量,都用点二列相关;当确认数据分布形态为正态分布,都应选用二列相关;5)Ф相关适用于两个变量都是只有两个点值或只表示某些质的属性。
r Φ=其中a、b、c、d 分别为四格表中左上、右上、左下、右下的数据具体见卡方检验二.推断统计(一)推断统计的数学基础(略)(二)参数估计1)点估计,区间估计,与标准误(1)一个良好估计量的标准:(1)无偏性:即用多个样本的统计量作为总体参数的估计值,其偏差的平均值为0;例如,用样本平均数作为总体平均数μ的估计值,就是无偏性;因为无限多个样本平均数X 与μ的偏差之和为零;但方差S 2不是σ2的无偏估计,σ2的无偏估计是:S 2n-1=∑x 2/(N-1)(2)有效性:当总体参数的无偏估计不止一个统计量时,无偏估计变异量小者有效性高,变异大者有效性底,即方差越小越好;例如μ的估计量有Mo,Md,X 但是,只有X 是变异量最小。
(3)一致性:即当样本无限增大,估计值应能够越来越接近它所估计的总体参数,估计值越来越精确,逐渐接近于真值;即当N →∞,X →μ,S 2n-1→σ2;(4)充分性:指一个容量为n 的样本统计量,是否充分地反映了全部n 个数据所反映的总体信息。
例如X 能反映所有数据所代表的总体的信息,故X 的充分性高;二Mo,Md 只反映了部分数据所反映的总体信息,充分性低;(2)区间估计:区间估计的原理是根据样本分布理论,应样本分布的标准误计算区间长度,解释总体参数落入某置信区间可能的概率;2)总体平均数的估计3)标准差与方差的估计(可以先算出方差的区间,再求标准差的区间)(三)假设检验1)假设检验的原理:(1)两类假设备则假设:因变量的变化、差异却是是由于自变量的作用往往是我们对研究结果的预期,用H 1表示。
虚无假设:实际上什么也没有发生,我们所预计的改变、差异、处理效果都不存在观察到的差异只是随机误差在起作用,用H 0表示。
(2)小概率原理小概率原理:小概率事件在一次试验中几乎是不可能发生的。
两类错误Ⅰ型错误:当虚无假设正确时,我们拒绝了它所犯的错误,也叫α错误。
Ⅱ型错误:当虚无假设是错误的时候,我们没有拒绝所犯的错误,也叫β错误。
两类检验的关系①α+β不一定等于1②在其他条件不变的情况下,α与β不可能同时减小或增大(4)检验的方向性单侧检验:强调某一方向的检验,显著性的百分等级为α双侧检验:只强调差异不强调方向性的检验,显著性百分等级为α/22)样本与总体平均数差异的检验3)两样本平均数差异的检验4)方差齐性的检验:(1)样本方差与总体方差当从正态分布的总体中随机抽取容量为n 的样本时,其样本方差与总体方差比值服从χ2分布:由自由度查χ2表,依据显著性水平判断2220nsχσ=1df n =−(2)两个样本方差之间①独立样本其中当两样本自由度相差不大时可用代替查表时22s F s =大小n s n-1s (双侧检验)11221,1df n df n =−=−②相关样本22t =2df n =−5)相关系数的显著性检验①积差相关a.当ρ=0时:其中t =2df n =−b.当ρ≠0时:先通过查表将r 和ρ转化为费舍Z r 和Zρ然后进行Z 检验。