浙江省桐乡市现代片区2015-2016学年八年级数学下学期阶段练习二(期中)试题(无答案) 浙教版

合集下载

精品:浙江省桐乡市现代片区2015-2016学年八年级下学期期中考试数学试题(原卷版)

精品:浙江省桐乡市现代片区2015-2016学年八年级下学期期中考试数学试题(原卷版)

浙江省桐乡市现代片区2015-2016学年八年级下学期期中考试数学试题一、选择题(本题有10小题,每小题3分,共30分)1. 要使二次根式错误!未找到引用源。

有意义,则x的取值范围是()A. 错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D. 错误!未找到引用源。

2. 下面计算正确的是()A. 错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D. 错误!未找到引用源。

3. 下列方程中,属于一元二次方程的是()A. 错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D. 错误!未找到引用源。

4. 某多边形的内角和是其外角和的3倍,则此多边形的边数是()A. 5B. 6C. 7D. 85. 茶叶厂用甲、乙两台包装机包装质量为400克的茶叶,从它们各自包装的茶叶中分别随机抽取10盒,测得它们实际质量的平均数和标准差分别如表所示,则包装茶叶质量较稳定的包装机为()A. 甲B. 乙C. 甲和乙D. 无法确定6. 下列说法正确的是()A. 有一组对边平行,另一组对边相等的四边形是平行四边形B. 平行四边形的对角线相等C. 平行四边形的对角互补,邻角相等D. 平行四边形的两组对边分别平行且相等7. 把方程错误!未找到引用源。

配方,化为错误!未找到引用源。

的形式应为()A. 错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D. 错误!未找到引用源。

8. 三角形的两边长分别为3和6,第三边长是方程x2-6x+8=0的根,则这个三角形的周长是()A. 11B. 13C. 11或13D. 11和139. 某经济开发区今年一月份工业产值达50亿元,第一季度产值为175亿元,问二、三月平均每月的增长率是多少?设平均每月增长的百分率为x,根据题意得方程()A. 50(1+x)2=175B. 50+50(1+x)2=175C. 50(1+x)+ 50(1+x)2=175D. 50+50(1+x)+ 50(1+x)2=17510. 某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和众数分别是()A. 94分,96分B. 96分,96分C. 96分,98分D. 96分,94分二、填空题(本题有10小题,每小题3分,共30分)11. 化简错误!未找到引用源。

2015-2016学年八年级下册期中数学试卷(含答案)

2015-2016学年八年级下册期中数学试卷(含答案)

