北师大七年级数学下册第五章《三角形》测试B
七年级数学下册《第五章生活中的轴对称》单元测试卷附答案-北师大版

七年级数学下册《第五章生活中的轴对称》单元测试卷附答案-北师大版一、单选题1.下列图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.∠=︒,则∠2为()2.如图,将一个长方形纸条折成如图的形状,若已知1116A.125°B.124°C.122°D.116°3.一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为()A.30B.24C.18D.24或304.面对新冠疫情,我国毫不动摇坚持动态清零总方针,外防输入,内防反弹.下面是支付宝“国家政务服务平台”上与疫情防控相关的四个小程序图标,其中是轴对称图形的是()A.B.C.D.5.下列汉字中,可以看成轴对称图形的是()A.B.C.D.6.如图,把长方形ABCD沿EF折叠后使两部分重合,若∠1=40°,则∠AEF= ()A.110°B.100°C.120°D.140°7.如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48°,则∠2的度数为()A.138°B.132°C.121°D.111°8.如图,将∠ABC绕点A顺时针旋转角100°,得到∠ADE,若点E恰好在CB的延长线上,则∠BED的度数为()A.80°B.70°C.60°D.50°9.如图,在∠ABC中,∠ACB=90°,BE平分∠ABC,DE∠AB于D.如果AC=10cm,那么AE+DE 等于()A.6cm B.8cm C.10cm D.12cm10.下面是四位同学作∠ABC关于直线MN的轴对称图形,其中正确的是()A.B.C .D .二、填空题11.如图,APT 与CPT 关于直线PT 对称,A APT ∠=∠,延长AT 交PC 于点F 当A ∠= °时FTC C ∠=∠.12.如图,∠ABC 中,∠B=40°,点D 为边BC 上一点,将∠ADC 沿直线AD 折叠后,点C 落到点E 处,若DE∠AB ,则∠ADE 的度数为 °.13.如图,ABC 中,DE 垂直平分BC ,若ABD 的周长为104AB =,,则AC = .14.如图是由三个小正方形组成的图形请你在图中补画一个小正方形使补画后的图形为轴对称图形,共有 种补法.三、作图题15.如图,在正方形网格中,ABC 的三个顶点均在格点上.(1)画出111A B C ,使得111A B C 和ABC 关于直线l 对称;(2)过点C 作线段CD ,使得CD AB ,且CD AB .四、解答题16.如图,在∠ABC 中,高线CD 将∠ACB 分成20°和50°的两个小角.请你判断一下∠ABC 是轴对称图形吗?并说明你的理由.17.如图,长方形纸片ABCD ,点E 为BC 边的中点,将纸片沿AE 折叠,点B 的对应点为'B ,连接'.B C 求证:AE ∠'B C .18.如图,在∠ABC 中,AF 平分∠BAC 交BC 于点F ,AC 的垂直平分线交BC 于点E ,交AC 于点D ,∠B =60°,∠C =26°,求∠FAE 的度数.19.如图,在平面直角坐标系xOy 中,A (1,2),B (3,1),C (﹣2,﹣1).(1)在图中作出∠ABC关于y轴的对称图形∠A1B1C1(2)写出点A1,B1,C1的坐标(直接写答案).A1B1C1五、综合题20.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD= ▲ °;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则∠PMN的周长为.21.已知:如图,∠ABD和∠BDC的平分线交于点E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB CD;(2)试探究DF与DB的数量关系,并说明理由.22.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与∠ABC关于直线l成轴对称的∠AB′C′;(2)求∠ABC的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.参考答案与解析1.【答案】A【解析】【解答】解:A、是中心对称图形,但不是轴对称图形,故符合题意;B、不是中心对称图形,但是轴对称图形,故不符合题意;C、是中心对称图形,也是轴对称图形,故不符合题意;D、不是中心对称图形,但是轴对称图形,故不符合题意.故答案为:A.【分析】中心对称图形的定义:一个图形绕对称中心旋转180°后能够与原图形完全重合,这个图形叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此一一判断得出答案.2.【答案】C【解析】【解答】解:如图∵纸条的两边互相平行∴∠1+∠3=180°∵∠1=116°∴∠3=180°-∠1=180°-116°=64°根据翻折的性质得,2∠4+∠3=180°∴∠4= 12(180°-∠3)=12(180°-64°)=58°∵纸条的两边互相平行∴∠2+∠4=180°∴∠2=122°故答案为:C.【分析】由两直线平行同旁内角互补得∠1+∠3=180°,∠2+∠4=180°,结合已知可求得∠3的度数,由翻折性质得2∠4+∠3=180°可求得∠4的度数,把∠4的度数代入∠2+∠4=180°计算可求解.3.【答案】A【解析】【解答】当三边6,6,12时,6+6=12,不符合三角形的三边关系,应舍去;当三边是6,12,12时,符合三角形的三边关系,此时周长是30.故答案为:A.【分析】利用三角形三边的关系及等腰三角形的性质求解即可。
