2019年五常市山河镇林业局一中高考数学选择题专项训练(一模)
2019年柴河林业局第一中学高考数学选择题专项训练(一模)

2019年柴河林业局第一中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。
第 1 题:来源:云南省腾冲市2017_2018学年高二数学上学期期中试题试卷及答案已知向量,则下列结论正确的是()A. B. C. D.【答案】D第 2 题:来源:陕西省西安市2016_2017学年高一数学下学期期中试卷理(含解析)定义算式⊗:x⊗y=x(1﹣y),若不等式(x﹣a)⊗(x+a)<1对任意x都成立,则实数a的取值范围是()A.﹣1<a<1 B.0<a<2 C.D.【答案】D【考点】3W:二次函数的性质.【分析】由已知中算式⊗:x⊗y=x(1﹣y),我们可得不等式(x﹣a)⊗(x+a)<1对任意x都成立,转化为一个关于x的二次不等式恒成立,进而根据二次不等式恒成立的充要条件,构造一个关于a的不等式,解不等式求出实数a的取值范围.【解答】解:∵x⊗y=x(1﹣y),∴若不等式(x﹣a)⊗(x+a)<1对任意x都成立,则(x﹣a)•(1﹣x﹣a)﹣1<0恒成立即﹣x2+x+a2﹣a﹣1<0恒成立则△=1+4(a2﹣a﹣1)=4a2﹣4a﹣3<0恒成立解得第 3 题:来源:江西省新余市2016_2017学年高一数学下学期期末试卷文(含解析).等于()A.1 B.﹣1 C. D.【答案】C【考点】GO:运用诱导公式化简求值.【分析】由题意利用诱导公式,求得要求式子的值.【解答】解:sin=sin=sin=,故选:C.第 4 题:来源:河北省保定市2016_2017学年高二数学3月月考试题理试卷及答案在平行六面体中,若,则等于()A. B. C. D.【答案】 D 由空间向量基本定理得,所以第 5 题:来源:辽宁省阜新二高2017_2018学年高一数学下学期期中试题若存在实数使m>成立,则m的取值范围为( )A.(13,+∞) B.(5,+∞)C.(4,+∞) D.(5,13)【答案】C第 6 题:来源: 2016_2017学年度吉林省延边市高二数学下学期第二阶段检测试题试卷及答案理设随机变量ξ服从正态分布N(0,1),,则=( )A. B. C. D.【答案】D第 7 题:来源: 2016_2017学年河南省南阳市高一数学下学期第一次月考(3月)试题试卷及答案抛掷一枚骰子,记事件A为“落地时向上的点数是奇数”,事件B为“落地时向上的点数是偶数”,事件C为“落地时向上的点数是3的倍数”,事件D为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( )A.A与B B.B与C C.A与D D.C与D【答案】C第 8 题:来源:陕西省黄陵县2018届高三数学上学期期中试题(普通班)理试卷及答案若圆x2+y2-ax+2y+1=0与圆x2+y2=1关于直线y=x-1对称,过点C(-a,a)的圆P与y轴相切,则圆心P的轨迹方程为( )A.y2-4x+4y+8=0 B.y2+2x-2y+2=0C.y2+4x-4y+8=0 D.y2-2x-y-1=0【答案】第 9 题:来源:安徽省滁州市定远县育才学校2018_2019学年高一数学下学期第一次月考试题(普通班)已知sinα=,则cos等于( )A. B. C.-D.-【答案】C第 10 题:来源:江西省奉新县2017_2018学年高二数学上学期第二次月考试题理试卷及答案已知双曲线的左右焦点分别,,则双曲线的离心率的取值范围是()A.B.C.D.【答案】B第 11 题:来源:青海省西宁市2018届高三数学9月月考试题理试卷及答案设,则“”是“”的( ) A.充分而不必要条件 B.必要而不充分条件C.充要必要条件D.既不充分也不必要条件【答案】A第 12 题:来源:甘肃省嘉峪关市2017_2018学年高二数学上学期期中试题试卷及答案文在中,如果,那么cosC等于()【答案】D第 13 题:来源:广东省佛山市高明区第一中学2017_2018学年高一数学上学期第9周考试试题(含解析)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是()A. B.C. D.【答案】C【解析】试题分析:初始阶段为匀速行驶,图像为递增一次函数,中期停留为常函数,后期加快行驶速度,因此函数导数值逐渐增大,四个图像中只有A符合考点:函数图像第 14 题:来源:湖北省黄冈中学2016-2017学年高一数学上学期期末模拟测试试题试卷及答案(2)已知函数的定义域都为R,且是奇函数,是偶函数,则下列结论中正确的是A.是偶函数B.是奇函数C.是奇函数D.是奇函数【答案】C第 15 题:来源:河北省衡水中学2018届高三数学上学期五调考试试题理若A. B.1 C.2 D.【答案】A第 16 题:来源:河北省邯郸市2017_2018学年高二数学上学期期中试题试卷及答案.若a<b<0,则下列不等式:①|a|>|b|;②;③;④a2<b2中,正确的有()A. 1个 B. 2个 C. 3个 D. 4个【答案】C第 17 题:来源: 2017年普通高等学校招生全国统一考试数学试题理(全国卷1,参考解析)已知曲线,,则下面结论正确的是()A.把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B.把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线D.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线【答案】D【解析】,首先曲线、统一为一三角函数名,可将用诱导公式处理..横坐标变换需将变成,即.注意的系数,在右平移需将提到括号外面,这时平移至,根据“左加右减”原则,“”到“”需加上,即再向左平移.第 18 题:来源:广东省深圳市耀华实验学校2019届高三数学上学期第一次月考试题理已知,则()A. B. C.D.【答案】A第 19 题:来源:黑龙江省虎林市2016_2017学年高二数学5月月考试题理试卷及答案一袋中装有大小相同,编号分别为的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()A.B.C.D.【答案】D第 20 题:来源:辽宁省大连市2017_2018学年高二数学上学期期中试题文试卷及答案“”是“”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不必要也不充分条件【答案】C第 21 题:来源: 2017年新疆乌鲁木齐市高考数学三诊试卷(理科)含答案解析球O与棱长为2的正方体ABCD﹣A1B1C1D1的各个面都相切,点M为棱DD1的中点,则平面ACM截球O所得截面的面积为()A. B.π C. D.【答案】D【考点】LG:球的体积和表面积.【分析】求出圆心到截面距离,利用d2+r2=1求出截面半径,即可求出截面的面积.【解答】解:设圆心到截面距离为d,截面半径为r,由VO﹣ACM=VM﹣AOC,即,∴,又d2+r2=1,∴,所以截面的面积为.故选D.第 22 题:来源: 2016_2017学年安徽省蚌埠市高二数学上学期期中试题试卷及答案理函数是定义域为的奇函数,当时,(为常数),则()A. B.C. D.【答案】A第 23 题:来源:湖北省部分重点中学2018届高三数学起点考试试题试卷及答案理已知数列为等差数列,其前项和为,,则为A. B. C. D. 不能确定【答案】B第 24 题:来源: 2019高考数学一轮复习第11章复数算法推理与证明第2讲算法与程序框图分层演练文庄子说:“一尺之锤,日取其半,万世不竭”.这句话描述的是一个数列问题.现用程序框图描述,如图所示,若输入某个正整数n后,输出的S∈,则输入的n的值为( )A.7 B.6 C.5 D.4【答案】C.第 25 题:来源:内蒙古包头市第四中学2018_2019学年高一数学上学期期中模拟测试试题(一)下列函数中,在(0,+∞)上是减函数的是()A. B. C. D.【答案】C第 26 题:来源:四川省遂宁市射洪县2016_2017学年高一数学下学期第三次月考试卷理(含解析)设O是△ABC的外心,a,b,c分别为角A,B,C对应的边,已知b2﹣2b+c2=0,则的范围是()A.B.C.D.【答案】B.第 27 题:来源:云南省玉溪一中2018_2019学年高二数学下学期第一次月考试题理已知直线与圆交于A,B两点,O是坐标原点,且,则实数的值为()A.B.或C.或D.或【答案】C第 28 题:来源: 2017-2018学年吉林省通化市辉南高一(上)期末数学试卷(含答案解析) (1) 已知cos(+φ)=且|φ|<,则tanφ等于()A.﹣ B.﹣ C. D.【答案】B解:∵cos(+φ)=﹣sinφ=,即sinφ=﹣,∵|φ|<,∴cosφ==,则tanφ==﹣,第 29 题:来源:吉林省长春外国语学校2018_2019学年高一数学上学期第一次月考试题(含解析)下列函数中为相等函数的有几组()①与②与③与A. B. C. D.【答案】C【详解】对于①,y==x,所以这两个函数定义域及对应关系都相同,是相等的函数;对于②,的定义域不含零,定义域含有零,不是相等的函数;对于③,=,所以这两个函数定义域及对应关系都相同,是相等的函数.第 30 题:来源:安徽省合肥市第八中学2018_2019学年高二数学上学期期中试题文(含解析)如图正方形OABC的边长为1cm,它是水平放置的一个平面图形的直观图,则原图形的周长是()A. 8cmB. 6cmC.D.【答案】A【解析】试题分析:由题意得,正方形的边长为,它是水平放置的一个平面图形的直观图,所以,对应原图形平行四边形的高为,如图所示,所以原图形中,,所以原图形的周长为,故选A.考点:平面图形的直观图.第 31 题:来源:河南省天一大联考2017届高三数学上学期期末考试试题理已知数列的前项和,则数列的前项和等于A. 1023B. 55C. 45D. 35【答案】C第 32 题:来源:河北省承德市2017_2018学年高二数学上学期第二次月考试题试卷及答案已知命题,“为真”是“为假”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A第 33 题: 来源: 河南省三门峡市陕州区2017_2018学年高一数学10月月考试题试卷及答案函数 的定义域为 ( )A . (-∞,4)B .[4,+∞)C .(-∞,4]D .(-∞,1)∪(1, 4]【答案】D第 34 题: 来源: 河北省石家庄市第四中学2018_2019学年高二数学上学期期中试题用秦九韶算法求多项式,当时,的值为A. —7B. 7C.D.【答案】A解:,,,故选A .第 35 题: 来源: 2016_2017学年广西南宁市高一数学下学期期中试题试卷及答案理【答案】C第 36 题:来源:河北省石家庄市正定县第七中学2018_2019学年高一数学下学期3月月考试题.在△ABC中,如果,那么cosC等于()【答案】D第 37 题:来源:广东省深圳市普通高中2017_2018学年高二数学下学期4月月考试题1201805241393椭圆的焦距为()A.4 B.6 C.8D.10【答案】C第 38 题:来源:内蒙古翁牛特旗2017_2018学年高一数学上学期期中试题试卷及答案根据下表中的二次函数y=ax2+bx+c的自变量x与函数值y的对应值,可判断二次函数的图像与x 轴 ( )x …-1 0 1 2 …y …-1 -2 …A、只有一个交点B、有两个交点,并且它们分别在y轴两侧C、有两个交点,并且它们均在y轴同侧D、无交点【答案】B第 39 题:来源: 2017届四川省成都市九校高三数学下学期期中联考试题试卷及答案理将5本不同的书分给甲、乙、丙三人,每人至少一本至多两本,则不同的分法种数是()A.60B.90C.120D.180【答案】B第 40 题:来源:安徽省滁州市定远县育才学校2018_2019学年高二数学下学期第一次月考试题(普通班)理已知,则等于( )A. 9 B. 12 C. 15D. 18【答案】.C第 41 题:来源:辽宁省庄河市2018届高三数学上学期开学考试试题文(含解析)在区间上随机取一个的值,执行如下的程序框图,则输出的概率为()A. B. C. D.