2015-2016学年八年级(下)期中数学试卷一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)1.下列电视台的台标,是中心对称图形的是()A. B.C.D.2.下列调查中,适合用全面调查方法的是()A.了解一批电视机的使用寿命B.了解我市居民家庭一周内丢弃塑料袋的数量C.了解我市中学生的近视率D.了解我校学生最喜爱的体育项目3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC4.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x25.如果分式中的x,y都扩大到原来的3倍,那么分式的值()A.不变 B.扩大到原来的6倍C.扩大到原来的3倍 D.缩小到原来的倍6.若关于x的方程﹣=0有增根,则增根是()A.﹣4 B.1 C.4 D.﹣17.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.148.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.B.2 C.2D.4二、填空题(本大题共10小题,每小题2分,共20分)9.当x≠时,分式有意义.10.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是.11.当x=时,分式的值为0.12.若,则=.13.若矩形的两条对角线的夹角为60°,一条对角线的长为6,则矩形短边的长等于.14.如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为.15.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是.16.已知:a2﹣3a+1=0,则a+﹣2的值为.17.已知关于x的方程的解是正数,则m的取值范围是.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.三、解答题(本大题共9小题,共76分,解答要求写出文字说明、证明过程或计算步骤)19.计算:(1)(a2+3a)÷(2)÷(1﹣)20.解下列方程:(1)=(2)﹣=1.21.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.22.先化简,再求值:(﹣)÷,其中x是小于3的非负整数.23.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?25.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8cm,BC=16cm,求线段DF和EF的长.26.阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由父母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试说明的最小值为10.27.操作与证明:把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.猜想与发现:(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.①MB,BN的数量关系是;②MB,BN的位置关系是.变式与探究:(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?2015-2016学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)1.下列电视台的台标,是中心对称图形的是()A. B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.【点评】本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180°后与原图重合是解题的关键.2.下列调查中,适合用全面调查方法的是()A.了解一批电视机的使用寿命B.了解我市居民家庭一周内丢弃塑料袋的数量C.了解我市中学生的近视率D.了解我校学生最喜爱的体育项目【考点】全面调查与抽样调查.【分析】要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.【解答】解:A、调查过程带有破坏性,只能采取抽样调查,选项错误;B、数量多,不适合全面调查,适合抽查;C、数量多,不适合全面调查,适合抽查;D、人数不多,容易调查,因而适合全面调查,选项正确.故选D.【点评】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.4.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x2【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式、、的分母分别是2x2、4(m﹣n)、x,故最简公分母是4(m﹣n)x2.故选:D.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.5.如果分式中的x,y都扩大到原来的3倍,那么分式的值()A.不变 B.扩大到原来的6倍C.扩大到原来的3倍 D.缩小到原来的倍【考点】分式的基本性质.【分析】根据分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式分式的值不变,可得答案.【解答】解:分式中的x,y都扩大到原来的3倍,那么分式的值缩小到原来的,故选:D.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式分式的值不变.6.若关于x的方程﹣=0有增根,则增根是()A.﹣4 B.1 C.4 D.﹣1【考点】分式方程的增根.【专题】计算题.【分析】由分式方程有增根,得到最简公分母为0,求出x的值即为增根.【解答】解:由分式方程有增根,得到x﹣4=0,即x=4,则增根为4.故选C.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质;直角三角形斜边上的中线;三角形中位线定理.【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选:A.【点评】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.8.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.B.2 C.2D.4【考点】菱形的判定;翻折变换(折叠问题).【专题】动点型.【分析】首先设Q点运动的时间t秒,则CQ=tcm,BP=xcm,根据菱形的性质可得QP=BP=tcm,∠P′BQ=∠QBP,再根据勾股定理可得(t)2+(t)2=(6﹣t)2,再解方程即可.【解答】解:设Q点运动的时间t秒,则CQ=tcm,BP=xcm,∵四边形QPBP′为菱形,∴QP=BP=tcm,∠P′BQ=∠QBP,∵∠C=90°,AC=BC,∴∠CBP=45°,∴∠P′BP=90°,∴∠QPB=90°,∴(t)2+(t)2=(6﹣t)2,解得:t1=2,t2=﹣6(不合题意舍去),故选:B.【点评】此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形对角线平分每一组对角.二、填空题(本大题共10小题,每小题2分,共20分)9.当x≠2时,分式有意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式有意义的条件为x﹣2≠0.即可求得x的值.【解答】解:根据条件得:x﹣2≠0.解得:x≠2.故答案为2.【点评】此题主要考查了分式的意义,要求掌握.意义:对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得x的取值范围即可.10.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是.【考点】概率公式.【分析】让二等品数除以总产品数即为所求的概率.【解答】解:∵现有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取1只,可能出现12种结果,是二等品的有3种可能,∴概率==.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.当x=1时,分式的值为0.【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【解答】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故答案为:1.【点评】此题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.若,则=.【考点】比例的性质.【分析】先用b表示出a,然后代入比例式进行计算即可得解.【解答】解:∵=,∴a=,∴=.故答案为:.【点评】本题考查了比例的性质,用b表示出a是解题的关键,也是本题的难点.13.若矩形的两条对角线的夹角为60°,一条对角线的长为6,则矩形短边的长等于3.【考点】矩形的性质.【分析】先由矩形的性质得出OA=OB=3,再由∠AOB=60°,证出△AOB是等边三角形,即可得出AB=OA=3.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD=6,∴OA=OB=3,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3;故答案为:3.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.14.如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为5cm.【考点】平行四边形的性质;线段垂直平分线的性质.【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为10cm,即可得出答案.