江苏省苏州市高一上学期数学1月联考试卷
江苏省苏州中学高三数学1月月考质量检测试题苏教版

2014.1一、填空题:1. 已知集合⎭⎬⎫⎩⎨⎧∈==R x y y A x ,21|,{}R x x y y B ∈-==),1(log |2,则=⋂B A ▲ . 2.已知命题:p “若b a =,则||||=”,则命题p 及其逆命题、否命题、逆否命题中,正确命题的个数是 ▲ .3. 已知x 是7,6,5,,3,2,1x 这7个数据的中位数,且y x -,,2,12这四个数据的平均数为1,则x y 1-的最小值为 ▲ .4. 已知⎩⎨⎧>+-≤=0,1)1(0,cos )(x x f x x x f π,则4()3f 的值为 ▲ . 5. 已知向量),cos 6,9(),3,5(α--=-= α是第二象限角,)2//(-,则αtan = ▲ .6. 已知直线 ⊥平面α,直线m ⊂平面β,有下面四个命题:①α∥β⇒ ⊥m ;②α⊥β⇒ ∥m ;③ ∥m ⇒α⊥β;④ ⊥m ⇒α∥β 其中正确命题序号是 ▲ . 7. 已知数列{}n a 中,n a *N ∈,对于任意*n N ∈,1n n a a +≤,若对于任意正整数K ,在数列中恰有K 个K 出现,求50a =▲ .8. 设y x ,均为正实数,且33122x y +=++,则xy 的最小值为 ▲ .9.已知方程2x +θtan x -θsin 1=0有两个不等实根a 和b ,那么过点),(),,(22b b B a a A 的直线与圆122=+y x 的位置关系是 ▲ . 10.若动直线)(R a a x ∈=与函数())()cos()66f x x g x x ππ=+=+与的图象分别交于N M ,两点,则||MN 的最大值为 ▲ .11. 各项都为正数的数列{}n a ,其前n 项的和为n S ,且2(2)nS n =≥,若11n nn n n a a b a a ++=+,且数列{}n b 的前n 项的和为n T ,则n T = ▲ .12.若函数32()f x x ax bx c =+++有极值点12,x x ,且11(=f x x )则关于x 的方程213())2()0f x af x b ++=(的不同实根个数是 ▲ .13.已知椭圆与x 轴相切,左、右两个焦点分别为)25(1,1(21,),F F ,则原点O 到其左准线的距离为 ▲ .14. 设13521A ,,,,2482n nn -⎧⎫=⎨⎬⎩⎭(),2n N n *∈≥,A n 的所有非空子集中的最小元素的和为S ,则S = ▲ . 二、解答题:15.(本小题满分14分)设向量),cos ,(sin x x a =),sin 3,(sin x x b =x ∈R ,函数)2()(b a a x f +⋅=. (1)求函数)(x f 的单调递增区间;(2)求使不等式()2f x '≥成立的x 的取值集合.16.(本小题满分14分)如图,在四棱锥ABCD P -中,底面为直角梯形,//,90AD BC BAD ︒∠=,PA 垂直于底面ABCD ,N M BC AB AD PA ,,22====分别为PB PC ,的中点.(1)求证:DM PB ⊥; (2)求点B 到平面PAC 的距离.17.(本小题满分14分)某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施不能建设开发,且要求 用栏栅隔开(栏栅要求在直线上),公共设施边界为曲线2()1(0)f x ax a =->的一部分,栏栅与矩形区域的边界交 于点M 、N ,切曲线于点P ,设(,())P t f t .( I)将OMN ∆(O 为坐标原点)的面积S 表示成f 的函数S(t);(II)若12t =,S(t)取得最小值,求此时a 的值及S(t)的最小值.18.(本小题满分16分)如图:在平面直角坐标系xOy 中,已知12,F F 分别是椭圆E:()222210y x a b a b +=>> 的左、右焦点,A ,B 分别是椭圆E 的左、右顶点,且225AF BF +=0. (1)求椭圆E 的离心率;(2)已知点D (1,0)为线段2OF 的中点,M 为椭圆E 上的动点(异于点A 、B ),连接1MF 并延长交椭圆E 于点N ,连接MD 、ND 并分别延长交椭圆E 于点P 、Q ,连接PQ ,设直线MN 、PQ 的斜率存在且分别为1k 、2k ,试问是否存在常数λ,使得120k k λ+=恒成立?若存在,求出λ的值;若不存在,说明理由.19. (本小题满分16分) 已知数列{}n a 具有性质:①1a 为整数;②对于任意的正整数n ,当na 为偶数时,12n n a a +=;当n a 为奇数时,112n n a a +-=. (1)若1a 为偶数,且123,,a a a 成等差数列,求1a 的值;(2)设123m a =+(3m >且m ∈N),数列{}n a 的前n 项和为n S ,求证:123m n S +≤+;(3)若1a 为正整数,求证:当211log n a >+(n ∈N)时,都有0n a =.20. (本小题满分16分)设0a >,两个函数()axf x e =,g()ln x b x =的图像关于直线y x =对称.(1)求实数b a ,满足的关系式;(2)当a 取何值时,函数()()()h x f x g x =-有且只有一个零点;(3)当1=a 时,在),21(+∞上解不等式2)()1(x x g x f <+-.一、填空题1. ()+∞,0 2.2 3. 323 4. 32 5.4-3 6. ①③ 7.9 8.169. 相切 10.2 11.24621n nn ++ 12.3 13.1714.⎪⎩⎪⎨⎧∈≥-=*2,3,212,47N n n n n二、解答题15.