【答案】A【解析】解:由条件知,当0≤x≤6,2x﹣1≥3,解得2≤x≤6;当6<x≤8时,,无解,∴输出的y≥3的概率为.点睛:利用分段函数,求出输出的y≥3时,x的范围,以长度为测度求出相应的概率.第 42 题:来源:安徽省定远重点中学2018_2019学年高一数学下学期开学考试试题已知g(x)=1-2x,f(g(x))=(x≠0),则f()等于( )A. 1 B. 3 C. 15D. 30【答案】C第 43 题:来源:广东省湛江市普通高中2018届高考数学一轮复习模拟试题试卷及答案09 设数列是等差数列,且,则这个数列的前5项和=()A. 10B. 15C. 20D. 25【答案】D第 44 题:来源:江西省奉新县2017_2018学年高一数学上学期第二次月考试题试卷及答案已知函数的定义域为,且满足下列三个条件:①对任意的,当时,都有恒成立;②;③的图像关于直线对称;若,则的大小关系正确的是( A )A. B. C. D.【答案】A第 45 题:来源:广西桂林市2018届高三数学上学期第二次月考试题理试卷及答案已知全集,若,,则不可能是A. B. C. D.【答案】D第 46 题:来源:江西省新余市第四中学、宜春中学2017届高三数学下学期开学联考试题试卷及答案理已知函数,则方程的根的个数不可能为()A.6个B.5个C.4个 D.3个【答案】D第 47 题:来源:湖北省孝感市七校教学联盟2016_2017学年高一数学下学期期末考试试题理设数列{an}中a1=2,an+1=2an,Sn为数列{an}的前n项和,若Sn=126,则n=() A.4 B. 9 C. 6 D.12【答案】C第 48 题:来源:山东省青州市2017_2018学年高一数学10月月考试题试卷及答案M={x|0≤x≤2},N={y|0≤y≤3},给出下列四个图形,其中能表示从集合M到集合N的函数关系的有( )A.0个 B.1个 C.2个 D.3个【答案】C第 49 题:来源:安徽省合肥市第八中学2018_2019学年高二数学上学期期中试题文(含解析)若m,n表示两条不同直线,α表示平面,则下列命题中真命题是()A. 若,,则B. 若,,则C. 若,,则D. 若,,则【答案】A【解析】对于A,因为垂直于同一平面的两条直线相互平行,故A正确;对于B,如果一条直线平行于一个平面,那么平行于已知直线的直线与该平面的位置关系有平行或在平面内,故B错;对于C,因同平行于一个平面的两条直线异面、相交或平行,故C错;对于D,与一个平面的平行直线垂直的直线与已知平面是平行、相交或在面内,故D错,选A.第 50 题:来源:课时跟踪检测试卷两角和与差的正弦试卷及答案若2sin=3sin(π-θ),则tan θ等于( )A.-B.C.D.2【答案】B 由已知得sin θ+cos θ=3sin θ,即2sin θ=cos θ,所以tan θ=.故选B.。
2019年数学高考一模试卷附答案

2019年数学高考一模试卷附答案一、选择题1.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( )A . 1.2308ˆ.0yx =+ B .0.0813ˆ.2yx =+ C . 1.234ˆyx =+ D . 1.235ˆyx =+ 2.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ).A .B .C .D .3.某学校开展研究性学习活动,某同学获得一组实验数据如下表: x 1.99 3 4 5.16.12 y1.54.04 7.51218.01对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .22y x =-B .1()2xy =C .2y log x =D .()2112y x =- 4.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( ) A .{}22x x -≤<B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<5.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③6.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .22y x =±C .3y x =±D .2y x =±7.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=,22MF NF =,则双曲线C 的离心率为( ). A .2B .3C .5D .68.函数f (x )=2sin(ωx +φ)(ω>0,-2π<φ<2π)的部分图象如图所示,则ω、φ的值分别是( )A .2,-3πB .2,-6π C .4,-6πD .4,3π 9.在ABC 中,若 13,3,120AB BC C ==∠=,则AC =( )A .1B .2C .3D .410.不等式2x 2-5x -3≥0成立的一个必要不充分条件是( ) A .1x <-或4x >B .0x 或2x -C .0x <或2x >D .12x -或3x 11.已知锐角三角形的边长分别为2,3,x ,则x 的取值范围是( ) A 513x << B 135x < C .25x <<D 55x <<12.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( ) A .3B .2C .6D .5二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ . 14.设25a b m ==,且112a b+=,则m =______. 15.若x ,y 满足约束条件x y 102x y 10x 0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y 2=-+的最小值为______.16.若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______.17.371()x x+的展开式中5x 的系数是 .(用数字填写答案)18.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若:1:3FM MN =,则实数a 的值为__________.19.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________. 20.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 .三、解答题21.选修4-5:不等式选讲 设函数()|2||1|f x x x =-++.(1)求()f x 的最小值及取得最小值时x 的取值范围; (2)若集合{|()10}x f x ax +->=R ,求实数a 的取值范围.22.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.23.四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,3BAD π∠=,PAD ∆是等边三角形,F 为AD 的中点,PD BF ⊥.(1)求证:AD PB ⊥; (2)若E 在线段BC 上,且14EC BC =,能否在棱PC 上找到一点G ,使平面DEG ⊥平面ABCD ?若存在,求四面体D CEG -的体积. 24.选修4-5:不等式选讲:设函数()13f x x x a =++-. (1)当1a =时,解不等式()23f x x ≤+;(2)若关于x 的不等式()42f x x a <+-有解,求实数a 的取值范围.25.2016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率.求被调查者满意或非常满意该项目的频率;若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率; 已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】 【分析】由题意得在线性回归方程ˆy bx a =+中 1.23b =,然后根据回归方程过样本点的中心得到a 的值,进而可得所求方程.【详解】设线性回归方程ˆy bx a =+中,由题意得 1.23b =, ∴ 1.23ˆy x a =+.又回归直线过样本点的中心()4,5, ∴5 1.234a =⨯+, ∴0.08a =,∴回归直线方程为 1.2308ˆ.0yx =+. 故选A . 【点睛】本题考查线性回归方程的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题.2.A解析:A 【解析】 【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值, 因此函数()1,0122,0xxx f x x >⎧=⊕=⎨≤⎩, 只有选项A 中的图象符合要求,故选A.3.D解析:D 【解析】 【分析】根据,x y 的数值变化规律推测二者之间的关系,最贴切的是二次关系. 【详解】根据实验数据可以得出,x 近似增加一个单位时,y 的增量近似为2.5,3.5,4.5,6,比较接近()2112y x =-,故选D.【点睛】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.4.B解析:B 【解析】 【分析】求解出集合M ,根据并集的定义求得结果. 【详解】(){}{}{}2log 1001112M x x x x x x =-<=<-<=<< {}2M N x x ∴⋃=≥-本题正确选项:B 【点睛】本题考查集合运算中的并集运算,属于基础题.5.A解析:A 【解析】 【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解. 【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A. 【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.6.A解析:A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以12||F F ==c ⇒=因为2521a x a =-=⇒=,所以b =所以双曲线的渐近线方程为by x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得ce a== 故选B. 【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.8.A解析:A 【解析】 【分析】由函数f (x )=2sin (ωx+φ)的部分图象,求得T 、ω和φ的值. 【详解】由函数f (x )=2sin (ωx+φ)的部分图象知,3T 5π412=-(π3-)3π4=, ∴T 2πω==π,解得ω=2; 又由函数f (x )的图象经过(5π12,2),∴2=2sin (25π12⨯+φ), ∴5π6+φ=2kππ2+,k∈Z, 即φ=2kππ3-, 又由π2-<φπ2<,则φπ3=-; 综上所述,ω=2、φπ3=-. 故选A . 【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题.9.A解析:A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.10.C解析:C 【解析】 【分析】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,题目可以转化为找x≤-12或x≥3的必要不充分条件条件,依次分析选项即可得答案. 