【解答】解:∵点O是BD中点,EO⊥BD,∴EO是线段BD的中垂线,∴BE=ED,故可得△ABE的周长=AB+AD,又∵平行四边形的周长为10cm,∴AB+AD=50cm.故答案为:5cm.【点评】此题考查了平行四边形的性质及线段的中垂线的性质,属于基础题,解答本题的关键是判断出EO 是线段BD的中垂线,难度一般.15.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是5.【考点】平行线的性质;正方形的性质.【分析】过D点作直线EF与平行线垂直,与l1交于点E,与l4交于点F.易证△ADE≌△DFC,得CF=1,DF=2.根据勾股定理可求CD2得正方形的面积.【解答】解:作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠AED=∠DFC=90°.∵ABCD为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE.∵AD=CD,∴△ADE≌△DCF,∴CF=DE=1.∵DF=2,∴CD2=12+22=5,即正方形ABCD的面积为5.故答案为:5.【点评】题考查正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.16.已知:a2﹣3a+1=0,则a+﹣2的值为1.【考点】分式的混合运算.【专题】计算题.【分析】已知等式两边除以a,求出a+的值,代入原式计算即可得到结果.【解答】解:∵a2﹣3a+1=0,∴a+=3,则原式=3﹣2=1,故答案为:1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.已知关于x的方程的解是正数,则m的取值范围是m.>﹣6且m≠﹣4【考点】分式方程的解.【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x 的不等式是本题的一个难点.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.【考点】轴对称-最短路线问题;正方形的性质.【专题】计算题.【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE 的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.【点评】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.三、解答题(本大题共9小题,共76分,解答要求写出文字说明、证明过程或计算步骤)19.计算:(1)(a2+3a)÷(2)÷(1﹣)【考点】分式的混合运算.【分析】(1)先把被除式与分子因式分解,把除法改为乘法,进一步约分得出答案即可;(2)先通分算减法,再进一步把除法改为乘法,进一步约分得出答案即可.【解答】解:(1)原式=a(a+3)×=a;(2)原式=÷=•=.【点评】此题考查分式的混合运算,掌握运算顺序,正确通分约分,因式分解是解决问题的关键.20.解下列方程:(1)=(2)﹣=1.【考点】解分式方程.【专题】计算题.【分析】(1)分式方程两边乘以x(x﹣2)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程两边乘以(x+1)(x﹣1)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4x=x﹣2,解得:x=﹣,经检验x=﹣是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,原分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【解答】证明:如图,连接BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形.22.先化简,再求值:(﹣)÷,其中x是小于3的非负整数.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再根据x是小于3的非负整数选取合适的x的值,代入进行计算即可.【解答】解:原式=•=•=•=x+4.∵x是小于3的非负整数,∴x=0,1,2,∵x=0,2,∴x=1,∴原式=1+4=5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.【考点】菱形的性质;矩形的判定与性质.【专题】证明题.【分析】先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED 是矩形,利用勾股定理即可求出BC=OE.【解答】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,∴四边形OCED是矩形,∴DE=OC,∵OB=OD,∠BOC=∠ODE=90°,∴BC===OE【点评】本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?【考点】分式方程的应用.【分析】设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【解答】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.25.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8cm,BC=16cm,求线段DF和EF的长.【考点】翻折变换(折叠问题);菱形的判定与性质.【分析】(1)证得DE=DF,得四边形BFDE是平行四边形,根据折叠的性质知:BF=DF,得四边形BFDE 是菱形;=EF•BD,(2)在Rt△DCF中,利用勾股定理可求得DF的长;连接BD,得BD=8cm,利用S菱形BFDE易得EF的长.【解答】解:(1)由折叠的性质可得∠BFE=∠DFE,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF,∴四边形BFDE是平行四边形,由折叠知,BF=DF.∴四边形BFDE是菱形;(3)在Rt△DCF中,设DF=x,则BF=x,CF=16﹣x,由勾股定理得:x2=(16﹣x)2+82,解得x=10,DF=10cm,连接BD.在Rt△BCD中,BD==8,=EF•BD=BF•DC,∵S菱形BFDE∴EF×8=10×8解得EF=4cm.【点评】本题主要考查了勾股定理、平行四边形的判定、菱形的判定和性质,解题的关键是作好辅助线找到相关的三角形.26.阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由父母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试说明的最小值为10.【考点】分式的混合运算.【专题】阅读型.【分析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用非负数的性质求出最小值即可.【解答】解:(1)设﹣x4﹣8x2+10=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=9,b=1.∴=x2+9+;(2)由=x2+9+知,当x=0时,x2+9和分别有最小值,因此当x=0时,的最小值为10.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.27.操作与证明:把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.猜想与发现:(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.①MB,BN的数量关系是相等;②MB,BN的位置关系是垂直.变式与探究:(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?【考点】几何变换综合题.【分析】(1)延长AF交EC于G,交BC于H,利用正方形ABCD的性质和等腰△BEF的性质,证明△ABF≌△CBE,得到AF=CE,∠BAF=∠BCE,根据∠BAF+AHB=90°,∠AHB=∠CHG,所以∠BCE+∠CHG=90°,即可解答.(2)①MB,BN的数量关系是相等;②MB,BN的位置关系是垂直;(3)MA=MN,MA⊥MN,理由:如图4,连接DE,利用正方形ABCD的性质和等腰△BEF的性质,证明△ADF≌△CDE,得到DF=DE,∠1=∠2,利用在Rt△ADF中,点M是DF的中点,得到MA=DF=MD=MF,再利用中位线的性质,得到得到MN=DE,MN∥DE,通过角之间的等量代换和三角形内角和,得到∠6=90°,从而得到∠7=∠6=90°,即可解答.【解答】解:(1)如图2,延长AF交EC于G,交BC于H,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABF+∠FBC=90°,∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°,∴∠CBE+∠FBC=90°,∴∠ABF=∠CBE,在△ABF和△CBE中,,∴△ABF≌△CBE,∴AF=CE,∠BAF=∠BCE,∵∠BAF+AHB=90°,∠AHB=∠CHG,∴∠BCE+∠CHG=90°,∴AF⊥CE.(2)①相等;②垂直.故答案为:相等,垂直.(3)MA=MN,MA⊥MN,理由:如图4,连接DE,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,∵∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°,∵点E、F分别在正方形CB、AB的延长线上,∴AB+BF=CB+BE,即AF=CE,∵,∴△ADF≌△CDE,∴DF=DE,∠1=∠2,在Rt△ADF中,∵点M是DF的中点,∴MA=DF=MD=MF,∴∠1=∠3,∵点N是EF的中点,∴MN是△DEF的中位线,∴MN=DE,MN∥DE,∴MA=MN,∠2=∠3,∵∠2+∠4=∠ABC=90°,∠4=∠5,∴∠3+∠5=90°,∴∠6=180°﹣(∠3+∠5)=90°,∴∠7=∠6=90°,MA⊥MN.【点评】本题考查了图形的旋转的性质、全等三角形的性质与判定、等腰三角形的性质,解决本题的关键是证明三角形全等,得到相等的边与角,作辅助线也是解决本题的关键.。

