N皇后实验报告

合集下载

n皇后问题实验报告

n皇后问题实验报告

n皇后问题实验报告n皇后问题实验报告引言:n皇后问题是一个经典的数学问题,它要求在一个n×n的棋盘上放置n个皇后,使得它们互相之间不能相互攻击,即任意两个皇后不能处于同一行、同一列或同一对角线上。

本实验旨在通过编程实现n皇后问题的求解,并探索不同算法在解决该问题上的性能差异。

实验步骤及结果:1. 回溯算法的实现与性能分析回溯算法是最常见的解决n皇后问题的方法之一。

它通过递归的方式遍历所有可能的解,并通过剪枝操作来提高效率。

我们首先实现了回溯算法,并对不同规模的问题进行了求解。

在测试中,我们将问题规模设置为4、8、12和16。

结果表明,当n为4时,回溯算法能够找到2个解;当n为8时,能够找到92个解;当n为12时,能够找到14200个解;当n为16时,能够找到14772512个解。

可以看出,随着问题规模的增加,回溯算法的求解时间呈指数级增长。

2. 启发式算法的实现与性能分析为了提高求解效率,我们尝试了一种基于启发式算法的解决方法。

在该方法中,我们使用了遗传算法来搜索解空间。

遗传算法是一种模拟生物进化过程的优化算法,通过进化操作(如选择、交叉和变异)来寻找问题的最优解。

我们将遗传算法应用于n皇后问题,并对不同规模的问题进行了求解。

在测试中,我们将问题规模设置为8、12和16。

结果表明,遗传算法能够在较短的时间内找到问题的一个解。

当n为8时,遗传算法能够在几毫秒内找到一个解;当n为12时,能够在几十毫秒内找到一个解;当n为16时,能够在几百毫秒内找到一个解。

相比之下,回溯算法在同样规模的问题上需要几秒钟甚至更长的时间。

3. 算法性能对比与分析通过对比回溯算法和启发式算法的性能,我们可以看到启发式算法在求解n皇后问题上具有明显的优势。

回溯算法的求解时间随问题规模呈指数级增长,而启发式算法的求解时间相对较短。

这是因为启发式算法通过优化搜索策略,能够更快地找到问题的解。

然而,启发式算法并非没有缺点。

八皇后实验报告

八皇后实验报告

八皇后实验报告八皇后实验报告引言:八皇后问题是一个经典的数学问题,它要求在一个8x8的国际象棋棋盘上放置8个皇后,使得任意两个皇后都不会互相攻击。

这个问题看似简单,但实际上却充满了挑战。

在本次实验中,我们将探索八皇后问题的解法,并通过编写算法来解决这个问题。

一、问题背景:八皇后问题最早由数学家马克斯·贝瑟尔于1848年提出,它是一道经典的递归问题。

在国际象棋中,皇后可以在同一行、同一列或同一对角线上进行攻击,因此我们需要找到一种方法,使得8个皇后彼此之间不会相互攻击。

二、解决方法:为了解决八皇后问题,我们可以使用回溯法。

回溯法是一种穷举搜索的方法,它通过逐步尝试所有可能的解决方案,直到找到符合要求的解。

具体步骤如下:1. 初始化一个8x8的棋盘,并将所有格子标记为无皇后。

2. 从第一行开始,依次尝试在每一列放置一个皇后。

3. 在每一列中,检查当前位置是否符合要求,即与已放置的皇后不在同一行、同一列或同一对角线上。

4. 如果当前位置符合要求,将皇后放置在该位置,并进入下一行。

5. 如果当前位置不符合要求,尝试在下一列放置皇后。

6. 重复步骤3-5,直到找到一个解或者所有可能的位置都已尝试过。

7. 如果找到一个解,将其输出;否则,回溯到上一行,继续尝试下一列的位置。

三、编写算法:基于上述步骤,我们可以编写一个递归函数来解决八皇后问题。

伪代码如下所示:```function solveQueens(board, row):if row == 8:print(board) # 打印解returnfor col in range(8):if isSafe(board, row, col):board[row][col] = 1solveQueens(board, row + 1)board[row][col] = 0function isSafe(board, row, col):for i in range(row):if board[i][col] == 1:return Falseif col - (row - i) >= 0 and board[i][col - (row - i)] == 1:return Falseif col + (row - i) < 8 and board[i][col + (row - i)] == 1:return Falsereturn Trueboard = [[0]*8 for _ in range(8)]solveQueens(board, 0)```四、实验结果:通过运行上述算法,我们得到了八皇后问题的所有解。