【详解】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,则2x 2-5x-3≥0⇔x≤12-或3x ,所以可以转化为找x≤-12或x≥3的必要不充分条件; 依次选项可得:x 1<-或x 4>是12x ≤-或x≥3成立的充分不必要条件; x 0≥或x 2≤-是12x ≤-或x≥3成立的既不充分也不必要条件x 0<或x 2>是12x ≤-或x≥3成立的必要不充分条件;x≤-12或x≥3是12x ≤-或x≥3成立的充要条件;【点睛】本题考查了充分必要条件,涉及一元二次不等式的解答,关键是正确解不等式2x 2-5x-3≥0.11.A解析:A 【解析】试题分析:因为三角形是锐角三角形,所以三角形的三个内角都是锐角,则设边3对的锐角为角α,根据余弦定理得22223cos 04x xα+-=>,解得x >x 边对的锐角为β,根据余弦定理得22223cos 012x β+-=>,解得0x <<x 的取值范x << A. 考点:余弦定理.12.D解析:D 【解析】由题意可知双曲线的渐近线一条方程为b y x a =,与抛物线方程组成方程组2,1b y xa y x ⎧=⎪⎨⎪=+⎩消y 得,2210,()40b b x x a a -+=∆=-=,即2()4b a =,所以e == D. 【点睛】双曲线22221x y a b-=(0a >,0b >)的渐近线方程为b y x a =±.直线与抛物线交点问题,直线与抛物线方程组方程组,当直线与抛物线对称轴平行时,直线与抛物线相交,只有一个交点.当直线与抛物线对称轴不平行时,当>0∆时,直线与抛物线相交,有两个交点. 当0∆=时,直线与抛物线相切,只有一个交点. 当∆<0时,直线与抛物线相离,没有交点.二、填空题13.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3 【解析】【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3. 故答案为3.14.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力 10【解析】 【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,10m m m m a b+=+==∴= 10 【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.15.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A 时取得最小值由解得代入计算所以的最小值为故答案为解析:-1 【解析】 【分析】画出约束条件表示的平面区域,由图形求出最优解,再计算目标函数1z x y 2=-+的最小值. 【详解】画出约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域如图所示,由图形知,当目标函数1z x y 2=-+过点A 时取得最小值,由{x 0x y 10=--=,解得()A 0,1-,代入计算()z 011=+-=-,所以1z x y 2=-+的最小值为1-. 故答案为1-.【点睛】本题考查了线性规划的应用问题,也考查了数形结合的解题方法,是基础题.16.【解析】【分析】【详解】试题分析:当时的最大值为令解得所以a 的取值范围是考点:利用导数判断函数的单调性 解析:1(,)9-+∞ 【解析】【分析】【详解】 试题分析:2211()2224f x x x a x a ⎛⎫=-++=--++ ⎪⎝⎭'.当23x ⎡⎫∈+∞⎪⎢⎣⎭,时,()f x '的最大值为22239f a ⎛⎫=+ ⎪⎝⎭',令2209a +>,解得19a >-,所以a 的取值范围是1,9⎛⎫-+∞ ⎪⎝⎭. 考点:利用导数判断函数的单调性.17.【解析】由题意二项式展开的通项令得则的系数是考点:1二项式定理的展开式应用解析:35【解析】 由题意,二项式371()x x +展开的通项372141771()()r r r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =. 考点:1.二项式定理的展开式应用.18.【解析】依题意可得焦点的坐标为设在抛物线的准线上的射影为连接由抛物线的定义可知又解得点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用考查了学生数形结合思想和转化与化归思想设出点在抛物线的准【解析】依题意可得焦点F 的坐标为04a ⎛⎫ ⎪⎝⎭,, 设M 在抛物线的准线上的射影为K ,连接MK 由抛物线的定义可知MF MK =13FM MN =∶∶KN KM ∴=∶又01404FN K a a--==-,FN KN K KM ==-4a-∴=-a =点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用,考查了学生数形结合思想和转化与化归思想,设出点M 在抛物线的准线上的射影为K ,由抛物线的定义可知MF MK =,再根据题设得到KN KM =∶,然后利用斜率得到关于a 的方程,进而求解实数a 的值19.【解析】【分析】由圆的几何性质得圆心在的垂直平分线上结合题意知求出的垂直平分线方程令可得圆心坐标从而可得圆的半径进而可得圆的方程【详解】由圆的几何性质得圆心在的垂直平分线上结合题意知的垂直平分线为令 解析:22(2)10x y -+=.【解析】【分析】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,求出AB 的垂直平分线方程,令0y =,可得圆心坐标,从而可得圆的半径,进而可得圆的方程.【详解】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,AB 的垂直平分线为24y x =-,令0y =,得2x =,故圆心坐标为(2,0),所以圆的半径=22(2)10x y -+=.【点睛】本题主要考查圆的性质和圆的方程的求解,意在考查对基础知识的掌握与应用,属于基础题.20.【解析】试题分析:设等比数列的公比为由得解得所以于是当或时取得最大值考点:等比数列及其应用解析:64【解析】试题分析:设等比数列的公比为q ,由132410{5a a a a +=+=得,2121(1)10{(1)5a q a q q +=+=,解得18{12a q ==.所以2(1)1712(1)22212118()22n n n n n n n n a a a a q --++++-==⨯=,于是当3n =或4时,12na a a 取得最大值6264=.考点:等比数列及其应用三、解答题21.(1)min ()3f x =,此时x ∈[]1,2-(2)()1,2-【解析】【分析】(1)利用绝对值不等式公式进行求解;(2)集合(){}10x f x ax R +-=表示x R ∀∈,()1f x ax >-+,令()1g x ax =-+, 根据几何意义可得()y f x =的图像恒在()y g x =图像上方,数形结合解决问题.【详解】解(1)因为()()21213x x x x -++≥--+=,当且仅当()()210x x -+≤,即12x -≤≤时,上式“=”成立,故函数()21f x x x =++-的最小值为3,且()f x 取最小值时x 的取值范围是[]1,2-.(2)因为(){}10x f x ax R +-=,所以x R ∀∈,()1f x ax >-+. 函数()21f x x x =-++化为()21,13,1221,2x x f x x x x -+<-⎧⎪=-≤≤⎨⎪->⎩.令()1g x ax =-+,其图像为过点()0,1P ,斜率为a -的一条直线.如图,()2,3A ,()1,3B -.则直线PA 的斜率131120k -==-, 直线PB 的斜率231210k -==---. 因为()()f x g x >,所以21a -<-<,即12a -<<,所以a 的范围为()1,2-.【点睛】本题考查了绝对值不等式问题与不等式恒成立问题,不等式恒成立问题往往可以借助函数的图像来研究,数形结合可以将抽象的问题变得更为直观,解题时应灵活运用.22.(1)3x +y +2=0;(2)(x -2)2+y 2=8.【解析】【分析】(1) 直线AB 斜率确定,由垂直关系可求得直线AD 斜率,又T 在AD 上,利用点斜式求直线AD 方程;(2)由AD 和AB 的直线方程求得A 点坐标,以M 为圆心,以AM 为半径的圆的方程即为所求.【详解】(1)∵AB 所在直线的方程为x -3y -6=0,且AD 与AB 垂直,∴直线AD 的斜率为-3. 又∵点T (-1,1)在直线AD 上,∴AD 边所在直线的方程为y -1=-3(x +1), 即3x +y +2=0.(2)由360320x y x y --=⎧⎨++=⎩,得02x y =⎧⎨=-⎩, ∴点A 的坐标为(0,-2),∵矩形ABCD 两条对角线的交点为M (2,0),∴M 为矩形ABCD 外接圆的圆心,又|AM |()()22200222-++= ∴矩形ABCD 外接圆的方程为(x -2)2+y 2=8.【点睛】本题考查两直线的交点,直线的点斜式方程和圆的方程,考查计算能力,属于基础题.23.(1)证明见解析;(2)112. 【解析】【分析】(1)连接PF ,BD 由三线合一可得AD ⊥BF ,AD ⊥PF ,故而AD ⊥平面PBF ,于是AD ⊥PB ;(2)先证明PF ⊥平面ABCD ,再作PF 的平行线,根据相似找到G ,再利用等积转化求体积.【详解】连接PF ,BD,∵PAD ∆是等边三角形,F 为AD 的中点,∴PF ⊥AD ,∵底面ABCD 是菱形,3BAD π∠=,∴△ABD 是等边三角形,∵F 为AD 的中点,∴BF ⊥AD ,又PF ,BF ⊂平面PBF ,PF ∩BF =F ,∴AD ⊥平面PBF ,∵PB ⊂平面PBF ,∴AD ⊥PB .(2)由(1)得BF ⊥AD ,又∵PD ⊥BF ,AD ,PD ⊂平面PAD ,∴BF ⊥平面PAD ,又BF ⊂平面ABCD ,∴平面PAD ⊥平面ABCD ,由(1)得PF ⊥AD ,平面PAD ∩平面ABCD =AD ,∴PF ⊥平面ABCD ,连接FC 交DE 于H,则△HEC 与△HDF 相似,又1142EC BC FD ==,∴CH=13CF , ∴在△PFC 中,过H 作GH //PF 交PC 于G ,则GH⊥平面ABCD ,又GH ⊂面GED ,则面GED⊥平面ABCD ,此时CG=13CP, ∴四面体D CEG -的体积111311223382312D CEG G CED CED V V S GH PF --==⋅=⨯⨯⨯⨯⨯=. 所以存在G 满足CG=13CP, 使平面DEG ⊥平面ABCD ,且112D CEG V -=. 【点睛】 本题考查了线面垂直的判定与性质定理,面面垂直的判定及性质的应用,考查了棱锥的体积计算,属于中档题.24.(1)15[,]42(2)(5,3)-【解析】【分析】(1)通过讨论x 的范围,求出不等式的解集即可;(2)问题等价于关于x 的不等式14x x a ++-<有解,()min 14x x a++-<,求出a的范围即可.【详解】解:(1)()1323f x x x a x =++-≤+可转化为 14223x x x ≥⎧⎨-≤+⎩或114223x x x -<<⎧⎨-≤+⎩或12423x x x ≤-⎧⎨-≤+⎩, 解得512x ≤≤或114x ≤<或无解. 所以不等式的解集为15,42⎡⎤⎢⎥⎣⎦. (2)依题意,问题等价于关于x 的不等式14x x a ++-<有解,即()min 14x x a ++-<,又111x x a x x a a ++-≥+-+=+,当()()10x x a +-≤时取等号.所以14a +<,解得53a -<<,所以实数a 的取值范围是()5,3-.【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用。
2019届高三第一次模拟考试数学(理)试卷.docx