解:(1))2()(x f +⋅=222sin cos 2(sin cos )x x x x x =+++111cos 2222(sin 2cos 2)2x x x x =+-+=+-⋅22(sin 2coscos 2sin )22sin(2)666x x x πππ=+-=+-. …………5′由222262k x k πππππ-≤-≤+,得63k x k ππππ-≤≤+()k ∈Z ,∴()f x 的单调递增区间为[,]63k k ππππ-+()k ∈Z . …………8′(2) 由()22sin(2)6f x x π=+-,得()4cos(2)6f x x π'=-. 由()2f x '≥,得1cos(2)62x π-≥,则222363k x k πππππ-≤-≤+, 即124k x k ππππ-≤≤+()k ∈Z . ∴使不等式()2f x '≥成立的x 的取值集合为,124x k x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z .……14′16.解:(1)因为N 是PB 的中点,PA=AB ,所以AN ⊥PB,因为AD ⊥面PAB ,所以AD ⊥PB,又因为AD∩AN=A 从而PB ⊥平面ADMN,因为平面ADMN ,所以PB ⊥DM. …………7′(2) 连接AC ,过B 作BH ⊥AC ,因为PA ⊥底面ABCD , 所以平面PAB ⊥底面ABCD ,所以BH 是点B 到平面PAC 的距离.在直角三角形ABC 中,BH =AB BC 25AC 5⋅=……………14′17.解:(Ⅰ)2y ax '=-,直线MN 的斜率为2at -,∴直线MN 的方程为2(1)2()y at at x t --=--令0,y =得22221121222at at at at x t at at at --++=+== 21(,0)2at M at +∴ ………3分令0x =,得2222121,(0,1)y at at at N at =-+=+∴+, MON ∴∆的面积222211(1)()(1)224at at S t at at at ++=⋅+=, ………6分 (Ⅱ)2422222321(1)(31)()44a t at at at S t at at +-+-'==,因为0,0a t >>,由()0S t '=,得2310,3at t a -==得………9分当2310,3at t a ->>即时, ()0S t '>,当2310,03at t a -<<<即, ()0S t '<,()3t S t a ∴=当有最小值.已知在12t =处, ()S t 取得最小值,14,233a a =∴=,故当41,32a t ==时,2min41(1)1234()()4123432S t S +⋅===⋅⋅18.(1)2250AF BF +=,225AF F B ∴=.()5a c a c ∴+=-,化简得23a c =,故椭圆E 的离心率为23.(2)存在满足条件的常数λ,47=-.点()1,0D 为线段2OF 的中点,2c ∴=,从而3a =,b =,左焦点()12,0F -,椭圆E 的方程为22195x y +=.设()11,M x y ,()22,N x y ,()33,P x y ,()44,Q x y ,则直线MD 的方程为1111x x y y -=+,代入椭圆方程22195x y +=, 整理得,2112115140x x y y y y --+-=.()1113115y x y y x -+=-,13145y y x ∴=-.从而131595x x x -=-,故点1111594,55x y P x x ⎛⎫- ⎪--⎝⎭.同理,点2222594,55x y Q x x ⎛⎫- ⎪--⎝⎭.三点M 、1F 、N 共线,121222y y x x ∴=++,从而()1221122x y x y y y -=-.从而()()()()121221121234121212341212124457557595944455y y x y x y y y y y y y x x k k x x x x x x x x x x --+-----=====--------故21407k k -=,从而存在满足条件的常数λ74-=. 19.解:(1)∵1a 为偶数,∴可设12()Z a n n =∈,故122a a n ==,若n 为偶数,则32na =,由123,,a a a 成等差数列,可知2132a a a =+,即522n n=,解得0n =,故10a =; (2分) 若n 为奇数,则312n a -=,由123,,a a a 成等差数列,可知2132a a a =+,即51222n n =-,解得1n =,故12a =; ∴1a 的值为0或2. (4分)(2)∵123(3,)N ma m m =+>∈是奇数,∴1121212m a a --==+,223122m a a --==,33422m a a -==,依此类推,可知341,,,m a a a +成等比数列,且有12m n n a -+=(31)n m ≤≤+,又0121m a +==,21102m a +-==,30m a +=,…∴当1n m ≤+时,0n a >;当2n m ≥+时,都有0n a =. (3分) 故对于给定的m ,n S 的最大值为121m m a a a a +++++123010(23)(21)222(222)4m m m m m m ----=+++++++=++++112142321m m ++-=+=+-,所以123m n S +≤+. (6分) (3)当1a 为正整数时,n a 必为非负整数.证明如下:当1n =时,由已知1a 为正整数, 可知1a 为非负整数,故结论成立; 假设当n k =时,n a 为非负整数,若0n a =,则10n a +=;若n a 为正偶数,则12n n a a +=必为正整数;若n a 为正奇数,则112nn a a +-=必为非负整数.