浙江省桐乡市实验中学片区第二学期期中联考八年级数学考试卷(解析版)(初二)期中考试.doc

浙江省桐乡市实验中学片区第二学期期中联考八年级数学考试卷(解析版)(初二)期中考试.doc

浙江省桐乡市实验中学片区第二学期期中联考八年级数学考试卷(解析版)(初二)期中考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx 分)【题文】化简的结果是()A. 3B.C. ±3D. 9【答案】C【解析】考点:算术平方根.分析:根据算术平方根的定义,直接得出=表示9的算术平方根,即可得出答案.解答:解:∵=表示9的算术平方根,∴=3.故选:A.点评:此题主要考查了算术平方根的定义,此题容易出错选择C,应引起同学们的注意.【题文】下列计算中正确的是()A. B. C. D.【答案】D【解析】与不能合并,故A错误;同理B错误;3与不能合并,故C错误;D正确;故选D. 点睛:本题主要考查二次根式的计算,能正确地区分是否为同类二次根式是解决二次根式加减法的关键. 【题文】用配方法解一元二次方程时,可配方得()A. B. C. D.【答案】C【解析】x2-2x-5=0,移项得:x2-2x=5,配方得x2-2x+1=5+1,即(x-1)2=6,故选C.【题文】已知=2是关于的方程的一个解,则的值是()A. 3B. 4C. 5D. 6【答案】C【解析】试题分析:把x=2代入已知方程可以求得2a=6,然后将其整体代入所求的代数式进行解答.解:∵x=2是关于x的方程的一个解,∴×22﹣2a=0,即6﹣2a=0,则2a=6,∴2a﹣1=6﹣1=5.故选:C.考点:一元二次方程的解.【题文】有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A. 10B.C.D. 2【答案】D【解析】试题解析:∵3、a、4、6、7,它们的平均数是5,∴(3+a+4+6+7)=5,解得,a=“5”S2= [(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2,故选B.考点:1.方差;2.算术平均数.【题文】如图,在平行四边形ABCD中,∠B=60度,AB=5cm,则下面结论正确的是()A. BC=5cm,∠D=60度B. ∠C=120度,CD=5cmC. AD=5cm,∠A=60度D. ∠A=120度,AD=5cm【答案】B【解析】∵四边形ABCD是平行四边形,∴CD=AB=5cm,∠D=∠B=60°,∠A=∠C,∴∠A=∠C=120°,只有B 选项正确,故选B.【题文】若n边形的内角和等于外角和的2倍,则边数n为()A. n=4B. n=5C. n=6D. n=7【解析】由题意得(n-2)×180=360×2,解得n=6,故选C.【题文】已知,则化简的结果是()A. 4B.C.D.【答案】A【解析】由可得,∴3≤x≤5,∴=x-1+5-x=4,故选A. 【题文】在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程(化为一般形式)是()A. B.C. D.【答案】B【解析】由题意得(80+2x)(50+2x)=5400,整理得:x2+65x-350=0,故选B.【题文】如果一元二次方程满足,那么我们称这个方程为“阿凡达”方程,已知是“阿凡达”方程,且有两个相等的实数根,则下列结论正确的是()A. B. C. D.【答案】D【解析】由题意知:,由(2)得:b²=4ac(3),(1)×c得:4ac-2bc+c²=0(4),把(3)代入(4)得b²-2bc+c²=0,∴(b-c)²=0,即b=c,故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.能正确根据新定义列出4a-2b+c=0是解题的关键.【题文】当=-2时,则二次根式的值为_______.【解析】试题分析:把x=-2代入可得=.故答案为:1【题文】请写出一个与的积为有理数的数是______.【答案】 (不唯一)【解析】试题分析:根据题意可知:两无理数乘积为有理数,只要是乘以的倍数即可,因此写出一个含有的数即可,答案不唯一.故答案为:【题文】四边形ABCD中,∠A与∠C互补,∠B=80O,则∠D=________度.【答案】100°【解析】由已知得∠A+∠C=180°,又∠A+∠B+∠C+∠D=360°,∴∠B+∠D=180°,∵∠B=80°,∴∠D=100°.【题文】如图,斜坡AC的坡比为0.8:1,若BC=5,则斜坡AC=__________.【答案】【解析】由题意得AB:BC=0.8:1,BC=5,∴AB=4,∴AC= = .【题文】随着经济的发展,桐乡房价从2015年的8000元/平方米,增长到2017年的11520元/平方米,设平均每年的增长率相同为x,则根据题意可列方程为________.【答案】8000(1+x)2=11520【解析】由题意可得所列方程为:8000(1+x)2=11520.【题文】某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下:锻炼时间(小时)5678人数252则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是_______.【答案】6,6【解析】一共15个数据,从小到大排列后,第8个数据是中位数,观察可得中位数是6,众数是指出现次数最多的数据,观察可知众数是6.【题文】如图,AC、BD是平行四边形ABCD的对角线,AC与BD交于点O,AC=4,BD=5,BC=3,则△BOC的周长是_______.【答案】7.5【解析】∵四边形ABCD是平行四边形,∴CO= AC=2,BO= BD=2.5,∵BC=3,∴CO+BO+BC=7.5,即△BOC 的周长是7.5.【题文】已知的整数部分是,小数部分是,则_______.【答案】1【解析】由题意的x=2,y= -2,∴y2+4y=( -2)2+4(-2)=5-4 +4+4 -8=1.【题文】若关于的一元二次方程有实数根,则的取值范围是_____.【答案】【解析】由题意得,解得.【题文】为迎接G20杭州峰会的召开,某校八年级(1)(2)班准备集体购买一种T恤衫参加一项社会活动.了解到某商店正好有这种T恤衫的促销,当购买10件时每件140元,购买数量每增加1件单价减少1元;当购买数量为60件(含60件)以上时,一律每件80元.如果八(1)(2)班共购买了100件T恤衫,由于某种原因需分两批购买,且第一批购买数量多于30件且少于60件.已知购买两批T恤衫一共花了9200元,则第一批T恤衫的购买________件.【答案】40件【解析】设第一批购买T恤衫x件,则第二批购买(100-x)件,当30<x≤40时,则60≤100-x<70,则有x[140-(x-10)]+80(100-x)=9200,解得x1=30(舍去),x2=40当40<x&ll【解析】试题分析:(1)按二次根式的乘法进行运算即可;(2)先按乘法公式进行计算,再进行合并即可.试题解析:(1)原式===3(2)原式==【题文】请选择适当的方法解下列一元二次方程:(1)(2)【答案】(1) x1=﹣2,x2=2;(2) ,.【解析】试题分析:利用直接开平方法直接可求解;(2)先化简,再根据公式法求解.试题解析:(1)x2﹣4=0x2=4x=±2(2)x(x﹣6)=5x2-6x-5=0因为a=1,b=-6,c=-5所以△=36-4×(-5)=56>0所以,所以,【题文】小明和小聪最近5次数学测试的成绩如下:小聪:76 84 80 87 73小明:78 82 79 80 81(1)分别求出小明和小聪的平均成绩;(2)哪位同学的数学成绩比较稳定.【答案】(1)80分,80分(2)小明的成绩更稳定【解析】试题分析:(1)按平均数计算公式进行运算即可;(2)分别计算方差,方差小的比较稳定.试题解析:(1),(2)∴小明的成绩更稳定.【题文】已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