第I 卷(选择题满分60分)一、选择题(本大题共12小题,每小题5分,共60分)1. 已知集合 A = |x|log 2(x+1)<1|,B = * xA ・(-1,0) B. (-oo,0) C.(0,1) D. (1,-Ko) 2. 下列函数中,既是偶函数,又在区间(0,+oo)单调递减的函数是()4. 设d>0且GH1,则“函数/(x)=/在/?上是减函数”是“函数g(x) =(2 — dX 在R 上 递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4 2 \_ 5. 已知a = 2§# = 46c = 25§,则( )A. c <a<bB. a <b <cC. b <a <cD. b <c < a6. 若实数满足2" =3,3〃 =2,则函数f{x) = a x +x-b 的零点所在的区间是()A. (-2,-1)B. (-1,0) C ・(0,1) D ・(1,2)7. 已知命题p : " 3x () e 7?,使得谕+2% + l<0成立”为真命题,则实数d 满足()A. [-1,1)B. (—00,—1)kJ(l,4-oo)C. (1,+ oo)D. (—oo,—1)8. 定义在上的奇函数/(x)满足/(x-4) = -/(x),且在区间[0,2]上递增,则()A. /(—25) < /(11) < /(80)B. /(80) < /(11) < /(—25)C. /(-25)</(80)</(11)D. /(11)</(80)</(-25)9. 己知函数y = f{x+1)是定义域为/?的偶函数,且/(x)在[l, + oo)上单调递减,则不等式 /(2x-l)>/(x + 2)的解集为()盯,则A B=()A. y = -x 3B. y = }n xC. y = cosxD. y = 2 一卜cin X3•函数的图象可能是()DA.[B. [1,3)C. <D.10.若曲线G =(无 >())与曲线C 2:y = e x 存在公共点,则Q 的取值范围是() ( 2 ' ( 2' 、 「A. 0,— < 8_ B. C. e ——,+ooD. e —,+oo _4丿 11. 函数 /(x ) = 2加彳一3凡/+10(加>()/>())有两个不同的零点,则 5(lg m )2 +9(lg/i )2 的最小值是()< 5 13 1A. 6B. —C. —D. l 9 9 12. 函数于(兀)是定义在(0,+oc )上的可导函数,导函数记为/(X ),当兀>0且兀Hl 时, 2/(兀)+ 〃(兀)>0,若曲线歹=于(切在x = l 处的切线斜率为-土,则/⑴二() x-1 52 3 4 A. — B. — C. — D. I 5 5 5第II 卷 (非选择题 满分90分)二、填空题(每小题5分,共20分)13. 任意幕函数都经过定点,则函数/'(兀)=卅+log “ (x-7?z )(6z >0且a 丰1)经过定 点 _____ •14. __________________________________________________ 函数/G ) = lnx-a 兀在[1, + oo )上递减,则a 的取值范围是 ___________________________ .— x — 2 r 〉0 '-的零点个数为 X 2+2X ,X <0+ r +116. __________________ 若函数/(兀)满足:V XG /?, /(x ) + /(-x ) = 2,则函数g (x ) = —j- + /(x )的最大 值与最小值的和为 • 三、解答题(本大题共6个小题,共70分) 17. (本小题满分10分)己知命题°:方程x 2^ax^ — = 0有两个不相等的负实数根;命题q :关于Q 的不等式 16丄〉1.如果“ p 或q”为真命题,“ p Hq ”为假命题,求实数°的取值范围. a18. (本小题满分12分)1-%2已知函数f(x)=—. 1 + X⑴判断/(兀)的奇偶性;(2) /令 + /(|) + + /(|) + /(0) + /(I) + /(2) + + /(9) + /(10)的值.19.(本小题满分12分)己知函数/(x) = 2V的定义域是[0,3],设g(x) = /(2x)-/(x + 2)・(1)求g(x)的解析式及定义域;(2)求函数g(x)的最大值和最小值.20.(本小题满分12分)已知函数/(x) = log, (x2— 2祇+ 3)・2(1)若函数/(X)的定义域为/?,值域为(-00,-1],求实数Q的值;⑵若函数/(兀)在(Y0,l]上为增函数,求实数d的取值范围.21.(本小题满分12分)已知函数f\x) = e x(ca-^b)-x2-4x,曲线y二f(x)在点(0,/(0))处的切线方程为y = 4x + 4.(1)的值;(2)讨论/(兀)的单调性,并求/(兀)的极大值.22.(本小题满分12分)已知a > 0,函数f(x) = ax2 -x9g(x) = lnx.(1)若a =-,求函数y = f(x)-2g(x)的极值.2(2)是否存在实数①使得f(x)>g(ax)成立?若存在求出a的取值集合,若不存在,说明理由.理科答案ADAAC BBCDD BA(2,1) a>\ 2 417. 0 v a S —或a 21 21&偶函数;119. g(x) = 22X - 2v+2,x G [0,1];最大值为-3,最小值为-4 20.a = ±1 ; 1 < a < 2(1)当a =—时,y = f(x)-2g(x) = — x 2 -x-21nx 2 2 (兀+1)(兀 - 2)当兀 G (0,2)1 寸,y < 0;当x e (2,+oo )0寸,y >0 .•・在兀=2处取得极小值几2) - 2g ⑵=-In 4 (2 冷/心)=2/(x ) 一 g{ax ) = 6rx 2 一兀一 In (a 兀),即力(尤)罰-0 /.^(x ) = 0有两个不等慚,兀2,(西<0<x 2), /.力(兀旌(0,兀2 )递减k X 2,+°°)递增,/. /z (x J=么才一无2 -ln (a 吃)> 0成立, /. x 2 — 1 代入2°牯—x 2 — 1 = 0得 a = 1 /. a G {1} 21 • Q = 4" = 4; (-OO ,-2),(in 丄 递增, -2,% 递减;极大值为4 - 4幺 •/ 2ax^ -x 2 -1 = 0/. k(x 2) < k(V) = 0。
2019年高考数学一模试题(及答案)

2019年高考数学一模试题(及答案)一、选择题1.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( )A .14-B .14C .23-D .232.若43i z =+,则zz=( ) A .1B .1-C .4355i + D .4355i - 3.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .4.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0D .存在x 0∈R ,使得x 02<05.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A .13B .12 C .23 D .346.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥B .若a αβ∥,b ∥,αβ∥,则a b ∥C .若a b a b αβ⊂⊂,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥7.若设a 、b 为实数,且3a b +=,则22a b +的最小值是( ) A .6B .8C .26D .428.已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}9.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .410.sin 47sin17cos30cos17-A .32-B .12-C .12D .3211.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .12.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-二、填空题13.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.14.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是15.在ABC 中,60A =︒,1b =3sin sin sin a b cA B C ________.16.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .17.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 18.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________. 19.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.20.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)三、解答题21.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.22.已知椭圆22221(0)x y a b a b +=>>的离心率为63,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为22. (1)求椭圆的方程;(2)如图,斜率为k 的直线l 过椭圆的右焦点F ,且与椭圆交与,A B 两点,以线段AB 为直径的圆截直线1x =所得的弦的长度为5,求直线l 的方程.23.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与11A B 所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面111A B C ,求线段BM 的长.24.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.25.商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (1) 求的值;(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A.2.D解析:D 【解析】 【详解】由题意可得 :5z ==,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.3.A解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.4.D解析:D 【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .5.B解析:B 【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B. 【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.6.D解析:D 【解析】 【分析】 【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.7.D解析:D 【解析】 【分析】2a b+≤转化为指数运算即可求解。
2019年高考数学一模试卷含答案