八皇后实验报告

八皇后实验报告
//用一维数组表示皇后的位置的思想来自课堂笔记
cout<<"请输入皇后的个数"<<endl;
cin>>n;
if((n<=3)||(n>=100))cout<<"请不要输入
1、2、3或者大于100的数!"<<endl;//一个没有意义,两个和三个不管怎么放都会在同一行和同一列
else{
for(i=0;i<n;i++) A[i]=0;//先把每个皇后放在第一列,然后按行检察i=0;//然后从第零行开始
3.程序简介:
将n个皇后放到一个n*n的方阵中,要求每个皇后不在同一行同一列及同一对角线,我的程序是先把每个皇后放在了第零列,然后再按行检查,不符合要求继续下一列,若已经到这一行的最后一列,还没找到符合要求的位置,则回到上一行。
4.算法设计介绍:
定义一个一维数组,数组的下标是皇后所在位置的行数,数组存的值是皇后所在位置的列数,现将A[0]-A[n-1]都赋成零,然后随着检查的进行,皇后的位置也在不断地变化,最后找到一个符合要求的方阵时,本质上就是一个存放整数的一维数组,数组的下标是行数,存放的值是列数。
/人的程序,也没有盗用别人的程序,//不管是修改式的抄袭还是原封不动的抄袭。//我编写这个程序,从来没有想过要去破坏或妨碍其他计算机系统的正常运转
文件名称:
创建者:
创建时间:
2011.4.14
最后修改时间:
2011.4.17
功能:
s+=1;//记录已近有几种摆放方式
A[n-1]++;//继续向右走
前一行去,即回溯
}}A[i]=0; i--;//行数减一

女性性器实验报告

女性性器实验报告

一、实验目的1. 了解女性生殖系统的基本结构和功能。

2. 观察女性性器的正常形态和结构。

3. 培养学生运用解剖学知识分析女性性器的能力。

二、实验材料1. 女性性器官模型2. 女性性器官解剖图谱3. 解剖显微镜4. 消毒棉签、镊子、解剖刀、解剖剪、解剖针等三、实验方法1. 观察女性性器官模型,了解其整体结构和各部分关系。

2. 利用解剖显微镜观察女性性器的细微结构。

3. 通过解剖实验,了解女性性器的实际形态和结构。

四、实验步骤1. 模型观察(1)观察女性性器官模型,了解女性生殖系统的整体结构和各部分关系。

(2)注意观察以下结构:阴道、子宫、输卵管、卵巢、外阴等。

2. 显微镜观察(1)用解剖显微镜观察女性性器的细微结构。

(2)重点观察以下结构:阴道壁、子宫壁、输卵管壁、卵巢表面等。

3. 解剖实验(1)消毒实验台和实验器材。

(2)在实验教师的指导下,进行女性性器的解剖。

(3)依次解剖以下结构:外阴、阴道、子宫、输卵管、卵巢。

五、实验结果与分析1. 模型观察(1)女性性器官模型展示了女性生殖系统的整体结构和各部分关系。

(2)观察结果显示,阴道、子宫、输卵管、卵巢、外阴等结构完整,形态正常。

2. 显微镜观察(1)通过显微镜观察,发现阴道壁、子宫壁、输卵管壁、卵巢表面等结构完整,细胞层次清晰。

(2)观察结果显示,女性性器各部分结构符合解剖学特点。

3. 解剖实验(1)在外阴部,观察到大小阴唇、阴道前庭、阴道口等结构。

(2)在阴道部分,观察到阴道壁、阴道穹窿等结构。

(3)在子宫部分,观察到子宫颈、子宫体、子宫底等结构。

(4)在输卵管部分,观察到输卵管壶腹、输卵管峡部等结构。

(5)在卵巢部分,观察到卵巢表面、卵巢皮质、卵巢髓质等结构。

六、实验结论1. 通过本次实验,学生掌握了女性性器的整体结构和各部分关系。

2. 学生运用解剖学知识,分析了女性性器的细微结构。

3. 实验结果表明,女性性器各部分结构完整,形态正常,符合解剖学特点。

数据结构实验报告八皇后问题

数据结构实验报告八皇后问题

2007级数据结构实验报告实验名称:实验二——栈和队列学生姓名:班级:班内序号:学号:日期:2008年11月18日1.实验要求通过选择下面五个题目之一进行实现,掌握如下内容:➢进一步掌握指针、模板类、异常处理的使用➢掌握栈的操作的实现方法➢掌握队列的操作的实现方法➢学习使用栈解决实际问题的能力➢学习使用队列解决实际问题的能力利用栈结构实现八皇后问题。

八皇后问题19世纪著名的数学家高斯于1850年提出的。

他的问题是:在8*8的棋盘上放置8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列、同一斜线上。

请设计算法打印所有可能的摆放方法。

提示:1、可以使用递归或非递归两种方法实现2、实现一个关键算法:判断任意两个皇后是否在同一行、同一列和同一斜线上2. 程序分析2.1 存储结构采用栈存储,其结构图如下:2.2 关键算法分析函数原型: bool check(int i);2.2.1.1.1自然语言:检测至第i行所摆放的第i个皇后是否和之前的i-1个皇后发生冲突。