北师大七年级下册数学全等三角形习题精选

FED CB A 第五章 全等三角形 A一、选择题1.下列三角形不一定全等的是( ) A .有两个角和一条边对应相等的三角形 B .有两条边和一个角对应相等的三角形C .斜边和一个锐角对应相等的两个直角三角形D .三条边对应相等的两个三角形 2.下列说法:①所有的等边三角形都全等 ②斜边相等的直角三角形全等③顶角和腰长对应相等的等腰三角形全等 ④有两个锐角相等的直角三角形全等 其中正确的个数是( )A .1个B .2个C .3个D .4个3.如图,AB 平分∠CAD ,E 为AB 上一点,若AC=AD ,则下列结论错误的是( )=BD =DE 平分∠CBD D.图中有两对全等三角形是△ABC 的角平分线,自D 向AB 、AC 两边作垂线,垂足为E 、F ,那么下 列结论中错误的是 ( )=DF =AF =CD D.∠ADE=∠ADF5.在△ABC 中,∠B=∠C ,与△ABC 全等的三角形有一个角是130°,那么△ABC 中与这个 角对应的角是( ).A .∠AB .∠BC .∠CD .∠B 或∠C6.如图所示,BE ⊥AC 于点D ,且AD=CD ,BD=ED ,若∠ABC=54°,则∠E=( ).A .25°B .27°C .30°D .45° 7.如右图,△ABC 中,∠C=90°,AC =BC ,AD 平分∠CAB 交BC 于点D ,DE⊥AB,且AB =10 cm ,则△BED 的周长为 ( ) A .5 cm B .10 cm; C .15 cm D .20 cm8.如图,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,则①△ABE ≌△ACF ;②△BOF ≌△COE ;③点O 在∠BAC 的角平分线上,其中正确的结论有( )A .3个B .2个C .1个D .0个9.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E作EF ∥AC 交AB 于F ,则( ) A 、AF=2BF; B 、AF=BF; C 、AF>BF; D 、AF<BF E DCBAD A CE B CBAEF O二、填空题1.如果△ABC≌△A’B’C’,若AB =A’B’,∠B=50°,∠C=70°,则∠A’= °2.如图,若BD ⊥AE 于B ,DC ⊥AF 于C ,且DC=DC ,∠BAC=40°,∠ADG=130°,则∠DGF=________。
北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)

北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各选项中左边的图形与右边的图形成轴对称的是( )2.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多..的是( )A.正方形 B.等边三角形C.等腰三角形 D.线段4.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数是( )A.30° B.40°C.45° D.60°5.如图,在△ABC中,AB的垂直平分线交AC于点E,若AE=2,则B,E两点间的距离是( )A.2 B.3 C.4 D.56.能用无刻度直尺,直接准确画出下列轴对称图形的所有对称轴的是( )7.下列说法正确的是( )A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴8.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,E为OP上一点,则下列结论中错误..的是( )A.CE=DE B.∠CPO=∠DEPC.∠CEO=∠DEO D.OC=OD9.如图,有一张直角三角形纸片,两直角边AC=5 cm,BC=10 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长为( )A.10 cm B.12 cmC.15 cm D.20 cm10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.下面4个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题(每题3分,共30分)11.如图所示的图形中,对称轴的条数大于3的有________个.12.△ABC 和△A ′B ′C ′关于直线l 对称,若△ABC 的周长为12 cm ,△A ′B ′C ′的面积为 6 cm 2,则△A ′B ′C ′的周长为________,△ABC 的面积为________.13.已知等腰三角形的顶角是底角的4倍,则顶角的度数为________.14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于D ,若CD =12BD ,点D 到边AB 的距离为6,则BC 的长是________.15.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E ,F 是AD 的三等分点,若△ABC 的面积为12 cm 2,则图中阴影部分的面积为__________.16.如图,AC ,BD 相交于点O ,AB ∥DC ,AB =BC ,∠D =40°,∠ACB =35°,则∠AOD =________.17.