故总有n a 为非负整数. (3分)当n a 为奇数时,1122n n n a a a +-=<;当n a 为偶数时,12n n aa +=.故总有12n n a a +≤,所以12121222n n n n a a a a ---≤≤≤≤,当211log n a >+时,n a ≤21log 1111111()()122a n a a a a -<==,即1n a <.( 6分)又n a 必为非负整数,故必有0n a =. (8分)【另法提示:先证“若k a 为整数,且122(*)N t t k a t +≤<∈,则1k a +也为整数,且1122t t k a -+≤<”,然后由1a 是正整数,可知存在正整数s ,使得1122s sa -≤<,由此推得1s a =,10s a +=,2s a +及其以后的项均为0,可得当211log n a >+()N n ∈时,都有0n a =】20.解:(1)设P()axx e ,是函数()ax f x e =图像上任一点,则它关于直线y x =对称的点P ()ax e x ,,在函数g()ln x b x =的图像上,ln ax x b e abx ∴==,1ab ∴=.(2)当0a >时,函数()()()h x f x g x =-有且只有一个零点,两个函数的图像有且只有一个交点,两个函数关于直线y x =对称,∴两个函数图像的交点就是函数()axf x e =,的图像与直线y x =的切点. 设切点为00A()ax x e ,,00=ax x e ()ax f x ae =,,0=1ax ae ∴,0=1ax ∴,00==ax x e e ∴,∴当011a x e ==时,函数()()()h x f x g x =-有且只有一个零点x e =;(3)当a =1时,设 ()2()(1)+g r x f x x x =--1x e -=2ln x x +-,则()r x ,112x e x x -=--+,当1,12x ⎛⎫∈ ⎪⎝⎭时,112211,1x x e x --<-=<--,()0r x ,<,当[)1,+x ∈∞时,112121,0xx e x --≤-=<--,()0r x ,<. ()r x ∴在1,2⎛⎫+∞ ⎪⎝⎭上是减函数.又(1)r=0,∴不等式()2(1)+gf x x x-<解集是()1,+∞.。
江苏省苏州市2023-2024学年高一上学期1月学业质量阳光指标调研数学试卷

则w =
.
四、解答题
17.已知全集U
=
R
,集合
A
=
ì í
x
î
|
x-2 x +1
<
1 2
ü ý þ
,
B
=
{x
m
£
x
£
m
+
4,
m Î R}
.
(1)若 m = -1,求 A È B , A Ç (ðU B) ;
试卷第31 页,共33 页
(2)若 A È B = A ,求 m 的取值范围.
18.在平面直角坐标系 xOy 中,已知角q 的终边经过点 P (3a, -4a) ,其中 a ¹ 0 .
B. 2x + 4y < 8
C.
1 x
+
2 y
³9 4Leabharlann D. ex2 ³ e8-4y2
12.已知 a = log8 3 , b = log27 5 , c = log49 9 ,则( )
A. 9ab = log2 5 B. a < b < c
C. c < b < a
D. b < a < c
三、填空题 13.命题“ "x > 0 , x2 - sin x > 0 ”的否定是 .
【详解】由于 f ( x) 为偶函数, g ( x) = loga x 也是偶函数,
则只需要 y = f ( x) 的图象与函数 g ( x) = loga x 在 (0, +¥ ) 上恰好有 3 个交点,则 a > 1
根据 f ( x + 2) = f ( x) 可得 y = f ( x) 的周期为 2,作出函数图象如下:
2020-2021学年苏教版高一上学期第一次月考数学试卷及答案

第 1 页 共 6 页 2020-2021学年苏教版高一上学期第一次月考数学试卷一、选择题(共10小题,每小题5分,合计50分)1.已知集合U =R ,A ={x ∈Z |x 2<5},B ={x |x 2(2﹣x )>0},则图中阴影部分表示的集合为( C )A .{2}B .{1,2}C .{0,2}D .{0,1,2}2.下列各组函数中,表示同一函数的是 ( D )A .f (x )=1,g (x )=x 0B .f (x )=x ﹣2,g (x )=x 2-4x +2C .f (x )=x ,g (x )=(x )2D . f (x )=|x |,g (x )=x 23.设集合M ={x |(x +1)(x ﹣3)≤0},N ={y |y (y ﹣3)≤0},函数f (x )的定义域为M ,值域为N ,则函数f (x )的图象可以是 ( B )A .B .C .D .4..已知函数y =f (x ﹣1)定义域是[﹣3,2],则y =f (2x +1)的定义域是 ( B )A .[﹣7,3]B .[﹣52,0]C .[﹣3,7]D .[﹣32,1] 5. 若一系列的函数解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”.那么函数解析式为y =2x 2+1,值域为{3,19}的“孪生函数”共有 ( C )A .15个B .12个C .9个D .8个6.设f (x )=⎩⎨⎧(x +1)2x <14-x -1x ≥1则使得f (m )=1成立的m 值是 ( D ) A .10 B .0,10 C .1,﹣1,11 D .0,﹣2,107.奇函数f (x )在(﹣∞,0)上的解析式是f (x )=x (1+x ),则f (x )在(0,+∞)上有 ( B )A .最大值-14B .最大值14C .最小值-14D .最小值148. 已知f (x )=⎩⎨⎧axx >1(4-a 2)x +2x ≤1是R 上的单调递增函数,则实数a 的取值范围是 ) A . [4,8) B .(0,8) C . (4,8) D . (0,8]9.已知函数f (x )=ax 2+2ax +4(0<a <3),若x 1<x 2,x 1+x 2=1﹣a ,则有 ( A )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .f (x 1)<f (x 2)和f (x 1)=f (x 2)都有可能。