2015-2016第二学期期中质量检查八年级数学

2015-2016第二学期期中质量检查八年级数学

班级 座号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆2015-2016第二学期期中质量检查八年级数学一、选择题(每小题2分,共20分)1.要使式子3-x 有意义,则x 的取值范围是( ) A .x >0 B .3-≥x C .3≥x D .3≤x 2.下列计算正确是( ) A .1313=⨯ B .145=- C .4312=÷ D .416±=3.能与2合并的二次根式是( )A .8 B .12 C .32D .34 4.如图,EF 是△ABC 的中位线,且EF=6,则BC=( ) A .6 B .8 C .10 D .125.下列各组线段中,不能组成直角三角形.........的是( ) A. 3,4,5 B. 6,8,10 C. 5,12,13 D.3, 4, 56.在R t △ABC 中,∠C=900,AC=5,AB=13,则BC 的值为( ) A .6 B .8 C .10 D .127.不能判定一个四边形是平行四边形...............的条件是( ) A .两组对边分别平行 B .两组对边分别相等 C .一组对边平行且相等 D .两组对角互补8、下列给出的条件中,能判定四边形ABCD 是平行四边形的是( ) A 、AB ∥CD ,AD=BC B 、AB=AD ,CB=CD C 、AB=CD ,AD=BC D 、∠B=∠C ,∠A=∠D 9.如图字母B 所代表的正方形的面积是 ( ) A. 12 B. 13 C. 144 D. 194 10.对角线互相平分且相等的四边形是( )A.四边形B.平行四边形C.菱形D.矩形 第4题FECBA B16925一、选择题(每小题2分,共20分)二、填空(每小题3分,共15分)11.计算:=⎪⎭⎫⎝⎛251-12.在□AB CD ,如果∠A=750,那么∠A 的对角∠C 的度数是 13.如图:等边三角形的边长是6,则它的高是14.如图,在□AB CD 中,AB=10,BC=8,A C ⊥BC ,OA 的长是 15.如图,在矩形ABCD 中,∠AOB=600,AB=2,AC 的长是 三、解答题(每小题5分,共25分) 16.计算:76-7217.计算:))((3-535-3127+⨯18.在数轴上作出表示及17的点. AODCB 第15题AO DCB第14题D3366300第13题CBA19.如图,在四边形ABCD 中,AB=3,BC=4,CD=12,AD=13,∠B=900求四边形ABCD 的面积。

2015-2016学年度八年级第二学期中段考

2015-2016学年度八年级第二学期中段考

2015-2016学年度第二学期中段考八年级数学模拟卷2班级: 姓名: 得分:一、 选择题(每小题2分,共20分)1.下列计算正确的是( )A 1=B 1C 2=D =± 2. 要使式子有意义,则x 的取值范围是( )A .x >0B .x ≥﹣2C . x ≥2D .x ≤23. 在下列长度的各组线段中,能构成直角三角形的是( )A 、3,5,9B 、4,6,8C 、1 2D 4. 下列二次根式中,化简后不能与3合并的是( )A 、31 B 、9 C 、276. 已知平行四边形ABCD 中,∠B=55°,则∠C=( )A .45°B .55°C .115°D .125°7. 不能判定一个四边形是平行四边形的条件是( )A. 两组对边分别平行B. 一组对边平行,另一组对边相等C. 一组对边平行且相等D. 两组对边分别相等8. 如图8,在□ABCD 中,AD=5,AB=3,AE 平分∠BAD 交BC 边于点E ,则线段EC 的长度为() A .1 B .2 C .3 D .49. 如图9,在□ABCD 中,AD=8,点E 、F 分别是BD 、CD 的中点,则EF 为( )A .8B .6C .5D .410.如图10,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A 、48B 、76C 、60D 、80第8题图 第9题图 第10题图二、填空题(每小题3分,共15分)11. 计算= .12.如图12,∠ACB=90°,已知BC=8cm ,AC=6cm ,则斜边AB 上的中线CD=_______.13. 如图13,在四边形ABCD 中,AB ∥CD ,请你添加一个条件,使得四边形ABCD 成为平行四边形,你添加的条件是_____________ .14.如图14,在正方形ABCD 的外侧作等边△DCE ,则∠CBE 的度数为_________ .15.如图15,已知△ABC 是腰长为1的等腰直角三形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰 Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,则第2015个等 腰直角三角形的斜边长是 ___________.第12题图 第13题图 第14题图 第15题图三、解答题(每小题5分,共25分)16. 计算:-17. 如图,已知在平行四边形ABCD 中,BE=DF. 求证:∠DAE=∠BCF .18. 已知13+=x ,y=13-,求代数式 x y y x-的值.19. 如图,□ABCD 的两条对角线AC 和BD 相交于点O ,并且BD=10,AC=24,BC=13(1)AC 与BD 有什么位置关系?为什么?(2)四边形ABCD 是菱形吗?为什么?20. 如图,菱形花坛ABCD 的边长为4m , ∠ABC =600,沿着菱形对角线修建 了两条小路AC 和BD ,求两条小路的长和花坛的面积。

2015-2016年度八年级下册数学期中试卷(含答案)

2015-2016年度八年级下册数学期中试卷(含答案)