2019年高考数学一模试卷含答案一、选择题1.如图所示的圆锥的俯视图为( )A .B .C .D .2.123{3x x >>是12126{9x x x x +>>成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件3.已知集合{}{}x -1<x 1Q=x 0x 2P =<<<,,那么P Q=⋃ A .(-1,2)B .(0,1)C .(-1,0)D .(1,2)4.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( )A .53 B .35 C .37 D .575.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-6.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。
老师说:你们四人中有两位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A .乙、丁可以知道自己的成绩 B .乙可以知道四人的成绩 C .乙、丁可以知道对方的成绩D .丁可以知道四人的成绩7.在△ABC 中,P 是BC 边中点,角、、A B C 的对边分别是,若0cAC aPA bPB ++=,则△ABC 的形状为( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形但不是等边三角形. 8.当1a >时, 在同一坐标系中,函数xy a-=与log a y x =-的图像是( )A .B .C .D .9.函数f (x )=2sin(ωx +φ)(ω>0,-2π<φ<2π)的部分图象如图所示,则ω、φ的值分别是( )A .2,-3πB .2,-6π C .4,-6πD .4,3π 10.已知复数 ,则复数在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( )A .12B .122± C .1102± D .322± 12.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A .13B .12C .23D .34二、填空题13.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.14.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______.15.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______. 16.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.17.若,满足约束条件则的最大值 .18.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲ 19.设函数21()ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.20.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.三、解答题21.已知向量()2sin ,1a x =+,()2,2b =-,()sin 3,1c x =-,()1,d k =(),x R k R ∈∈(1)若,22x ππ⎡⎤∈-⎢⎥⎣⎦,且()//a b c +,求x 的值.(2)若函数()f x a b =⋅,求()f x 的最小值.(3)是否存在实数k ,使得()()a dbc +⊥+?若存在,求出k 的取值范围;若不存在,请说明理由.22.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月用水量的中位数.23.为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差,以频率值作为概率的估计值.(I )为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率): ①; ②; ③.判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备的性能等级.(Ⅱ)将直径尺寸在之外的零件认定为是“次品”.①从设备的生产流水线上随机抽取2个零件,求其中次品个数的数学期望;②从样本中随意抽取2个零件,求其中次品个数的数学期望.24.在平面直角坐标系xOy 中,已知直线l 的参数方程为12312x t y t ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是4πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设点()0,1P -.若直l 与曲线C 相交于两点,A B ,求PA PB +的值.25.已知A 为圆22:1C x y +=上一点,过点A 作y 轴的垂线交y 轴于点B ,点P 满足2.BP BA =(1)求动点P 的轨迹方程;(2)设Q 为直线:3l x =上一点,O 为坐标原点,且OP OQ ⊥,求POQ ∆面积的最小值.26.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫=-= ⎪⎝⎭. (I )12C C 求与交点的极坐标; (II )112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为()33{,,.12x t a t R a b b y t =+∈=+为参数求的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】找到从上往下看所得到的图形即可. 【详解】由圆锥的放置位置,知其俯视图为三角形.故选C. 【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,本题容易误选B ,属于基础题.2.A解析:A【解析】 试题分析:因为123{3x x >>12126{9x x x x +>⇒>,所以充分性成立;1213{1x x ==满足12126{9x x x x +>>,但不满足123{3x x >>,必要性不成立,所以选A.考点:充要关系3.A解析:A 【解析】利用数轴,取,P Q 所有元素,得P Q =(1,2)-.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.4.A解析:A 【解析】 由正弦定理可得:sin 5sin 3A aB b == . 本题选择A 选项.5.C解析:C 【解析】 【分析】利用复数乘法的运算法则化简原式,利用复数相等的性质可得结果. 【详解】因为()a i i b i +=+, 即1ai b i -+=+,因为,,a b R i ∈为虚数单位,所以1,1a b ==-, 故选C. 【点睛】本题主要考查复数的乘法运算以及复数相等的性质,属于基础题.6.A解析:A 【解析】 【分析】根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一分析可得出结果. 【详解】因为甲、乙、丙、丁四位同学中有两位优秀、两位良好,又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良好,又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩,又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩. 因此,乙、丁知道自己的成绩,故选:A. 【点睛】本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思想进行推理,考查逻辑推理能力,属于中等题.7.C解析:C 【解析】 【分析】 【详解】 解答: 由已知条件得;根据共面向量基本定理得:∴△ABC 为等边三角形。
2019年数学高考一模试卷含答案

2019年数学高考一模试卷含答案一、选择题1.若3tan 4α= ,则2cos 2sin 2αα+=( ) A .6425 B .4825C .1D .16252.若圆与圆222:680C x y x y m +--+=外切,则m =( )A .21B .19C .9D .-113.如图所示的组合体,其结构特征是( )A .由两个圆锥组合成的B .由两个圆柱组合成的C .由一个棱锥和一个棱柱组合成的D .由一个圆锥和一个圆柱组合成的 4.设是虚数单位,则复数(1)(12)i i -+=( )A .3+3iB .-1+3iC .3+iD .-1+i5.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .106.已知向量a ,b 满足2a =,||1b =,且2b a +=,则向量a 与b 的夹角的余弦值为( ) A .22B .23C .28D .247.如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上一点(不同于A 、B )且PA =AC ,则二面角P -BC -A 的大小为( )A .60︒B .30C .45︒D .15︒8.正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF =( )A .1123AB AD - B .1142AB AD + C .1132AB DA + D .1223AB AD -. 9.函数()()sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象向右平移6π个单位后关于原点对称,则函数()f x 在,02π⎡⎤-⎢⎥⎣⎦上的最大值为()A .3B .32C .12D .12-10.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值等于( ) A .1318B .322C .1322D .31811.把红、黄、蓝、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是 A .对立事件B .互斥但不对立事件C .不可能事件D .以上都不对12.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-二、填空题13.设n S 是等差数列{}*()n a n N ∈的前n 项和,且141,7a a ==,则5______S =14.已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________. 15.若9()a x x-的展开式中3x 的系数是84-,则a = .16.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则ABC 的面积为______.17.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).18.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 19.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________.20.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)三、解答题21.如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.22.已知平面直角坐标系xoy .以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为23,6π⎛⎫⎪⎝⎭,曲线C 的极坐标方程为223sin 1ρρθ+= (1)写出点P 的直角坐标及曲线C 的普通方程;(2)若Q 为C 上的动点,求PQ 中点M 到直线32:2x tl y t =+⎧⎨=-+⎩(t 为参数)距离的最小值.23.