如图,这是一组按照某种规律摆放成的图案,则第2 021个图案________轴对称图形(填“是”或“不是”).18.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF=________.19.如图,在正方形网格中,阴影部分是涂灰7个小正方形所形成的图案,再将网格内空白的一个小正方形涂灰,使得到的新图案成为一个轴对称图形的涂法有________种.20.两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD中,AB=AD,BC=DC,AC与BD相交于点O,下列判断正确的有__________(填序号).①AC⊥BD;②AC,BD互相平分;③CA平分∠BCD;④∠ABC=∠ADC=90°;⑤筝形ABCD的面积为12 AC·BD.三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.把图中的图形补成轴对称图形,其中MN,EF为各图形的对称轴.22.如图,D为△ABC的边BC的延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB,且CF交AB于点F,试判断CE与CF的位置关系.23.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,∠DAE与∠DAC的度数比为2∶1,求∠B的度数.24.如图,已知△ABC是等腰三角形,且AB=AC,D是△ABC外一点,连接AD,BD.已知AB=AD,AD∥BC,∠D=35°,求∠DAC的度数.25.如图,校园有两条路OA,OB,在交叉口附近有两块宣传牌C,D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你画出灯柱的位置点P,并说明理由.26.如图①,△ABC为等腰直角三角形,∠BAC=90°,点D为直线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD 左侧作等腰直角三角形ADE,连接CE.(1)当点D在线段BC上时(不与点B重合),线段CE和BD的数量关系与位置关系分别是什么?请给予说明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图②中画出相应的图形,并说明理由.参考答案一、1.C 2.D 3.A 4.B 5.A6.A 7.C 8.B 9.C 10.A二、11.312.12 cm;6 cm213.120°14.1815.6 cm216.75°点拨:因为AB=BC,所以∠BAC=∠ACB=35°.因为AB∥CD,所以∠ABD=∠D=40°.所以∠AOB=180°-35°-40°=105°.所以∠AOD=180°-105°=75°.17.是18.60°点拨:因为AB=BC=CD=DE=EF,所以∠BCA=∠A =15°.所以∠ABC=150°.所以∠CBD=∠CDB=30°.所以∠ACD=135°.所以∠CED=∠ECD=45°.所以∠ADE=120°.所以∠EDF=∠EFD=60°.所以∠DEF=60°.19.320.①③⑤三、21.解:如图所示.22.解:因为CD=CA,E是AD的中点,所以∠ACE=∠DCE.因为CF平分∠ACB,所以∠ACF=∠BCF.因为∠ACE+∠DCE+∠ACF+∠BCF=180°,所以∠ACE+∠ACF=90°,即∠ECF=90°.所以CE⊥CF.23.解:设∠DAC=x,则∠DAE=2x.因为DE是AB的垂直平分线,所以DA=DB.所以∠B=∠DAB=2x.因为∠C=90°,所以2x+(2x+x)=90°,x=18°.所以∠B=36°.24.解:因为AD∥BC,所以∠D=∠DBC,∠DAC=∠ACB.因为AB=AC=AD,所以∠D=∠ABD,∠ACB=∠ABC=∠ABD+∠DBC=2∠D=2×35°=70°.所以∠DAC=70°.25.解:如图,到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C,D的距离相等的点则在线段CD的垂直平分线上,故它们的交点P 即为所求.26.解:(1)CE =BD ,且CE ⊥BD .说明:由题可知AC =AB ,AE =AD .因为∠EAD =∠BAC =90°,所以∠EAD -∠CAD =∠BAC -∠CAD ,即∠EAC =∠DAB .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC=AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ECA =∠DBA .所以∠ECD =∠ECA +∠ACD =∠DBA +∠ACD =180°-90°=90°.所以CE ⊥BD .(2)(1)的结论仍然成立.理由如下:画出的图形如图所示.由题可知AC =AB ,AE =AD .因为∠CAB =∠DAE =90°,所以∠CAB +∠CAD =∠DAE +∠CAD ,即∠CAE =∠BAD .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ACE =∠B .所以∠BCE =∠ACE +∠ACB =∠B +∠ACB =180°-90°=90°. 所以CE ⊥BD .。
北师大版七年级数学下册第五单元三角形测试题及答案