江苏省苏州中学2020-2021学年高一第一学期月考模拟试卷数学试题(pdf版)

苏州中学高一第一学期月考模拟试卷注意:请把所有题目答案答在答题纸上,否则无效。
一.填空题:(每题5分,共70分)1、已知集合,集合, 且,则实数的值为 ▲ .2、函数的定义域为___ ▲ .3、下列函数:①y=x 与y=;②y=与;③y=与y= ④y=中,图象完全相同的一组是(填正确序号) ▲ .4、已知,则集合A 的个数是_____▲______ .5、函数的值域 ▲ .6、已知,则=____▲____.7、关于x 的方程有负根,则应满足的条件是 ▲ .8、设函数f (x )=,则f [f ()]= ▲ .9、50名学生参加跳远和铅球两项测试,跳远、铅球测试及格的分别有40人和31人,两项测试均不及格的有4人,两项测试全都及格的人数是 ▲ .{}1,0A =-{}0,1,2B x =+A B Íx 31--=x x y 2x xx 0x y =0)(x x )1)(1(11-+=-×+x x y x x 与{}A 1,2,3f Ì̹¹]3,1[,24)(2-Î+-=x x x x f )()2(,32)(x f x g x x f =++=)(x g 57+=a xa ïîïíì>+£--1||,111||,2|1|2x xx x 2110、若f(x)=-x 2+2x 与g(x)=在区间[1,5]上都是减.函数, 则的取值范围是 ▲ .11、函数y =a x 在[0,1]上的最大值与最小值和为3,则函数y =在[0,1]上的最大值是 ▲ .12、若-1<x <0,在下列四个不等式:①<5x <0.5x ; ②0.5x <<5x ;③5x <<0.5x ;④5x <0.5x <中,成立的是(填正确序号) ▲ .13、已知函数分别由下表给出:则的值 ▲ ;不等式的解为 ▲ .14、下列几个命题:①方程有一个正实根,一个负实根,则;②函数是偶函数,但不是奇函数;③函数的值域是,则函数的值域为;④函数的定义域为,则函数的定义域是,其中正确的有_____▲_______.二.解答题、证明题:(15,16,17三题每题14分,18,19,20三题每题16分,共90分)。
最新江苏省2022-2022学年高一上学期第一次联考数学试题

第一学期第一次月检测高一数学试题一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.【2021北京理科1】已知集合,,则A. B.C. D.【答案】C【解析】试题分析:由,得,选C.【考点】集合的交集运算.【名师点睛】1.首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合,,三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽略互异性而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn图;对连续的数集间的运算,常利用数轴;对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽略空集是任何集合的子集.视频2.已知集合A=,B=,则A. A B=B. A BC. A BD. A B=R【答案】A【解析】由得,所以,选A.点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.3.函数,则= ()A. 1B. -1C. 2021D. -2021【答案】B【解析】【分析】由题意可得:,代入即可求解【详解】由题意可得:故选【点睛】本题主要考查了分段函数的函数值的求解,属于基础题。
4.已知全集,集合,集合,则集合()A. B. C. D.【答案】B【解析】【分析】先求出,然后再求【详解】,,则故选【点睛】本题主要考查了集合的运算,根据题意先求出补集,然后再求交集,属于基础题。
5.函数的单调递增区间是()A. B. C. D.【答案】A【解析】【分析】先求出函数的定义域,然后求得单调递增区间【详解】,定义域满足,即或函数的单调递增区间是故选【点睛】本题主要考查了函数的单调区间,在含有根号的函数中先求出定义域,然后再求出单调递增区间,学生在解题时容易忽略定义域。
江苏省苏州市高一上学期数学期末联考试卷