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.24.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000步,(说明:“02000”表示大于或等于0,小于2000,以下同理),B 、20005000步,C 、50008000步,D 、800010000步,E 、1000012000步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.25.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A . 【考点】同角三角函数间的基本关系,倍角公式.【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.2.C解析:C 【解析】试题分析:因为()()22226803425x y x y m x y m +--+=⇒-+-=-,所以250m ->25m ⇒<且圆2C 的圆心为()3,4,25m -根据圆与圆外切的判定(圆心距离等于半径和)可得()()223040125m -+-=-9m ⇒=,故选C.考点:圆与圆之间的外切关系与判断3.D解析:D 【解析】 【分析】根据圆柱与圆锥的结构特征,即可判定,得到答案. 【详解】根据空间几何体的结构特征,可得该组合体上面是圆锥,下接一个同底的圆柱,故选D. 【点睛】本题主要考查了空间几何体的结构特征,其中解答熟记圆柱与圆锥的结构特征是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.C解析:C 【解析】因为2(1)(12)1223i i i i i i -+=+--=+,故选 C. 考点:本题主要考查复数的乘法运算公式.5.C解析:C 【解析】 【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案. 【详解】根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9. 故选:C . 【点睛】本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.6.D解析:D 【解析】 【分析】根据平方运算可求得12a b ⋅=,利用cos ,a b a b a b ⋅<>=求得结果. 【详解】由题意可知:2222324b a b a b a a b +=+⋅+=+⋅=,解得:12a b ⋅=cos ,422a b a b a b⋅∴<>===本题正确选项:D 【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.7.C解析:C 【解析】由条件得:PA ⊥BC ,AC ⊥BC 又PA ∩AC =C ,∴BC ⊥平面P AC ,∴∠PCA 为二面角P -BC -A 的平面角.在Rt △P AC 中,由P A =AC 得∠PCA =45°,故选C .点睛:二面角的寻找主要利用线面垂直,根据二面角定义得二面角的棱垂直于二面角的平面角所在平面.8.D解析:D 【解析】 【分析】用向量的加法和数乘法则运算。
2019年高考数学一模试题带答案

2019年高考数学一模试题带答案一、选择题1.设1i2i1iz-=++,则||z=A.0B.12C.1D.22.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有()A.14B.15C.16D.173.已知F1,F2分别是椭圆C:22221x ya b+= (a>b>0)的左、右焦点,若椭圆C上存在点P,使得线段PF1的中垂线恰好经过焦点F2,则椭圆C离心率的取值范围是( )A.2,13⎡⎫⎪⎢⎣⎭B.12,32⎡⎤⎢⎥⎣⎦C.1,13⎡⎫⎪⎢⎣⎭D.10,3⎛⎤⎥⎝⎦4.已知全集{1,3,5,7}U=,集合{1,3}A=,{3,5}B=,则如图所示阴影区域表示的集合为()A.{3}B.{7}C.{3,7}D.{1,3,5}5.若()34i x yi i+=+,,x y R∈,则复数x yi+的模是()A.2 B.3 C.4 D.56.已知函数()25,1,,1,x ax xf x axx⎧---≤⎪=⎨>⎪⎩是R上的增函数,则a的取值范围是()A.30a-≤<B.0a<C.2a≤-D.32a--≤≤7.已知236a b==,则a,b不可能满足的关系是()A.a b ab+=B.4a b+>C.()()22112a b-+-<D.228a b+>8.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定9.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.在[0,2]π内,不等式sin 2x <-的解集是( ) A .(0)π,B .4,33ππ⎛⎫⎪⎝⎭C .45,33ππ⎛⎫⎪⎝⎭D .5,23ππ⎛⎫⎪⎝⎭11.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( )A .12B .12± C D .32± 12.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12F F ,为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =±B .34yx C .35y x =±D .53y x =±二、填空题13.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.14.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .15.已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________.16.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.17.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________. 18.设函数21()ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.19.函数232x x --的定义域是 . 20.()sin 5013tan10+=________________.三、解答题21.已知平面直角坐标系xoy .以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为23,6π⎛⎫⎪⎝⎭,曲线C 的极坐标方程为223sin 1ρρθ+= (1)写出点P 的直角坐标及曲线C 的普通方程; (2)若Q 为C 上的动点,求PQ 中点M 到直线32:2x tl y t=+⎧⎨=-+⎩(t 为参数)距离的最小值.22.已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离.23.设函数()15,f x x x x R =++-∈. (1)求不等式()10f x ≤的解集;(2)如果关于x 的不等式2()(7)f x a x ≥--在R 上恒成立,求实数a 的取值范围.24.(辽宁省葫芦岛市2018年二模)直角坐标系xOy 中,直线l 的参数方程为21x tcos y tsin αα=+⎧⎨=+⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点为极点,以x 轴正半轴为极轴)中,圆C 的方程为6cos ρθ=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点,A B ,若点P 的坐标为()2,1,求PA PB +的最小值. 25.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.26.如图,边长为2的正方形ABCD 中,E 、F 分别是AB 、BC 边的中点,将AED ,DCF 分别沿DE ,DF 折起,使得A ,C 两点重合于点M .(1) 求证:MD EF ⊥; (2) 求三棱锥M EFD -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模.详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=,则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.B解析:B【解析】 【分析】计算出样本在[)2060,的数据个数,再减去样本在[)20,40的数据个数即可得出结果. 【详解】由题意可知,样本在[)2060,的数据个数为300.824⨯=, 样本在[)20,40的数据个数为459+=,因此,样本在[)40,50、[)50,60内的数据个数为24915. 故选:B. 【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.3.C解析:C 【解析】 如图所示,∵线段PF 1的中垂线经过F 2,∴PF 2=12F F =2c ,即椭圆上存在一点P ,使得PF 2=2c. ∴a-c≤2c≤a+c.∴e=1[,1)3c a ∈.选C. 【点睛】求离心率范围时,常转化为x,y 的范围,焦半径的范围,从而求出离心率的范围。
2019年五常市第一中学高考数学选择题专项训练(一模)

2019年五常市第一中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。
第 1 题:来源: 2017-2018学年吉林省松原市扶余高一(上)期末数学试卷(含答案解析)如图是一几何体的直观图、正视图和俯视图.下列选项图中,按照画三视图的要求画出的该几何体的侧视图是()A. B. C. D.【答案】B解:根据该几何体的直观图、正视图和俯视图,可得它的侧视图为直角三角形PAD及其PA边上的中线,第 2 题:来源: 2017-2018学年吉林省吉林市吉化高一(上)期末数学试卷(含答案解析)与直线x﹣y﹣4=0和圆x2+y2+2x﹣2y=0都相切的半径最小的圆的方程是()A.(x+1)2+(y+1)2=2 B.(x+1)2+(y+1)2=4 C.(x﹣1)2+(y+1)2=2 D.(x﹣1)2+(y+1)=4【答案】C解:由题意圆x2+y2+2x﹣2y=0的圆心为(﹣1,1),半径为,∴过圆心(﹣1,1)与直线x﹣y﹣4=0垂直的直线方程为x+y=0,所求的圆的圆心在此直线上,排除A、B,∴圆心(﹣1,1)到直线x﹣y﹣4=0的距离为=3,则所求的圆的半径为,第 3 题:来源:广东省天河区普通高中2017_2018学年高二数学11月月考试题08试卷及答案过抛物线的焦点作直线交抛物线于A、B两点,若线段AB中点的横坐标为3,则等于()A.10 B.8 C.6 D.4【答案】B第 4 题:来源:吉林省乾安县2017_2018学年高一数学上学期期中试题理试卷及答案函数的零点所在区间为()A、(0,1)B、(1,2)C、(2,3)D、(3,4)【答案】C第 5 题:来源:广东省东莞市2016_2017学年高一数学下学期期初考试试题理试卷及答案已知,则的值是()A. B. C. D.【答案】C第 6 题:来源: 2016_2017学年重庆市九校联考高一数学下学期5月月考试卷试卷及答案理(含解析)航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的高度为海拔10千米,速度为180千米/小时,飞机先看到山顶的俯角为15°,经过420秒后又看到山顶的俯角为45°,则山顶的海拔高度为(取,)()A.2.65千米 B.7.35千米 C.10千米 D.10.5千米【答案】A【考点】HU:解三角形的实际应用.【分析】利用正弦定理求出飞机到山顶的距离,再利用三角函数的定义得出山顶道飞机航向的距离,从而得出山顶海拔.