北师大版七年级数学下册第五单元三角形测试题及答案一、填空题:(每题2分,共24分)1.等边三角形的每个内角都等于º2.已知直角三角形的一个锐角的度数为50º,则其另一个锐角的度数为度3.如图在建筑工地上,工人师傅砌门时,常用木条EF固定长方形门框,使其不变形,这种做法的根据是4.如图,△ABC中,DE∥BC,若∠A=80º,∠B=40º,则∠AED=º5.如图,△ABC中,∠A=40º,∠B=80º,CD平分∠ACB,则∠ACD=º6.已知△ABC≌△DEF,且△ABC的三边长分别为3,4,5,则△DEF的周长为cm7.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是三角形8.如图,已知AB=AC,EB=EC,则图中共有全等三角形对9.如图所示的两个三角形全等吗?10.如图,已知AD为△ABC的中线,请添加一个条件,使得∠1=∠2,你添加的条件是11.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠A′O′B′=∠AOB,需要证明△A′O′B′≌△AOB,则这两个三角形全等的依据是(写出全等的简写)12.把一副三角板按如图所示放置,已知∠A=45º,∠E=30º,则两条斜边相交所成的钝角∠AOE的度数为度二、选择题(每题3分,共30分)13.如图,三角形被遮住的两个角不可能是A.一个锐角,一个钝角B.两个锐角C.一个锐角,一个直角D.两个钝角14.有下列长度的三条线段,能组成三角形的是()A、1cm,2cm,3cmB、1cm,4cm,2cmC、2cm,3cm,4cmD、6cm,2cm,3cm15.下列条件中,能判断两个直角三角形全等的是()A、一个锐角对应相等B、两个锐角对应相等C、一条边对应相等D、两条边对应相等16.两根木条的长分别是10cm和20cm,要钉成一个三角形的木架,则第三根木条的长度可以是()A、10cmB、5cmC、25cmD、35cm17.小明不慎将一块三角形的玻璃摔碎成如图所示的四块哪一些块带去,就能配一块与原来一样大小的三角形。
七年级数学下册北师大版第五章《三角形》知识点总结

七年级数学下册北师大版第五章《三角形》知识点总结第一篇:七年级数学下册北师大版第五章《三角形》知识点总结第五章《三角形》知识点总结(北师大版七年级下)一、三角形及其有关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形的表示:三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
3、三角形的三边关系:(1)三角形的任意两边之和大于第三边。
(2)三角形的任意两边之差小于第三边。
(3)作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
4、三角形的内角的关系:(1)三角形三个内角和等于180°。
(2)直角三角形的两个锐角互余。
5、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
6、三角形的分类:(1)三角形按边分类:不等边三角形三角形等腰三角形底和腰不相等的等腰三角形等边三角形(2)三角形按角分类:直角三角形(有一个角为直角的三角形)锐角三角形(三个角都是锐角的三角形)钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
7、三角形的三种重要线段:(1)三角形的角平分线:定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
性质:三角形的三条角平分线交于一点。
交点在三角形的内部。
(2)三角形的中线:定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
性质:三角形的三条中线交于一点,交点在三角形的内部。
(3)三角形的高线:定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
2020-2021学年七年级数学北师大版下册第五章生活中的轴对称单元测试B卷

北师大版七年级下册第五章生活中的轴对称单元测试B卷姓名:班级:一、选择题1.小华将一张如图所示矩形纸片沿对角线剪开,他利用所得的两个直角三角形通过图形变换构成了下列四个图形,这四个图形中不是轴对称图形的是( )2.如图是一台球桌面示意图,图中小正方形的边长均相等.黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( )(A)①(B)②(C)⑤(D)⑥3.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )(A)6 (B)7 (C)8 (D)94.如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC,BA分别于点D,E,则△AEC的周长等于( )(A)a+b (B)2a+b(C)a+2b (D)2a+2b5.下列说法中,正确的是()A.关于某条直线对称的两个三角形是全等三角形B.全等的两个三角形是关于某条直线对称的C.两个图形关于某条直线对称,则这两个图形一定分别位于这条直线的两侧D.全等的两个图形一定成轴对称6.将一张正方形的纸沿对角线对折后可以得到一个等腰直角三角形,再将等腰直角三角形对折使它的两个锐角重合,又得到一个小等腰直角三角形,在这个小等腰直角三角形上任意剪一个图案,展开后它至少有几条对称轴( )(A)1条(B)2条(C)3条(D)4条7.如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( )8.