八年级数学2015~2016学年度第二学期期中试卷(试卷总分100分 考试时间100分钟)命题、校对:隆政初中八年级数学备课组一、单项选择题(每小题2分,共20分)1.下列根式中是最简二次根式的是( )A B C D . 1.02.下列运算正确的是( )A . =B . a b =-C . (a b =-D . 2== 3.已知a =3,b =4,若a ,b ,c 能组成直角三角形,则c= ( )A .5B .7C .5或7D .5或64.如图,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则AP 长不可能是( ).A .3.5B .4.2C .5.8D .75.有下列四个命题,其中正确的个数为( )①两条对角线互相平分的四边形是平行四边形;②一条对角线平分一个内角的平行四边形是菱形;③两条对角线互相垂直的平行四边形是矩形;④两条对角线相等且互相垂直的四边形是正方形.A .4B .3C .2D .16. 如图所示,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .197.若顺次连接四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必定是( )A .菱形B .对角线相互垂直的四边形C .正方形D .对角线相等的四边形8.已知点(x 1,y 1),(x 2,y 2)都在直线y = - 12x -6上,如x 1﹥x 2则y 1和 y 2大小关系是( )A .y 1 >y 2B .y 1 =y 2C .y 1 <y 2D .不能比较9.若点A (2,4)在函数2y kx =-的图象上,则下列各点在此函数图象上的是( ).A .(0,-2)B .(32,0) C .(8,20) D .(12,12) 10.在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M 的坐标为( )A .(1-,4)B .(1-,2)C .(2,1-)D .(2,1)二、填空(每小题3分,共24分)11.要使代数式xx 212-有意义,则x 的取值范围是 . 12.如图,Rt △ABC 的面积为20cm 2,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 .13.直角三角形两直角边长分别为5和12,则它斜边上的高为 .14.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB =_______.15. 当直线y=kx+b 与直线y=-2x+1平行,且y=kx+b 与y=x+4和x 轴交于一点,则y=kx+b的解析式为_____________.16.如图,正方形ABCD 的对角线长为E 为AB 上一点,若EF ⊥AC 于F ,EG ⊥BD于G ,则EF +EG = .17.如图,已知函数y 1=k 1x +b 1和y 2=k 2x +b 2交于点(-3,1),k 1﹥0,k 2﹤0,如k 1x +b 1﹤k 2x +b ,则x 的范围为_____ ___.18.如图,边长为1的菱形ABCD 中,∠DAB =60°.连接对角线AC ,以AC 为边作第二个菱形ACEF ,使∠F AC =60°,连接AE ,再以AE 为边作第三个菱形AEGH 使∠HAE =60°…按此规律所作的第n 个菱形的边长是 .三、解答(第19题9分,第20题,24题每题6分,第21题 5分,第22题和第23题,25题每题7分,第26题9分,共计56分)19.计算(每小题3分,共9分)(1)( (2 (3)已知x =312+,y =312-,求x 2+y 2 20. (本题满分6分)如图所示,矩形ABCD 中,AB =8,AD =6,沿EF 折叠,点B 恰好与点D重合,点C 落在点G 处,求折痕EF 的长度.21. (本题满分5分)已知:如图,E 、F 是平行四边形ABCD 的对角线AC 上的两点,AE =CF .求证:四边形DEBF 是平行四边形.22.(本题满分7分)如图,在矩形ABCD 中,AC 与BD 交于点O ,DE ∥AC ,CE ∥BD .(1)求证:四边形OCDE 为菱形;(2)如AB =2,AC 与BD 所夹锐角为60°,求四边形OCED 的面积.23.(本题满分7分)如图,△ABC 中,CE 和CF 分别平分∠ACB 和△ABC 的外角∠ACD ,一动点O 在AC 上运动,过点O 作BD 的平行线与∠ACB 和∠ACD 的角平分线分别交于点E 和点F(1)求证:当点O 运动到什么位置时,四边形AECF 为矩形,说明理由;(2)在第(1)题的基础上,当△ABC 满足什么条件时,四边形AECF 为正方形,说明理由.24.(本题满分6分)已知y 与x -1成一次函数关系,且当-2﹤x ﹤3时,2﹤y ﹤4,求y 与x 的函数解析式.25.(本题满分7分)如图,将直线221+-=x y 先向右平移一个单位长度,再向上平移一个单位长度,所得新的直线l 与x 轴、y 轴分别交于A 、B 两点,另有一条直线y=x+1.(1)求l 的解析式;(2)求点A 和点B 的坐标;(3)求直线y=x+1 与直线l 以及y 轴所围成的三角形的面积.26. (本题满分9分)甲乙两工程队同时修路,两队所修路的长度相等,甲队施工速度一直没变,乙队在修了3小时后加快了修路速度,在修了5小时后,乙又因故施工速度减少到每小时5米,如图所示是两队所修公路长度y (米)与所修时间x (小时)的图象,请回答下列问题.(1)直接写出甲队在0≤x ≤5时间段内,y 与x 的函数关系式为________;直接写出乙队在3≤x ≤5时间段内,y 与x 的函数关系式为_________;(2)求开修多长时间后,乙队修的长度超过甲队10米;(3)如最后两队同时完成任务,求乙队从开修到完工所修长度为多少米.初二年级数学2015~2016学年度第二学期期中试卷答案一、选择ACCDC BBCAD二.填空11、x ≥21且x ≠0 12、 20 13、 1360 14、 15° 15、y=-2x-8 16、42 17、x <-3 18、()3n-1三.解答 19(1)解:原式=29382- (1分) =22924-(1分) =221- (1分) (2)解:原式=334+×32334332--×43 (1分) =3383343234--+ (1分) =32 (1分)(3)解:13-=x 31--=y (1分)原式=(x+y )2-2xy=(-2)2-2×(-2) (1分)=8 (1分)20.解:作EM ⊥CD ,垂足为点M ,设DE=x ,则根据题意可得BE= x ,AE=8- x,(1分)∵矩形ABCD ,∴∠A=90°,∴(8-x )2+62=x 2 (1分)解得x=425 (1分) ∴AE=DM=47,又∵DF=DE 425,(1分) ∴MF=29,又∵ME=AD=6, ∴EF=215 (2分)21.证:连接BD 与AC 交于点O ,(1分)∵四边形ABCD 是平行四边形,∴OA=OC,OB=OD,(2分)∵AE=CF, ∴OE=OF,(1分)∴四边形DEBF 为平行四边形(1分)22. (1)证:∵四边形ABCD 为矩形,∴AC=BD,OC=21AC,OD=21BD, ∴OC=OD,(2分),∵ DE ∥AC ,CE ∥BD ,∴四边形OCED 为菱形(2分)(2)作D M ⊥OC,垂足为点M ,∵OC=OD,∠COD=60°,∴△COD 为等边三角形(1分),∵AB=2,矩形ABCD,∴CD=AB=2, ∴OC=CD=OD=2,∵D M ⊥OC ,∴CM=1, ∴DM=3(1分), ∴菱形OCED 面积=23(1分)23.(1)答:当点O 在AC 中点时(1分),理由如下:∵EF ∥BD, ∴∠CEO=∠ECB, ∵CE 平分∠ACB, ∴∠BCE=∠ACE, ∴∠CEO=∠ECO, ∴OE=OC,(1分),同理可证,OC=OF, ∴OE=OF,,∵点O 在AC 中点∴,四边形AECF 为平行四边形(1分),∵CE 平分∠ACB, ∴∠ACE=21∠ACB,同理,∠ACF=21∠ACD, ∴∠ECF=90°, ∴四边形AECF 为矩形(1分)(2)答,当∠ACB=90°时(1分)理由如下:∵EF ∥BD ,∠ACB=90°,∴∠AOE=90°(1分),∵四边形AECF 为矩形,∴四边形AECF 为正方形(1分)24.解:设b x k y +-=)1( (k ≠0)依题意得当k >0时,2=-3k+b ,4=2k+b ,(1分)解得51652+=x y (2分) 当k <0时,4=-3k+b ,2=2k+b ,(1分),解得51452+-=x y (2分) 25.(1)解:12)1(21++--=x y (1分),得2721+-=x y (1分)(2)解:A(7,0) B(0,27)(每个点1分,共2分) (3)将2721+-=x y 和y=x+1联成方程组解得两直线交点为(35,38)(1分),再求出两直线与y 轴交点分别为(0,27)和(0,1)(1分),所以三角形面积为1225(1分) 26.(1)x y 14=(1分)8535-=x y (1分)(2)当3≤x ≤5时,10148535=--x x (1分)得2195=x (1分) 当x >5时1014)5(590=--+x x (1分)得955=x (1分) (3)解:设已乙队共修了m 个小时,依题意得)5(59014-+=m m (1分)解得965=m (1分) 乙队共修长度14×9910965=(米)(1分)。