江苏省苏州市高一上学期数学期末联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)A .B .C . -1D . 12. (2分)下列函数中,既是偶函数,又在上单调递增的函数是()A .B .C .D .3. (2分) (2016高一下·华亭期中) 函数y=sin(2x+ )图象的对称轴方程可能是()A . x=﹣B . x=﹣C . x=D . x=4. (2分) (2018高一下·北京期中) 下列向量的线性运算正确的是()A .B .C .D .5. (2分) (2016高一下·正阳期中) 如果点P(﹣sinθ,cosθ)位于第三象限,那么角θ所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)已知平面直角坐标系xOy上的区域D由不等式组给定,若M(x,y)为D上的动点,点A,则Z=||的最大值为()A . 6B .C . 4D . 27. (2分)函数y=lnx+2x﹣3的零点必定位于的区间是()A . (0,1)B . (1,2)C . (2,3)D . (3,4)8. (2分)函数y=3 的最大值为M,最小值为N,则M+N=()A . 2B . 3C . 6D . 129. (2分) (2017高二上·南宁月考) 若实数满足,且,则的最小值为()A .B .C .D .10. (2分) (2016高一上·金华期末) 设f(x)是定义域为R且最小正周期为2π的函数,且有f(x)=,则f(﹣)=()A .B . ﹣C . 0D . 1二、填空题 (共7题;共7分)11. (1分)(2018·南宁模拟) 已知向量,且在上的投影为3,则与角为________.12. (1分) (2016高一下·武城期中) 化简: =________.13. (1分)设f(x)=cos(x+φ)(0<φ<π),若f(x)+f'(x)是奇函数,则φ=________.14. (1分) (2018高二下·北京期末) 已知函数 f (x) = ,,若对任意,存在,使得³ ,则实数 m 的取值范围为________15. (1分) (2016高一上·松原期中) 关于x的不等式2<log2(x+5)<3的整数解的集合为________.16. (1分) (2019高一上·石河子月考) 已知函数为上的单调递减函数,则实数的取值范围________.17. (1分) (2018高三上·凌源期末) 若,且,则 ________.三、解答题 (共5题;共25分)18. (5分) (2019高一上·琼海期中) 已知全集 ,集合(1)求 ;(2)若集合 ,且 ,求实数的取值范围.19. (5分) (2016高一下·榆社期中) 已知非零向量,满足| |=1,且(﹣)•( + )= .(1)求| |;(2)当• =- 时,求向量与 +2 的夹角θ的值.20. (5分) (2017高三上·太原月考) 已知函数f(x)是定义在R上的偶函数,且f(0)=0,当x>0时,f(x)= .(1)求函数f(x)的解析式;(2)解不等式f(x2-1)>-2.21. (5分) (2018高二下·大连期末) 已知函数 .(1)求函数的定义域和值域;(2)设(为实数),求在时的最大值 .22. (5分) (2017高一上·湖南期末) 设函数y=f(x)的定义域为D,值域为A,如果存在函数x=g(t),使得函数y=f[g(t)]的值域仍是A,那么称x=g(t)是函数y=f(x)的一个等值域变换.(1)判断下列函数x=g(t)是不是函数y=f(x)的一个等值域变换?说明你的理由;① ;②f(x)=x2﹣x+1,x∈R,x=g(t)=2t,t∈R.(2)设f(x)=log2x的定义域为x∈[2,8],已知是y=f(x)的一个等值域变换,且函数y=f[g(t)]的定义域为R,求实数m、n的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共25分) 18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、。
江苏省苏州市高一上学期第一次月考数学试题

江苏省苏州市高一上学期第一次月考数学试题姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019高一上·鸡东月考) 下列因式分解完全正确的是()A .B .C .D .2. (2分) (2017高一上·孝感期中) 下列各组函数是同一函数的是()A . y=x与B . y=x与C . y=2lgx与y=lgx2D . 与3. (2分)不等式的解集是()A .B .C .D .4. (2分)满足{﹣1,0,1}⊊M⊆{﹣1,0,1,2,3,4}的集合M的个数是()A . 4个B . 6个C . 7个D . 8个5. (2分)已知,且.现给出如下结论:①;②;③;④.其中正确结论的序号是()A . ①③B . ①④C . ②④D . ②③6. (2分)已知集合,,且,则实数a的取值范围是()A .B .C .D .7. (2分)实系数一元二次方程x2+ax+2b=0的一个根在(0,1)上,另一个根在(1,2)上,则的取值范围是()A . [1,4]B . (1,4)C . [, 1]D . (, 1)8. (2分)函数f(x)= 的值域为()A . {y|y≠2}B . {y|y≠3}C . (﹣∞,2)D .9. (2分)函数y=的定义域是()A . (1,2]B . (1,2)C . (2,+∞)D . (﹣∞,2)10. (2分)已知函数设,表示中的较大值,表示中的较小值,记得最小值为A,得最大值为B,则A-B=()A .B .C . -16D . 16二、填空题 (共5题;共5分)11. (1分) (2019高三上·北京月考) 已知函数,那么的值为________.12. (1分)用符号“∈”或“∉”填空:(1)若集合P由小于的实数构成,则2 ________P;(2)若集合Q由可表示为n2+1()的实数构成,则5________ Q.13. (1分)已知A={x|x<﹣2},B={x|x>m},若A∩B有且只有一个子集,则m的范围是________.14. (1分) (2019高一上·西安月考) 函数的值域是________.15. (1分)由实数x,﹣x,,﹣所组成的集合里面元素最多有________个.三、解答题 (共4题;共30分)16. (5分)设f(x)=(m+1)x2﹣mx+m﹣1.(1)当m=1时,求不等式f(x)>0的解集;(2)若不等式f(x)+1>0的解集为(,3),求m的值.17. (10分) (2016高二上·昌吉期中) 已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0}(Ⅰ)若A∩B=∅,A∪B=R,求实数a的值;(Ⅱ)若p是q的充分条件,求实数a的取值范围.18. (10分)根据条件回答下列问题:(1)求函数y=lg(tanx)的定义域;(2)求函数的值域.19. (5分) (2019高二上·会宁期中) 解关于的不等式参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、12-2、13-1、14-1、15-1、三、解答题 (共4题;共30分)16-1、17-1、18-1、18-2、19-1、。