如图,OE是∠AOB的平分线,BD⊥OA于D,AC⊥BO于C,则关于直线OE对称的三角形有( )(A)2对(B)3对 (C)4对(D)5对9.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形 B. 有一个内角是45°直角三角形C. 有一个内角是30°的直角三角形D. 有两个角分别是30°和120°的三角形10.下列图形中,轴对称图形有()A.1个B.2个C. 3个D.4个二、填空题11.如图中的剪纸作品有____条对称轴.12.如图,M为矩形纸片ABCD的边AD的中点,将纸片沿BM,CM折叠,使点A落在A1处,点D落在D1处.若∠A1MD1=40°,则∠BMC的度数为____.13.如果△ABC的两个内角为∠A=67°,∠B=46°,则△ABC____轴对称图形(填“是”或“不是”).14.在“东山再起”这四个字中,是轴对称图形的字为____.15.请在下图各组符号中找出它们所蕴含的内在规律,然后在横线的空白处设计一个恰当的图形.三、解答题16.如图,∠AOB=30°,角内有一点P,PO=10 cm,两边上各有一点Q,R(均不同于点O),则△PQR的周长的最小值是多少?17.已知图形B是一个正方形,图形A由三个图形B构成,如图所示,请用图形A与B合拼成一个轴对称图形,并把它画在表格中.18.已知等边△ABC和点P,设点P到△ABC三边AB,AC,BC的距离分别为h1,h2,h3,△ABC的高为h.“若点P在一边BC上,此时h3=0,可得结论:h1+h2+h3=h.”请直接应用上述信息解决下列问题:当点P在△ABC内,点P在△ABC外这两种情况时,上述结论是否还成立?若成立,请说明理由;若不成立,h1,h2,h3与h之间又有怎样的关系?请直接写出你的猜想.19.如图,在一条河的两岸分别有A,B两个村庄,现要修一条垂直于河岸的桥,问桥修在何处,能使从A村到B村所走的路程最短?。
北师大版数学七年级下册第五章生活中的轴对称 达标测试卷(含答案)

第五章生活中的轴对称达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.观察下列平面图形,其中轴对称图形共有()A.4个B.3个C.2个D.1个(第1题)(第2题)(第3题)2.如图所示的图形是轴对称图形,点A和点D,点B和点E是对应点.若∠A =50°,∠B=70°,则∠D+∠E的度数为()A.100°B.110°C.120°D.130°3.如图,在3×3的正方形网络中,从空白的小正方形中再选择一个涂黑,使得3个涂黑的正方形构成轴对称图形,则选择的方法有()A.3种B.4种C.5种D.6种4.等腰三角形的一个内角为40°,它的顶角的度数是()A.70°B.100°C.40°或100°D.70°或100°5.将一张正方形纸片依次按图a,图b的方式对折,然后沿图c中的虚线裁剪,最后将图d的纸展开铺平,所看到的图案是()(第5题)(第7题)6.在△ABC中,∠C=90°,BC=16 cm,∠A的平分线AD交BC于D,且CD∶DB=3∶5,则点D到AB的距离等于()A.6 cm B.7 cm C.8 cm D.9 cm7.如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD的度数为()A.65°B.35°C.30°D.25°8.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC外作等腰三角形ACD,作∠ADC的平分线分别交AB,AC于点E,F.若AC=12,BC=5,△ABC的周长为30,点P是直线DE上的一个动点,则△PBC周长的最小值为()(第8题)A.15 B.17 C.18 D.20二、填空题(共5小题,每小题3分,计15分)9.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.(第9题)(第11题)(第12题)(第13题)10.已知等腰三角形的一个内角为70°,则这个等腰三角形底角的度数为________.11.如图,直线AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是________.12.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,EF经过点O,分别交AB、AC于点E、F,BE=OE,OF=5 cm,点O到BC的距离为4 cm,则△OFC的面积为________cm2.13.如图,△ABE和△ADC是△ABC分别沿着AB,AC边对折所形成的,若∠1∶∠2∶∠3=13∶3∶2,则∠α的度数为________.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)如图所示的五角星共有几条对称轴?请你在下图中分别画出来.(第14题)15.(5分)以图中的虚线为对称轴画出该图形的另一半.(第15题)16.(5分)如图,四边形ABCD与四边形EFGH关于直线MN对称.(1)线段AD的对应线段是________,CD=________,∠CBA=________,∠ADC=________.(2)连接AE,BF.AE与BF平行吗?为什么?(3)若AE与BF平行,则能说明轴对称图形中对应点的连线一定互相平行吗?(第16题)317.(5分)在植树节活动中,两个班的学生分别在M,N两处植树,现要在道路AB,AC交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且使PM=PN,请同学们用圆规、直尺在图中画出供应点P的位置,保留画图痕迹,不写作法.