2015-2016学年第二学期八年级期中考试数学试卷.

2015-2016学年第二学期八年级期中考试数学试卷.
方形的长为 3 10 、宽为 2 10 ,下列是四位同学对该大长方形的判断,其中不正确的是( )
A.大长方形的长为 6 10 B.大长方形的宽为 5 10
C.大长方形的长为 11 10 D.大长方形的面积为 300
第 7 题图
第 8 题图
8.一艘轮船和一艘渔船同时沿各自的航向从港口 O 出发,如图所示,轮船从港口 O 沿北偏西 20°的方向行 60 海里到达点 M 处,同一时刻渔船已航行到与港口 O 相距 80 海里的点 N 处,若 M、N 两点相距 100 海里, 则∠NOF 的度数为( )
2015-2016 学年第二学期八年级期中考试
数学试卷
本试卷分卷 I 和卷 II 两部分;卷 I 为选择题,卷 II 为非选择题. 本试卷总分 120 分,考试时间为 120 分钟.
卷 I(选择题,共 42 分)
注意事项:1.答卷 I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人 员将试卷和答题卡一并收回. 2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.
PE⊥AB 于 E,PF⊥AC 于 F,M 为 EF 的中点,则 PM 的最小值为( )
A.1.2
B.1.3
C.1.4
D.2.4
12.△ABC 中,AB=AC=5,BC=8,点 P 是 BC 边上的动点,过点 P 作 PD⊥AB 于点 D,PE⊥AC 于点 E,
则 PD+PE 的长是( )
A.4.8
C.( 3 )2015 3
D.( 3 )2014 3
卷 II(非选择题,共 78 分)

题号

21
22
23
24

2015---2016第二学期期中八年级数学考试试卷

2015---2016第二学期期中八年级数学考试试卷

D A = 30k
m
!
CB- 20k n
那 么 基 地 E 应建 在 离 A 站 多 少 千米 的地 方 ?
( 第 19 题 图 )

年 级 数 学期 中试 卷
第5 页
(共
8
页)
21
( 本题 8 分 ) 如图
四边 形
A B CD
是 平 行 四边 形
O
是对角线
A C

BD
的交 点
A B 上A C
,
若A
B
=
8
,
A ( Æ12

BD
的长
( 第 2 1 题)
22
( 本 题 10 分 ) 如 图
在 正 方形 A
,
B CD

边长 A B
=
3
点E (与B
•A C
不 重合 ) 是 B C 边 上
任意

E F 上月E 且 E F 与 4 E
(5 分)
连接 傓
( 1 ) 求 偳D C F 的度 数
° ( 2 ) 当 僲且 4 居 3 0 时
应城 市
( 2 0 15
-
2 o 16 )
第二 学期 期 中 考 试 八 年