【解答】解:设飞机先后飞过的两个位置为A,B,山顶为C,过C作AB的垂线,垂足为D,由题意可知AB=180×=21千米,∠BAC=15°,∠ABC=135°,∴∠ACB=30°,在△ABC中,由正弦定理得,即,∴AC==21,∴CD=ACsin∠BAC=21•sin15°=≈7.35千米,∴山顶海拔高度h=10﹣7.35=2.65千米.故选:A.第 7 题:来源:广东省惠州市惠城区2018届高三数学9月月考试题理试卷及答案若,则的大小关系A. B. C. D .【答案】D第 8 题:来源:黑龙江省鹤岗市第一中学2018_2019学年高二数学下学期第二次月考试题理(含解析)设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为A. B. C.D.【答案】B【解析】【分析】根据题意,设,求出导数,分析可得,则函数在区间上为减函数,结合函数的定义域分析得:原不等式等价于,解可得x的取值范围,即可得答案.【详解】根据题意,设g(x)=x2f(x),x<0,其导数g′(x)=[x2f(x)]′=2xf(x)+x2f′(x)=x(2f(x)+xf′(x)),又由2f(x)+xf′(x)>x2≥0,且x<0,则g′(x)≤0,则函数g(x)在区间(﹣∞,0)上为减函数,(x+2018)2f(x+2018)﹣4f(﹣2)>0⇒(x+2018)2f(x+2018)>(﹣2)2f(﹣2)⇒g(x+2018)>g(﹣2),又由函数g(x)在区间(﹣∞,0)上为减函数,则有,解可得:x<﹣2020,即不等式(x+2018)2f(x+2018)﹣4f(﹣2)>0的解集为(﹣∞,﹣2020);故选:B.【点睛】本题主要考查了函数单调性的应用,其中解答中由题意构造新函数,利用导数得到函数的单调性,利用函数的单调性,转化为不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.第 9 题:来源:湖南省怀化三中2018_2019学年高一数学上学期期中试题.函数在上是增函数,在上是减函数,则()A .B .C .D .的符号不确定 【答案】B第 10 题: 来源: 辽宁省沈阳市2018届高三数学11月阶段测试试题理试卷及答案已知函数,若的图象与的图象重合,记的最大值为,函数的单调递增区间为( )SX040203A. B.C. D.【答案】A第 11 题: 来源: 山东省潍坊市2019年高考数学模拟训练试题理i 为虚数单位,A .B .C .D .【答案】D第 12 题: 来源: 2019年普通高等学校招生全国统一考试文科数学(北京卷)(含解析) 已知集合A={x|-1<x<2},B={x|x>1},则AUB=( )A. (-1,1)B. (1,2)C. (-1,+∞)D. (1,+∞) 【答案】C【解析】【解答】因为所以故答案为:C.第 13 题: 来源: 广东省广州市2017_2018学年高二数学上学期10月段考试题试卷及答案过点,且倾斜角为的直线与圆相切于点,且,则的面积是( )A.B.C. 1 D.2【答案】B第 14 题:来源:山东省泰安市2019届高三数学一轮复习质量检测试卷理(含解析)函数的部分图象如图所示,为了得到的图象,只需将的图象A. 向右平移个单位B. 向右平移个单位C. 向左平移个单位D. 向左平移个单位【答案】B【解析】试题分析:由图象知,,,,,得,所以,为了得到的图象,所以只需将的图象向右平移个长度单位即可,故选D.考点:三角函数图象.第 15 题:来源:广西桂林市七星区2017_2018年高二数学上学期期中检测试题试卷及答案设函数,则是().A. 偶函数,且在上是增函数B.奇函数,且在上是减函数C. 奇函数,且在上是增函数D.偶函数,且在上是减函数【答案】C第 16 题:来源: 2017年普通高等学校招生全国统一考试数学试题文(山东卷,参考解析)函数最小正周期为A B C D【答案】C【解析】由题意,其周期,故选C.第 17 题:来源:山东省济南外国语学校2018_2019学年高一数学下学期3月月考试卷(含解析)函数的单调递增区间是 ( )A. B.C. D.【答案】D【解析】【分析】由复合函数的单调性易得2kπ2kπ+π,k∈Z,变形可得答案.【详解】要求函数y=﹣cos()的单调递增区间,只需求函数y=cos()的单调递减区间,由题意可得2kπ2kπ+π,k∈Z,解得4kπx≤4kπ,∴原函数的单调递增区间为:[4kπ,4kπ],k∈Z,故选:D.【点睛】本题考查三角函数的单调性,复合函数的单调性,熟记余弦函数的单调性,准确计算是关键,属基础题.第 18 题:来源:宁夏银川市2018届高三数学上学期第二次月考试题理设集合,,则“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A第 19 题:来源:河南省郑州市2016_2017学年高一数学下学期期末试卷及答案某程序框图如图所示,若输出的S=120,则判断框内为()A.k>4? B.k>5? C.k>6? D.k>7?【答案】B.第 20 题:来源: 2018届高考数学文科总复习课时跟踪检测试卷(10)对数与对数函数试卷及答案函数f(x)=log (x2-4)的单调递增区间为( )A.(0,+∞) B.(-∞,0)C.(2,+∞) D.(-∞,-2)【答案】D 因为y=log t在定义域上是减函数,所以求原函数的单调递增区间,即求函数t=x2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).第 21 题:来源:湖南省衡阳市2017届高三数学第六次月考试题试卷及答案理(实验班)函数y=的图象大致为()A. B.C. D.【答案】D第 22 题:来源:宁夏银川市2017_2018学年高二数学上学期期末考试试题理试卷及答案已知函数在区间[1,2]上单调递增,则a的取值范围是A. B. C. D.【答案】A第 23 题:来源:山西省应县第一中学2018_2019学年高二数学上学期期中试题理已知异面直线a,b所成的角为60°,过空间一点O的直线与a,b所成的角均为60°,这样的直线有()A.1条B.2条C.3条 D.4条【答案】C第 24 题:来源:山东省济南市2017_2018学年高二数学上学期开学考试试题试卷及答案边长为5、7、8的三角形的最大角与最小角之和的()A.90° B.120° C.135° D.150°【答案】B第 25 题:来源: 2019高考数学一轮复习第7章不等式第2讲不等式的性质与基本不等式分层演练文已知a,b为非零实数,且a<b,则下列不等式一定成立的是( )A.a2<b2 B.ab2>a2b C. D.【答案】C.若a<b<0,则a2>b2,故A错;若0<a<b,则>,故D错;若ab<0,即a<0,b>0,则a2b>ab2,故B错;故C正确.所以选C.第 26 题:来源:湖南省醴陵市两校2017_2018学年高一数学上学期期中联考试题试卷及答案设,,,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【答案】C第 27 题:来源: 2017年四川省广元市高考数学三诊试卷(理科)含答案解析某城市关系要好的A,B,C,D四个家庭各有两个小孩共8人,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中A户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有()A.18种 B.24种 C.36种 D.48种【答案】 B【考点】D8:排列、组合的实际应用.【分析】根据题意,分2种情况讨论:①、A户家庭的孪生姐妹在甲车上,甲车上剩下两个要来自不同的家庭,②、A户家庭的孪生姐妹不在甲车上,每种情况下分析乘坐人员的情况,由排列、组合数公式计算可得其乘坐方式的数目,由分类计数原理计算可得答案.【解答】解:根据题意,分2种情况讨论:①、A户家庭的孪生姐妹在甲车上,甲车上剩下两个要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个小孩中任选一个,来乘坐甲车,有C32×C21×C21=12种乘坐方式;②、A户家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个小孩都在甲车上,对于剩余的2个家庭,从每个家庭的2个小孩中任选一个,来乘坐甲车,有C31×C21×C21=12种乘坐方式;则共有12+12=24种乘坐方式;故选:B.【点评】本题考查排列、组合的应用,涉及分类计数原理的应用,关键是依据题意,分析“乘坐甲车的4名小孩恰有2名来自于同一个家庭”的可能情况.第 28 题:来源:新疆维吾尔自治区阿克苏市2017_2018学年高二数学上学期第二次月考试题试卷及答案理已知方程(k2-1)x2+3y2=1是焦点在y轴上的椭圆,则k的取值范围是()A.(-∞,-2)∪(2,+∞)B. (-∞,-1)∪(1,+∞)C. (—2,2)D. (—1,1)【答案】(-∞,-2)∪(2,+∞)【解析】方程(k2-1)x2+3y2=1可化为.由椭圆焦点在y轴上,得解之得k>2或k<-2.第 29 题:来源: 2016_2017学年山东省淄博市高青县高二数学3月月考试题理试卷及答案函数的导数是( )A. B. C. D.【答案】B第 30 题:来源:湖南省邵东县2016_2017学年高二数学下学期期中试题试卷及答案理=()A. B. C. D.【答案】D【解析】.故选D.第 31 题:来源:湖南省郴州市湘南中学2019届高三数学上学期期中试题理已知2,x,y,z均为负数,则( )A. 2x>3y>5zB.3y>5z>2xC.3y>2x>5zD.2x>5z>3y【答案】C第 32 题:来源:西藏日喀则市南木林高级中学2019届高三数学上学期期中试题连续抛掷两枚骰子,向上的点数之和为6的概率是()A. B. C. D.【答案】D第 33 题:来源:四川省新津县2018届高三数学10月月考试题理试卷及答案已知命题p:2<3,q:2>3,对由p、q构成的“p或q”、“p且q”、“¬p”形式的命题,给出以下判断:①“p或q”为真命题;②“p或q”为假命题;③“p且q”为真命题;④“p且q”为假命题;⑤“¬p”为真命题;⑥“¬p”为假命题.其中正确的判断是()A.①④⑥ B.①③⑥ C.②④⑥ D.②③⑤【答案】A第 34 题:来源: 2019高考数学一轮复习第8章立体几何第3讲空间点直线平面之间的位关系分层演练文201809101111如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为( )A.B.【答案】C.如图,将原图补成正方体ABCDQGHP,连接AG,GP,则GP∥BD,所以∠APG为异面直线AP与BD所成的角,在△AGP中,AG=GP=AP,所以∠APG=.第 35 题:来源:广东省珠海市2018届高三数学9月摸底考试试题试卷及答案文.已知函数恰有两个零点,则实数的取值范围是()A.B.C.D.【答案】A第 36 题:来源: 2017年山东省菏泽市巨野县高一数学上学期期末考试试题试卷及答案化成根式形式为()A. B. C. D.【答案】B第 37 题:来源:北京师范大学附属中学2016_2017学年高一数学下学期期末考试试题对变量有观测数据理据…,10),得散点图1:对变量有观测数据…,10),得散点图2,由这两个散点图可以判断()A. 变量x与y正相关,u与v正相关B. 变量x与y正相关,u与v负相关C. 变量x与y负相关,u与v正相关D. 变量x与y负相关,u与v负相关【答案】C第 38 题:来源:广东省深圳市普通高中2017_2018学年高二数学下学期4月月考试题5201805241397下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③ B.②③④C.②④⑤ D.①③⑤【答案】D第 39 题:来源: 2016_2017学年河南省南阳市高二数学下学期第一次月考(3月)试题理已知函数满足,且,则的解集为()A. B. C. D.【答案】D第 40 题:来源:吉林省实验中学2018_2019学年高一数学上学期期中试题已知定义在R上的偶函数f(x)满足以下两个条件:①在(-∞,0]上单调递减;②f(1)=-2.则使不等式f(x+1)≤-2成立的x的取值范围是A.[-3,1] B.(-∞,0] C.[-2,0] D.[0,+∞) 【答案】C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年五常市山河镇林业局一中高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。