(第17题)18.(5分)如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.(第18题) 19.(5分)如图,在△ABC中,AB=AC,D是BC边上的中点,DE⊥AB于点E,DF⊥AC于点F. 试说明DE=DF .(第19题)20.(5分)把两个同样大小的含30度的三角尺像如图所示那样放置,其中M是AD与BC的交点.(第20题)(1)试说明MC的长度等于点M到AB的距离;(2)求∠AMB的度数.521.(6分)如图,已知CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O且AO平分∠BAC.试说明OB=OC.(第21题)22.(7分)如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB 交AD的延长线于点E.试说明CE=AB.(第22题)23.(7分)如图,在△ABC中,AB=AC,BD⊥AC于点D.试说明∠DBC=12∠BAC.(第23题)24.(8分)如图,在直角三角形ABC中,∠ACB=90°,△CAP和△CBQ都是等边三角形,BQ和CP交于点H,试说明BQ⊥CP .(第24题)25.(8分)如图,已知△ABC,AB=AC,AD是△ABC的角平分线,EF垂直平分AC,与AC,AD,AB分别交于点E,M,F.若∠CAD=20°,求∠MCD的度数.7(第25题)26.(10分)综合与探究:如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D与点B,C不重合),连接AD,作∠ADE=40°,DE交线段AC于点E. (1)当∠BDA=115°时,∠EDC=________°,∠DEC=________°;在点D从点B向点C的运动过程中,∠BDA逐渐变______(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,何时DA与DE的长度相等?求出此时∠BDA的度数.(第26题)答案一、1.C 2.C 3.C 4.C 5.D 6.A7.C8.C二、9.210.55°或70°11.312.1013.100°三、14.解:如图所示的五角星共有5条对称轴.对称轴如图所示.(第14题)15.解:如图所示.(第15题)16.解:(1)线段EH;GH;∠GFE;∠EHG(2)AE∥BF.理由如下:因为每对对应点连接成的线段被对称轴重直平分,则EA⊥MN,BF⊥MN,所以AE∥BF.(3)AE∥BF不能说明对应点的连线一定互相平行,还有可能共线.17.解:如图所示,点P即为所求.(第17题)18.解:因为AB=AD,所以∠B=∠ADB,因为∠BAD=26°,所以∠B=12(180°-∠BAD)=12×(180°-26°)=12×154°=77°,所以∠ADB=77°,所以∠ADC=103°. 因为AD=CD,所以∠DAC=∠C,所以∠C=12(180°-∠ADC)=38.5°.919.解:连接AD,因为AB=AC,点D是BC边上的中点.所以AD平分∠BAC(三线合一),因为DE、DF分别垂直AB、AC于点E和F.所以DE=DF(角平分线上的点到角两边的距离相等).20.解:(1)过点M作MN⊥AB,易得∠CAD=∠DAB=30°,因为∠C=90°,MN⊥AB,所以MC=MN(角平分线上的点到角两边的距离相等),即MC的长度等于点M到AB的距离.(2)由题意知∠MAB=∠MBA=30°,所以∠AMB=180°-30°-30°=120°.21.解:因为AO平分∠BAC,CE⊥AB于点E,BD⊥AC于点D,所以OE=OD,又因为在直角三角形OBE和直角三角形OCD中,∠BOE=∠COD,∠BEO =∠ODC=90°,所以△OBE≌△OCD,所以OB=OC.22.解:因为AB=AC,AD是BC边上的高,所以BD=CD.因为CE∥AB,所以∠BAE=∠E,∠B=∠ECD,所以△ABD≌△ECD,所以CE=AB.23.解:作∠BAC的平分线AE,与BC,BD分别交于点E,F,则∠CAE=1 2∠BAC.因为AB=AC,所以由等腰三角形的“三线合一”可知AE⊥BC,所以∠AEB=90°.因为BD⊥AC,所以∠ADB=90°.又因为∠BFE=∠AFD,所以∠DBC=∠CAE,故∠DBC=12∠BAC.24.解:因为△CAP和△CBQ都是等边三角形,所以∠ACP=∠CBQ=60°,因为∠ACB=90°,所以∠BCP=∠ACB-∠ACP=30°,在△BCH中,∠BHC=180°-∠BCH-∠CBH=180°-30°-60°=90°,所以BQ⊥CP.25.解:因为AB=AC,AD是△ABC的角平分线,所以AD⊥BC.因为∠CAD=20°,所以∠ACD=70°.因为EF垂直平分AC,所以AM=CM,所以∠ACM=∠CAD=20°,所以∠MCD=∠ACD-∠ACM=70°-20°=50°.26.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为∠C=40°,所以∠DEC+∠EDC=140°.因为∠ADE=40°,所以∠ADB+∠EDC=140°,所以∠ADB=∠DEC.在△ABD和△DCE中,因为∠ADB=∠DEC,∠B=∠C,AB=DC=2,所以△ABD≌△DCE.(3)当△ABD≌△DCE时,DA=DE.因为∠ADE=40°,所以∠DAE=∠DEA=70°,所以∠DEC=110°.因为△ABD≌△DCE,所以∠BDA=∠DEC=110°.11。