高一数学上学期期末联考试题苏教版

第一学期苏州市单招预科班期末联合考试试卷一年级 数学本试卷分第Ⅰ卷(客观题)和第Ⅱ卷(主观题)两部分.第Ⅰ卷1至2页,第Ⅱ卷2至6页.两卷满分150分.考试时间120分钟.第Ⅰ卷(共40分) 一、选择题(本大题共10小题,每小题4分,共40分,每小题列出的四个选项中,只有一项是符合要求的,请将符合要求的答案涂在答题卷上)1.若集合{20},{30}M x x N x x =-<=-≤,则N M 为 A .]3,2()1,( --∞ B .]3,(-∞ C .]3,2( D .]3,1( 2.在ABC ∆中,“21sin =A ”是“︒=30A ”的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 3.下列函数中,既是偶函数又在),0(+∞内单调递增的是A .3x y =B .1+=x yC .12+-=x yD .x y -=24. 已知135sin =α,α是第二象限的角,则=-)cos(απ A .1312 B . 135 C . 135- D .1312-5. 已知⎪⎩⎪⎨⎧+=x x x x f 22)(22211≥<<--≤x x x ,若3)(=x f ,则x 的值为A.1或3B. 3±C. 3D. 1或3±或236.将函数)42sin(π+=x y 图象上的所有点向左平移4π个单位,得到的图象的函数解析式是 A .)432sin(π+=x y B .)22sin(π+=x y C .)42sin(π-=x y D .x y 2sin =7.ABC ∆中,已知︒===60,2,32A b a ,则B = ( ) A .︒60 B .︒30 C .︒60或︒120 D .︒120 8.若x 满足不等式112≤-x ,则函数xy )21(=的值域为 A . )21,0[ B .]21,(-∞ C .]1,0( D .]1,21[9.函数2()2(1)1f x x a x =--+在区间),5[+∞上是增函数,则实数a 的取值范围是 A .),6[+∞ B . ),6(+∞ C .]6,(-∞ D .)6,(-∞10.设)c o s ()s i n()(βπαπ+++=x b x a x f ,其中βα,,,b a 均为非零实数,若1)2012(-=f ,则)2013(f 等于A .1-B .1C .0D .2第Ⅱ卷(共110分)二、填空题(本大题共5小题,每小题4分,共20分,请将答案填写在题中横线上) 11.函数y =的定义域为 .12.若sin 2cos 0αα+=,则2sin sin cos ααα-= .13.已知)(x f 是以2为周期的奇函数,在区间[]1,0上的解析式为()x x f 2=,则()________5.11=f . 14.)(x f 是R 上的偶函数,当0≥x 时,12)(+=xx f ,若5)(=m f ,则m 的值为 .15.某项工程的流程图如图(单位:天):根据图,可以看出完成这项工程的最短工期是___ 天..三、 解答题 (本大题共8小题, 共90分, 解答应写出文字说明、证明过程或演算步骤) 16. (本题满分8分)计算:34cos )49()15(4log 212π+--+.17. (本题满分10分)设c b a ,,分别是ABC ∆的三个内角A 、B 、C 所对的边,S 是ABC ∆的面积,已知4,5,a b S ===(1)求角C ; (2)求c 边的长度.18. (本题满分12分)已知函数)1,0()(≠>+=b b b a x f x 的图象过点)4,1(和点)16,2(. (1)求)(x f 的表达式;(2)解不等式23)21()(x x f ->;(3)当]4,3(-∈x 时,求函数6)(log )(22-+=x x f x g 的值域.19. (本题满分12分)设)(x f 是定义在),0(+∞上的增函数,当),0(,+∞∈b a 时,均有)()()(b f a f b a f +=⋅,已知1)2(=f .求:(1))1(f 和)4(f 的值;(2)不等式2()2(4)f x f <的解集 .20. (本题满分12分)已知函数1)6sin(cos 4)(-+=πx x x f ,求(1)求)(x f 的最小正周期;(2)求)(x f 在区间]4,6[ππ-上的最大值和最小值. 21.(本题满分8分)某项工程的横道图如下.(1)求完成这项工程的最短工期; (2)画出该工程的网络图.22. (本题满分14分)已知函数b b x a x x f 2)1()(22--++=,且)2()1(x f x f -=-,又知x x f ≥)(恒成立. 求:(1) )(x f y =的解析式;(2)若函数[]1)(log )(2--=x x f x g ,求函数g(x)的单调区间.23. (本题满分14分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数. (1)当2000≤≤x 时,求函数)(x v 的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时))()(x v x x f ⋅=可以达到最大?