( 本卷 满分 12 0 分

考试 时 间
12 0

分钟 )
•A精 心选

相信 自 己 的判 断 ! ( 将 下 列 各 题 中惟
不 填填错 或 填 的 序
正 确 答 案 的 序 号 填入 下 面 答 题
栏 中相 应
的题 号栏 内
6 小题
每小题
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省桐乡市现代片区2015-2016学年八年级数学下学期阶段练习二(期中)
试题
一、选择题(本题有10小题,每小题3分,共30分)
1
x 的取值范围是( )
A .2x >-
B .2x -≥
C .2x ≠-
D .2x -≤
2.下面计算正确的是( )
A
3= B
.3= C
=
2-
3.下列方程中,属于一元二次方程的是 ( )
A 、321-=-x x
B 、022=-x x
C 、y x =-23
D 、0312=+-x x
4.某多边形的内角和是其外角和的3倍,则此多边形的边数是( )
A .5
B .6
C .7
D .8
5.茶叶厂用甲、乙两台包装机包装质量为400克的茶叶,从它们各自包装的茶叶中分别随机抽取10盒,测得它们实际质量的平均数和标准差分别如表所示,则包装茶叶质量较稳定的包装机为( )
A .甲
B .乙
C . 甲和乙
D .无法确定
6. 下列说法正确的是( )
A .有一组对边平行,另一组对边相等的四边形是平行四边形
B .平行四边形的对角线相等
C .平行四边形的对角互补,邻角相等
D .平行四边形的两组对边分别平行且相等
7. 把方程2460x x --=配方,化为
2(+)x m n =的形式应为( ) A. 2(-4)6x = B. 2(-2)4x = C.
2(-2)0x = D. 2(-2)10x = 8. 三角形的两边长分别为3和6,第三边长是方程x 2-6x+8=0的根,则这个三
角形的周长是( )
A 、 11
B 、 13
C 、11或13
D 、11和13
9. 某经济开发区今年一月份工业产值达50亿元,第一季度产值为175亿元,问二、三月平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意得方程( )
A .50(1+x)2=175
B .50+50(1+x)2=175
C .50(1+x)+ 50(1+x)2=175
D .50+50(1+x)+ 50(1+x)2=175
10. 某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和众数分别是( )
A.94分,96分
B.96分,96分
C.96分,98分
D.96分,94分
二、填空题(本题有10小题,每小题3分,共30分)
11. 化简2)3
(-的结果是______.
12.如图,在平行四边形ABCD中,∠A+∠C=2400,则∠B= ______ 度.
13.一运动员乘雪橇沿坡比1
1000米.
则这名运动员滑到坡底的路程是米.
14.
平行四边形的两条对角线长分别为6和10
,则其中一条边x的取值范围为________.
15. 若0
1
2
)3
(1)2
(=
-
+
+-
+mx
x
m m
m是关于的一元二次方程,则的值是________.
16. 已知x=-2是方程220
x mx
++=的一个根,则m的值是.
17.若4
3
3+
-
+
-
=x
x
y,则=
+y
x
____________ .
18. 若,则=
+
-8
4
2x
x________.
19. 已知0
6
52
2=
+
-y
xy
x,则
y
x
=_________.
20. 在平面直角坐标系XOY中,有A(3 , 2) ,B (-1 ,-4 ),P是X轴上的一点,Q是Y轴上的一点,若以点A,B,P,Q四个点为顶点的四边形是平行四边形,则Q点的坐标是______.
三、解答题。

(要求写出解答过程,只有答案不给分,共40分)
21.计算:(每小题4分,共8分)
(1(2))1
5
)(
1
5
(
)1
5
(2-
+
-
+
A
B C
D
第12题
22.解下列方程:(每小题4分,共8分)
(1) 2x(x+3)=6(x+3) (2)2x2-7x+1=0;
23.(本题8分)现将进货单价为100元的商品按每件150元售出时,就能卖出300件。

已知这批商品每件涨价5元,其销售量将减少10件.问为了赚取19200元利润,同时也考虑尽量减轻销售人员的工作量,问售价应定为多少?这时应进货多少件?
24. (本题8分)如图,在平行四边形ABCD中,点E是边BC的中点,DE的延长线与AB的延长线相交于点F.
(1)求证:△CD E≌△BFE;
(2)试连接BD、CF,判断四边形CDBF的形状,并证明你的结论
25. (本题8分)请观察下列等式,并按要求完成下列填空
.
1
=== . (Ⅰ)
1
====. (Ⅱ)
(1
___________________________________________.

(2
=_______________.(用含
n的代数式直接表示)
(3
++
= .
A
B
A
C
A
D
C
E
B
F
E
(第24题图)
桐乡市现代片学校八年级数学阶段性练习二答题卷(2016.4)
出卷学校:同福初中出卷人:倪东明审核人:沈曙初
二、填空题(每小题3分,共30分)
11.___ _____ 12.____ ____
13.____ ____ 14.___ _____
15.____ ____ 16._____ ___
17.____ ____ 18.______ __
19.___ ___ 20.____ ____
三、解答题。

(要求写出解答过程,只有答案不给分,共40分)
21.计算:(每小题4分,共8分)
(1(2))1
5
)(
1
5
(
)1
5
(2-
+
-
+
22.解下列方程:(每小题4分,共8分)
(1) 2x(x+3)=6(x+3) (2)2x2-7x+1=0;
23.(本题8分)(题目在试卷上)
24. (本题8分)如图,在平行四边形ABCD中,点E是边
BC的中点,DE的延长线与AB的延长线相交于点F.
A
B
A
C
A
C
E
B
(1)求证:△CD E≌△BFE ;
(2)试连接BD 、CF ,判断四边形CDBF 的形状,并证明你的结论
25. (本题8分) 请观察下列等式,并按要求完成下列填空.
1
=== . (Ⅰ)
1
====. (Ⅱ)
(1
. ②参照(Ⅱ)式得
. (2)根据你的发现,
=_______________.(用含n 的代数式直接表示)
(3
++ = .。

相关文档
最新文档