2020年北师大版七年级数学下册单元测试题《第5章生活中的轴对称》测试题 含答案

七年级下册单元测试卷《第5章生活中的轴对称》测试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1、将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.2、如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处3、如图,已知△ABC是等边三角形,点D,E,F分明是边AB,BC,AC的中点,则图中等边三角形的个数是()A.2个B.3个C.4个D.5个4、如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50° B.70° C.75° D.80°5、如图,在正方体的两个面上画了两条对角线AB,AC,则∠BAC等于()A.60°B.75°C.90° D.135°6、图中序号(1)(2)(3)(4)对应的四个三角形,都是△ABC这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是()A.(1) B.(2)C.(3) D.(4)7、如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是()号.A.1 B.2 C.3 D.48、如图,在3×4的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置共有()A.7处 B.4处C.3处D.2处9、如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CEC.AD D.AC10、如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题6小题,每小题4分,共24分)11、如图,有一个英语单词,四个字母都关于直线l对称,请在试卷上补全字母,在答题卡上写出这个单词所指的物品__________.12、如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.13、下列轴对称图形中,只用一把无刻度的直尺能画出对称轴的序号是_________.①菱形②三角形③等腰梯形④正五边形14、如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为__________.15、如图,六边形ABCDEF的六个角都是120°,边长AB=1cm,BC=3cm,CD=3cm,DE=2cm,则这个六边形的周长是:______________.16、数学兴趣小组开展以下折纸活动:(1)对折矩形ABCD,使AD和BC重合,得到折痕EF,把纸片展平;(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.观察,探究可以得到∠ABM的度数是__________.三:解答题(一)(本大题共3题,每小题6分,共18分)17、生活中因为有美丽的图案,才显得丰富多彩,以下是来自现实生活中的两个图案(图1、2、).请在图3,图4中画出两个是轴对称图形的新图案.18、如图,在矩形ABCD 中,点E 为BC 的中点,点F 在CD 上,要使△AEF 的周长最小时,画图确定点F 的位置.19、如果一个图形有两条对称轴,如长方形,那么这两条对称轴夹角是多少度?其他有两条对称轴的图形的两条对称轴是否也具有这个特征?如果一个图形有三条对称轴,如正三角形,它的三条对称轴相邻两条的夹角是多少度?其他有三条对称轴的图形的三条对称轴是否也具有这个特征?如果一个图形有n 条对称轴,那么每相邻的两条对称轴的夹角为多少度?四、解答题(二)(本大题共3题,每小题7分,共21分)20、如图,直线AD 和CE 是△ABC 的两条对称轴,AD 和CE 相交于点O . (1)从边来看,△ABC 是什么三角形?说明理由.(2)OD 与OE 有什么数量关系?说明理由21、如图图,△ABC 中,∠C =090, ∠A =030.(1)作图:用尺规作线段AB 的中垂线DE,交AC 于点D,交AB 于点E,(保留作图痕迹,不要求写作法和证明)(2)连接BD ,请你判断BD 是否平分∠CBA ,并说明你的理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形(B )
一、选择题(每小题3分,共30分) 1.有木条五根,分别为12cm ,10cm ,8cm ,6cm ,4cm 任取三根能组成三角形的概率是( ) A.
10
7 B.5
3 C.97 D.3
2
2.下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500
和200
的三角形一定是钝角三角形,④直角三角形中两锐角的和
为900
,其中判断正确的有( )
A.1个
B.2个
C.3个
D.4个
3. 在下列条件中:①∠A +∠B=∠C ,②∠A ∶∠B ∶∠C=1∶2∶3,③∠A=900
-∠B , ④∠A=∠B= 1
2
∠C 中,能确定△ABC 是直角三角形的条件有( )
A.1个
B.2个
C.3个
D.4个
4.已知:如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O 点, ∠1=∠2.图中全等的三角形共有 ( )
A .1对
B .2对
C .3对
D .4对
5.