求出最大值.(精确到1辆/小时)第一学期苏州市单招预科班期末联合考试试卷一年级 数学试卷答案一.选择题(本大题共12小题,每小题4分,共48分)二、填空题:(本大题共6小题,每小题4分,共24分) 11.]1,0( 12.5613.1- 14.2± 15.7 三、解答题:16.(8分) 解:原式=)3cos()23(121ππ++-+ (4)分=3cos 233π-- =21233-- …………2分=1 …………2分17.(10分) 解:(1)由题知5,4,35===b a SC ab S sin 21=…………1分 C sin 542135⨯⨯=∴23sin =∴C …………1分 又 C 是ABC ∆的内角3π=∴C 或32π=C …………2分(2)当3π=C 时,3cos2222πab b a c -+=215422516⨯⨯⨯-+=21=21=∴c …………3分当32π=C 时, 22222cos3c a b ab π=+-215422516⨯⨯⨯++= 61=61=∴c …………3分18. (12分)(1)由题知⎩⎨⎧+=+=2164ba b a …………2分⎩⎨⎧==∴40b a 或⎩⎨⎧-==37b a (舍去) x x f 4)(=∴ …………2分(2)23)21(4x x->32222->∴xx322->∴x x …………1分0322<--∴x x31<<-∴x∴不等式的解集为)3,1(- …………2分(3)64log )(22-+=x x g x62log 222-+=x x622-+=x x7)1(2-+=x …………2分1(3,4]-∈-7)(min -=∴x g …………1分当4=x 时,max ()18g x = …………1分 ∴值域为]18,7[- …………1分 19.(12分) 解:(1))()()(b f a f b a f +=⋅令1==b a)1()1()11(f f f +=⋅0)1(=∴f …………2分令2==b a2)2()2()4(=+=f f f2)4(=∴f …………2分(2) 2()2(4)f x f <)4()4()(2f f x f +<∴ …………1分 )16()(2f x f <∴ …………1分)(x f 是定义在),0(+∞上是增函数⎪⎩⎪⎨⎧><∴01622x x …………2分 ⎩⎨⎧≠<<-∴044x x …………2分 不等式解集为)4,0()0,4( - …………2分20.(12分) 解:(1)1)6sin(cos 4)(-+=πx x x f1)cos 21sin 23(cos 4-+=x x x …………1分 1cos 2cos sin 322-+=x x x …………2分x x 2cos 2sin 3+= …………1分)62sin(2π+=x …………1分)(x f ∴的最小正周期π=T …………1分(2) 46ππ≤≤-x 223ππ≤≤-∴x32626πππ≤+≤-∴x …………2分 ∴当662ππ-=+x 时,1)(min -=x f …………2分当262ππ=+x 时,2)(=miax x f …………2分21.( 8分)(1)93132=+++,所以完成这项工程的最短工期为9天. …………3分 (2)…………5分22. (14分) 解(1)由)2()1(x f x f -=-知对称轴为21=x …………1分 2121=+-∴a 2-=∴a , 22()2.f x x x b b ∴=--- …………1分又 x x f ≥)(恒成立,即x b b x x ≥---222恒成立 即02222≥---b b x x 恒成立0)2(4)2(22≤----=∆∴b b …………1分0122≤++∴b b0)1(2≤+∴b1-=∴b …………2分∴1)(2+-=x x x f …………1分(2))2(log ]11[log )(2222x x x x x x g -=--+-= …………1分令x x u 22-=,则2()log g u u =D 111 由022>-=x x u 得2>∴x 或0<x …………2分当)0,(-∞∈x 时,x x u 22-=是减函数当),2(+∞∈x 时,x x u 22-=是增函数 …………2分又2()log g u u = 在其定义域上是增函数 …………1分 )(x g ∴的增区间为),2(+∞)(x g 的减区间为)0,(-∞ …………2分23. (14分) (1)解:因为当20020≤≤x 时,车流速度是车流密度x 的一次函数,故设b kx v += 则⎩⎨⎧+=+=bk b k 20602000 …………2分 ⎪⎪⎩⎪⎪⎨⎧=-=∴320031b k 320031+-=∴x v …………2分 故⎪⎩⎪⎨⎧≤≤+-<≤=20020,320031200,60)(x x x x v …………2分 (2)由(1)得⎪⎩⎪⎨⎧≤≤-<≤=20020,)200(31200,60)(x x x x x x f …………2分 当200<≤x 时,)(x f 为增函数,1200)(<x f …………2分当20020≤≤x 时,310000)100(31)200(31)(2+--=-=x x x x f …………2分 当100=x 时,最大值3333= 即当车流密度为100辆/千米时,车流量可以达到最大,最大约为3333辆/小时 ……2分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省苏州市高一上学期数学1月联考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共13题;共25分)
1. (2分)(2018·河北模拟) 已知集合,,则()
A .
B .
C .
D .