第1 题:来源:陕西省西安市第二十五中学2016-2017学年高一数学上学期期末考试试题试卷及答案各棱长均为的三棱锥的表面积为()A. B. C.D.【答案】D第 2 题:来源: 2017_2018学年高中数学第三章直线与方程章末综合测评2试卷及答案新人教A 版必修已知直线l过点(1,2),且在x轴上的截距是在y轴上的截距的2倍,则直线l的方程为( )A.x+2y-5=0B.x+2y+5=0C.2x-y=0或x+2y-5=0D.2x-y=0或x-2y+3=0【答案】C第 3 题:来源:湖北省孝感市七校教学联盟2016_2017学年高一数学下学期期末考试试题理某直三棱柱的侧棱长等于2,底面为等腰直角三角形且腰长为1,则该直三棱柱的外接球的表面积是( ) A.π B.2π C.4π D.6π【答案】D第 4 题:来源:山西省范亭中学2018_2019学年高三数学上学期第二次月考试题理已知,则的取值范围为( )A. B. C. D.【答案】B解析:因为,所以,所以,所以第 5 题:来源:江西省九江市2017_2018学年高二数学上学期第二次月考试题理已知的三个内角的大小依次成等差数列,角的对边分别是,并且函数的值域是,则的面积是()A. B. C. D.【答案】A第 6 题:来源:宁夏银川市孔德2016_2017学年高一数学下学期第一次(3月)月考试题设计一个计算1×3×5×7×9的算法,下面给出了算法语句的一部分,则在横线①上应填入下面数据中的( )A.8 B.9 C.10D.12【答案】C【解析】由算法知i的取值为3,5,7,9,…,又只需计算1×3×5×7×9,因此只要保证所填数大于9,小于11即可,故选C.考点:循环语句.第 7 题:来源:辽宁省六校2018届高三数学上学期期初联考试题试卷及答案理若实数满足,则的最小值()【答案】D第 8 题:来源: 2016_2017学年河南省新野县高二数学下学期第四次周考试题试卷及答案理一物体沿直线以v=3t+2(t单位:s,v单位:m/s)的速度运动,则该物体在3s~6s间的运动路程为() A.46m B.46.5m C.87m D.4 7m【答案】B第 9 题:来源: 2017_2018学年高中数学阶段质量检测四新人教A版选修1_220180301463如图是求12+22+32+…+1002的程序框图,则图中的①②分别是( )A.①S=S+i ②i=i+1B.①S=S+i2 ②i=i+1C.①i=i+1 ②S=S+iD.①i=i+1 ②S=S+i2【答案】B 各个加数的指数应为2,故①中应为S=S+i2,②应为i=i+1.第 10 题:来源:山东省淄博市2017_2018学年高二数学上学期第一次月考试题理试卷及答案二次不等式ax2+bx+1>0的解集为,则ab的值为( )A.-6 B.6 C.-5 D.5【答案】B第 11 题:来源:河北省五校2018届高三数学上学期教学质量监测试题试卷及答案(一)理已知函数,若有,则的取值范围是[0,+∞)(0,+∞)[1,+∞)(1,+∞)【答案】C第 12 题:来源:湖北省宜昌市部分重点中学2016-2017学年高一数学上学期期末考试试题用二分法研究函数的零点时,第一次经过计算f(0)<0,f(0.5)>0,则其中一个零点所在的区间和第二次应计算的函数值分别为()A.(0,0.5),f(0.125)B.(0.5,1),f(0.25)C.(0.5,1),f(0.75)D.(0,0.5),f(0.25)【答案】D.第 13 题:来源:黑龙江省虎林市2016_2017学年高一数学5月月考试题试卷及答案在中,分别为角的对边,满足则的形状为( )等腰三角形 直角三角形等腰三角形或直角三角形等腰直角三角形【答案】C第 14 题: 来源: 四川省广安市邻水县2017_2018学年高二数学上学期第三次月考试题理设F1、F2分别是椭圆(a >b >0)的左、右焦点,若在直线x =上存在P ,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是( )A .B .C .D .【答案】D第 15 题: 来源: 2019高考数学一轮复习第9章平面解析几何第6讲双曲线分层演练文201809101130“k<9”是“方程=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A .第 16 题: 来源: 河南省郑州市第一中学2015-2016学年高二数学下学期期末考试试题试卷及答案 理已知,所对的边分别为,且, 则( )A .是钝角三角形B .是锐角三角C .是直角三角形 D .无法判断【答案】A第 17 题: 来源: 2016_2017学年内蒙古乌兰察布高二数学下学期期末考试试题试卷及答案理A .2+iB .2-iC .-1+iD .-1-i 【答案】D第 18 题: 来源: 山东省、湖北省部分重点中学2018届高三数学上学期第一次(9月)联考试题理设定义在R 上的函数,对任意的,都有,且,当时,,则不等式的解集为A.B.C.D.【答案】C解析:由可知,关于中心对称;当时,可知在上单调递增,且,,于是可得,又由关于中心对称可知,所以答案为C第 19 题:来源:山西省平遥中学校2018_2019学年高二数学下学期期中试题理设,若对于任意,总存在,使得成立,则的取值范围是()A. B. C. D.【答案】C第 20 题:来源: 2017届河南省郑州市高三4月模拟调研数学试题(理)含答案“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号叫天干,子、丑、寅、卯、巳、午、未、申、酉、戌、亥十二个符号叫地支.把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”.2016年是“干支纪年法”中的丙申年,那么2017年是“干支纪年法”中的()A.丁酉年 B.戊未年 C.乙未年 D.丁未年【答案】A第 21 题:来源:广东省普宁市第二中学2016-2017学年高二数学下学期第一次月考试题试卷及答案理已知集合M={x|},N={-3,-1,1,3,5},则M∩N=()A.{-1,1,3}B.{1,3}C.{-3,1}D.{-3,-1,1} 【答案】D第 22 题:来源:河南省鹤壁市2016_2017学年高二数学下学期第二次月考试卷理(含解析)已知=2﹣i,则在复平面内,复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】A【考点】A5:复数代数形式的乘除运算.【分析】利用已知条件求出复数z,得到对应点的坐标即可判断选项.【解答】解:=2﹣i,∴=(1﹣i)(2﹣i)=1﹣3i∴z=1+3i∴复数z对应点(1,3)在第一象限.故选:A.第 23 题:来源:广东省天河区普通高中2017_2018学年高一数学10月月考试题试卷及答案02已知函数,则()。
A、6B、-2C、-5D、1【答案】D第 24 题:来源:宁夏银川市2017届高三数学下学期第一次模拟考试试题理已知定义域为的函数不是奇函数,则下列命题一定为真命题的是A., B.,C., D.,【答案】C第 25 题:来源: 2016_2017学年安徽省蚌埠市禹会区高二数学下学期期中试题试卷及答案理从字母中选出4个数字排成一列,其中一定要选出和,并且必须相邻(在的前面),共排列方法()种.A. B. C. D.【答案】A第 26 题:来源:广东省广州市2017_2018学年高二数学上学期10月段考试题试卷及答案小明在“欧洲七日游”的游玩中对某著名建筑物的景观记忆犹新,现绘制该建筑物的三视图如图所示,若网格纸上小正方形的边长为,则小明绘制的建筑物的体积为(A)(B)(C)(D)【答案】C第 27 题:来源:黑龙江省牡丹江市2017_2018学年高一数学上学期期中试题试卷及答案下列函数中,既是偶函数又在单调递增的是()A. B. C. D.【答案】D第 28 题:来源:河南省郑州市、平顶山市、濮阳市2017届高考数学二模试卷(理科)含答案已知空间四边形ABCD,满足||=3,||=7,||=11,||=9,则•的值()A.﹣1 B.0 C. D.【答案】B【考点】平面向量数量积的运算.【分析】可画出图形,代入=,同样方法,代入,,进一步化简即可求出的值.【解答】解:如图,========0.故选B.【点评】考查向量加法和减法的几何意义,向量的数量积的运算.第 29 题:来源:河南省鹤壁市2017_2018学年高二数学上学期第二次月考试题理试卷及答案椭圆的长轴长为()A.2 B.3 C.6 D. 9【答案】C第 30 题:来源:江西省奉新县2017_2018学年高二数学上学期第一次月考试题理试卷及答案一个与球心距离为1的平面截球所得的圆面面积为,则球的表面积为( )A. B. C. D.【答案】D第 31 题:来源:山东省临沂市第十九中学2019届高三数学第四次调研考试试题文已知函数,,则()A. B. C. D.【答案】 C第 32 题:来源:四川省乐山市2017_2018学年高二数学上学期第二次月考(12月)试题已知三棱柱ABC-的侧棱与底面垂直,体积为,底面是边长为的正三角形.若P为底面的中心,则PA与平面ABC所成角的大小为 ( )A. B. C. D.【答案】A第 33 题:来源:湖北省荆州市2017_2018学年高一数学上学期期中试题理试卷及答案函数且的图象必经过定点()A.B.C.D.【答案】D第 34 题:来源: 2017年福建省四地六校高二数学下第二次联考5月试题(理)及答案已知,又,若满足的有四个,则的取值范围为( )A. B. C. D.【答案】A第 35 题:来源:河南省信阳高级中学、商丘一高2018_2019学年高二数学1月联考试题文(含解析)已知函数给出下列两个命题,存在,使得方程有实数解;当时,,则下列命题为真命题的是()A. B. C.D.【答案】B【解析】【分析】通过分析命题和命题的真假性,来判断选项中含有逻辑连接词的命题的真假性.【详解】当时,,并且,故函数不存在零点,所以命题为假命题.当,时,,故命题为真命题.所以为真命题.故选B.【点睛】本小题考查了含有逻辑连接词的命题的真假性的判断,考查了函数零点问题的解决方法,还考查了分段函数和符合函数求值.属于中档题.第 36 题:来源: 2016_2017学年湖北省蕲春县高二数学下学期期中试题试卷及答案理公司10为员工的月工资(单位:元)为,其均值和方差分别为和,若从下月起每位员工的月工资增加100元,则这10为员工下月工资的均值和方差分别为A. ,B. ,C. ,,D.,【答案】D第 37 题:来源:山东省济南市2018届高三数学上学期12月考试试题理试卷及答案定义一种运算如下:,则复数(是虚数单位)的模长为()A. B. C.D.【答案】C第 38 题:来源: 2017年江西省赣州市高二数学下第二次5月月考试题(理)及答案设,那么的值为()A.﹣B.﹣C.﹣ D.﹣1【答案】A第 39 题:来源: 2017_2018学年高中数学第四章圆与方程4.1.2圆的一般方程学业分层测评试卷及答案方程x2+y2+Dx+Ey+F=0表示的圆过原点且圆心在直线y=x上的条件是( )A.D=E=0,F≠0 B.D=F=0,E≠0C.D=E≠0,F≠0 D.D=E≠0,F=0【答案】D【解析】∵圆过原点,∴F=0,又圆心在y=x上,∴D=E≠0.第 40 题:来源:福建省漳州市华安县第一中学2016-2017学年高二数学上学期期末考试试题试卷及答案文某算法的程序框图如图所示,则输出S的值是()A.6B.24C.120D.840【答案】C。