如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻
店去配一块完全一样的玻璃,那么最省事的办法是( ) A.带①去 B. 带②去 C. 带③去 D. 带①和②去
6.右图中三角形的个数是( )
A .6
B .7
C .8
D .9
7.如果两个三角形全等,那么下列结论不正确的是( )
A .这两个三角形的对应边相等
B .这两个三角形的周长相等
C .这两个三角形的面积相等
D .这两个三角形都是锐角三角形
8.在下列四组条件中,能判定△ABC ≌△A /B /C
/的是( )
A.AB=A /B /,
BC= B /C /,∠A=∠A / B.
∠A=∠A /,∠C=∠C /,AC= B /C /
C.∠A=∠B /,∠B=∠C /,AB= B /C /
D.AB=A /B /,BC= B /C /,△ABC 的周长等于△A /B /C /的周长 9.下列图中,与左图中的图案完全一致的是( )
10.要测量河岸相对两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD=BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,如图,可以说明△EDC ≌△ABC ,得ED=AB ,因此测得ED 之长即为AB 的距离,判定△EDC ≌△ABC 的理由是( ) A .SAS B .ASA C .SSS D .HL 二.填空题:(每小题3分,共30分)
11. 如图,△ABC 中,∠ABC 和∠ACB 的平分线交于点O , 若∠BOC=120°, 则∠A=________°
12.用三种方法将一个等边三角形分成三个全等的图形.
② ①
③
5题 C D
A
B
E F 6题
A
B C
D A
B
C
O
11题
13.三角形的两边长分别为2cm ,4cm ,若已知第三边长为其中一边长的2倍,则此三角形的周长为 .
14.在△ABC 中,AD 是角平分线,AE 是高,若∠B=500
,∠C=700
,则∠DAE= .
15.一个零件的形状如图所示,若∠A=600,∠B=200,∠D=300
,则∠BCD= .
16.如图,延长△ABC 的中线AD 至E ,使DE=AD ,连结BE ,则△ADC ≌△EDB ,其中所使用的判定方法为 ,BE 与AC 的位置关系是
17.如图,△ABC ≌△DEF , 写出一组相等的角 ,写出二组平行线 ,写出四组相等的线段 .
18.如第17图,在△ABC 和△DEF 中,AB=DE ,当 时,△ABC ≌△DEF ,理由是 .
19.如图所示,已知两个三角形全等,其中某些边的长度及某些角的度数已知,则x=
20.如图,在Rt △ABC 与Rt △DEF 中,∠B=∠E=900,AC=DF ,AB=DE ,∠A=500
,则∠DFE=
三、解答题(共60分)
21(本题10分)如图,在△ABC 中,∠ABC=520,∠ACB=680,CD 、BE 分别是AB 、AC 边上的高,BE 、CD 相交于O 点,求∠BOC 的度数.
A B
C D 15题
A B
E
C D
16题
A
B
C F E
D
17题
A
B
D
E C
O
19题 730
5cm 520
甲 730
5cm 乙 A B C E D 20题
22.(本题12分)如图,直线AC ∥DF ,C 、E 分别在AB 、DF 上,小华想知道∠ACE 和∠DEC
是否互补,但是他有没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF ,再找出CF 的中点O ,然后连结EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补,而且他还发现BC =EF 。
以下是他的想法,请你填上根据。
小华是这样想的:
因为CF 和BE 相交于点O ,
根据 得出∠COB =∠EOF ; 而O 是CF 的中点,那么CO =FO ,又已知 EO =BO ,
根据 得出△COB ≌△FOE , 根据
得出BC =EF ,
根据 得出∠BCO =∠F ,
既然∠BCO =∠F ,根据 出AB ∥DF , 既然AB ∥DF ,根据 得出∠ACE 和∠DEC 互补.
24.(本题10分)如图所示,有一直角三角形△ABC ,∠C=900,AC=10cm ,BC=5cm ,一条线段PQ=AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AM 上运动,问P 点运动到AC 上什么位置时,△ABC 才能和△APQ 全等.
D C B
A
E F
O Q
25.(本题10分)学校进行撑竿跳高比赛,要看横杆AB 的两端和地面的高度AC 、BD 是否相同,小明发现这时AC 、DB 在地面上的影子的长度CE 、FD 相同,于是他就断定木杆两端和地面的高度相同,他说的对吗?为什么?
23、已知AB ∥CD , BE 、CF 平分∠ABC ,∠BCD 探索BE 与CF 的位置关系,并说明理由。