2. (2分) (2017高一上·舒兰期末) 若经过,的直线的斜率为2,则等于()
A . 0
B . -1
C . 1
D . -2
3. (2分)下列函数中既是奇函数,又是区间(﹣1,0)上是减函数的()
A . y=sinx
B . y=﹣|x﹣1|
C . y=ex﹣e﹣x
D . y=ln
4. (2分) (2017高一上·焦作期末) 函数f(x)=()x+ ﹣3的零点所在区间是()
A . (1,2)
B . (0,1)
C . (﹣1,0)
D . (﹣2,﹣1)
5. (2分) (2017高二上·潮阳期末) 若函数f(x)满足对于任意实数a,b,c,都有f(a),f(b),f(c)
为某三角形的三边长,则成f(x)为“可构造三角形函数”,已知f(x)= 是“可构造三角形函数”,则实数t的取值范围是()
A . [﹣1,0]
B . (﹣∞,0]
C . [﹣2,﹣1]
D . [﹣2,﹣ ]
6. (2分) (2016高二上·嘉兴期中) 空间四边形ABCD中,AB=CD且异面直线AB与CD所成的角为30°,E,F为BC和AD的中点,则异面直线EF和AB所成的角为()
A . 15°
B . 30°
C . 45°或75°
D . 15°或75°
7. (2分)设A,B是x轴上的两点,点P的横坐标为1,且|PA|=|PB|,若直线PA的方程为x﹣y+1=0,则直线PB的方程是()
A . x+y﹣5=0
B . 2x﹣y﹣1=0
C . x+y﹣3=0
D . 2x+y﹣7=0
8. (2分)下列命题正确的是()
A . 一条直线与一个平面平行,它就和这个平面内的任意一条直线平行
B . 平行于同一个平面的两条直线平行
C . 与两个相交平面的交线平行的直线,必平行于这两个平面
D . 平面外两条平行直线中的一条与这个平面平行,则另一条也与这个平面平行
9. (2分)某三棱锥的三视图如图所示,该三棱锥的表面积是()
A .
B .
C .
D .
10. (2分)一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()
A .
B .
C .
D .
11. (2分)圆x2+y2-2y-1=0关于直线y=x对称的圆的方程是()
A . (x-1)2+y2=2
B . (x+1)2+y2=2
C . (x-1)2+y2=4
D . (x+1)2+y2=4
12. (2分)若函数f(x)=x2+ex﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a 的取值范围是()
A . (﹣)
B . ()
C . ()
D . ()
13. (1分) (2017高一上·延安期末) 已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为________.
二、填空题 (共3题;共3分)
14. (1分) (2016高一上·青海期中) 关于下列命题:
①若函数y=2x的定义域是{x|x≤0},则它的值域是{y|y≤1};
②若函数y= 的定义域是{x|x>2},则它的值域是{y|y≤ };
③若函数y=x2的值域是{y|0≤y≤4},则它的定义域一定是{x|﹣2≤x≤2};
④若函数y=log2x的值域是{y|y≤3},则它的定义域是{x|0<x≤8}.
其中不正确的命题的序号是________.(注:把你认为不正确的命题的序号都填上)
15. (1分)己知圆O:x2+y2=1和圆C:x2+y2﹣2x﹣4y+m=0相交于A、B两点,若|AB|=,则m的值是________
16. (1分)已知函数f(x)满足:对任意实数x1<x2 ,有f(x1)<f(x2),且f(x1+x2)=f(x1)f (x2),若写出一个满足这些条件的函数,则这个函数可以写为________
三、解答题 (共6题;共55分)
17. (10分)设集合A={x| ≤2﹣x≤4},B={x|x2+2mx﹣3m2}(m>0).
(1)若m=2,求A∩B;
(2)若A⊇B,求实数m的取值范围.
18. (10分) (2015高三上·上海期中) 函数f(x)是这样定义的:对于任意整数m,当实数x满足不等式|x﹣m|<时,有f(x)=m.
(1)求函数f(x)的定义域D,并画出它在x∈D∩[0,3]上的图象;
(2)若数列an=2+10•()n,记Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn.
19. (15分) (2019高三上·铁岭月考) 如图,在三棱锥中,平面平面,
为等边三角形,且,,分别为,的中点.
(1)求证:平面;
(2)求证:平面平面;
(3)求三棱锥的体积.
20. (5分)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD=2,△PAB与△PAD都是等边三角形.
(Ⅰ)证明:CD⊥平面PBD;
(Ⅱ)求P﹣ABCD的体积.
21. (5分)(2019·枣庄模拟) 如图,已知抛物线C:y2=2px(p>0),G为圆H:(x+2)2+y2=1上一动点,由G向C引切线,切点分别为E,F,当G点坐标为(-1,0)时,△GEF的面积为4.
(Ⅰ)求C的方程;
(Ⅱ)当点G在圆H:(x+2)2+y2=1上运动时,记k1 , k2 ,分别为切线GE,GF的斜率,求| |的取值范围.
22. (10分) (2019高三上·上海月考) 已知函数在区间上的最大值为5,最小值为1.
(1)求、的值及的解析式;
(2)设,若不等式在上有解,求实数的取值范围.
参考答案一、单选题 (共13题;共25分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
二、填空题 (共3题;共3分)
14-1、
15-1、
16-1、
三、解答题 (共6题;共55分) 17-1、
17-2、
18-1、
18-2、19-1、19-2、
19-3、
20-1、
21-1、22-1、
22-2、。