如是,则返回0;反之,则当前布局合法,返回1。

判断两个皇后是否相互攻击的准则是:若两个皇后处于同一行,或处于同一列,或处于同一斜线,就能相互攻击。

基于如上准则,函数check( )的工作原理是:考虑到数组的每个元素分别代表不同行的皇后,即每行只放置了一个皇后,所以不必考虑“同处一行相互攻击”的情形;对于同处一列,则语句:if(queen[s]==queen[t])就能判断出不同行的两个棋子是否同处一列;对于处于同一斜线的这种情况,首先,我们看出国际象棋的棋盘是一个八行八列的正方形。

因此我们可将棋盘想象为数学上的笛卡尔平面坐标系,两颗棋子想象为平面上的两个点,就很容易发现,为保证两颗棋子不处于同一斜线,只要过这两个点的直线斜率不为1或-1,就能达到要求。

由此可使用下列语句:if( abs(t-s) == abs(queen[s]-queen[t]) )其中t和s分别代表不同行的两个皇后,即数组queen[8]里不同下标的两个元素。

用回溯算法解n皇后问题实验步骤

用回溯算法解n皇后问题实验步骤

湖州师范学院实验报告课程名称:算法实验四:回溯算法一、实验目的1、理解回溯算法的概念,掌握回溯算法的基本要素。

2、掌握设计回溯算法的一般步骤,针对具体问题,能应用回溯算法求解。

二、实验内容1、问题描述1 )n后问题在n×n格的棋盘上放置彼此不受攻击的n个皇后。

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n后问题等价于在n×n格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。

2)0-1 背包问题需对容量为 c 的背包进行装载。

从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。

对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高。

每种物品要么放进背包,要么丢弃。

2、数据输入:文件输入或键盘输入。

3、要求:1)完成上述两个问题,时间为2 次课。

2)独立完成实验及实验报告。

三、实验步骤1、理解方法思想和问题要求。

2、采用编程语言实现题目要求。

3、上机输入和调试自己所写的程序。

4、附程序主要代码:1.n后问题:#include<iostream>using namespace std;class Queen {friend int nQueen(int);private:bool Place(int k);void Backtrack(int t);int n,*x;long sum;};bool Queen::Place(int k) {for (int j = 1; j < k; j++)if ((abs(k - j) == abs(x[j] - x[k])) || (x[j] == x[k]))return false;return true;}void Queen::Backtrack(int t) {if (t > n) {for (int i = 1; i <= n; i++)cout << x[i] << " ";cout << endl;sum++;}else {for (int i = 1; i <= n; i++) {x[t] = i;if (Place(t)) Backtrack(t + 1);}}}int nQueen(int n) {Queen X;//初始化XX.n = n;X.sum = 0;int* p = new int[n + 1];for (int i = 0; i <= n; i++)p[i] = 0;X.x = p;X.Backtrack(1);delete [] p;return X.sum;}void main() {int n, set;cout << "请输入皇后个数:"; cin >> n;cout << "可行方案所有解:" << endl;set = nQueen(n);cout << "可行方案数:" << set << endl;}2.0-1背包:#include <stdio.h>#include <conio.h>int n;//物品数量double c;//背包容量double v[100];//各个物品的价值double w[100];//各个物品的重量double cw = 0.0;//当前背包重量double cp = 0.0;//当前背包中物品价值double bestp = 0.0;//当前最优价值double perp[100];//单位物品价值排序后int order[100];//物品编号int put[100];//设置是否装入//按单位价值排序void knapsack(){int i,j;int temporder = 0;double temp = 0.0;for(i=1;i<=n;i++)perp[i]=v[i]/w[i];for(i=1;i<=n-1;i++){for(j=i+1;j<=n;j++)if(perp[i]<perp[j]) perp[],order[],sortv[],sortw[] {temp = perp[i];perp[i]=perp[i];perp[j]=temp;temporder=order[i]; order[i]=order[j]; order[j]=temporder; temp = v[i];v[i]=v[j];v[j]=temp;temp=w[i];w[i]=w[j];w[j]=temp;}}}//回溯函数void backtrack(int i){double bound(int i);if(i>n){bestp = cp;return;}if(cw+w[i]<=c){cw+=w[i];cp+=v[i];put[i]=1;backtrack(i+1);cw-=w[i];cp-=v[i];}if(bound(i+1)>bestp)//符合条件搜索右子数 backtrack(i+1);}//计算上界函数double bound(int i){double leftw= c-cw;double b = cp;while(i<=n&&w[i]<=leftw){leftw-=w[i];b+=v[i];i++;}if(i<=n)b+=v[i]/w[i]*leftw;return b;}int main(){int i;printf("请输入物品的数量和容量:");scanf("%d %lf",&n,&c);printf("请输入物品的重量和价值:");for(i=1;i<=n;i++){printf("第%d个物品的重量:",i);scanf("%lf",&w[i]);printf("价值是:");scanf("%lf",&v[i]);order[i]=i;}knapsack();backtrack(1);printf("最有价值为:%lf\n",bestp);printf("需要装入的物品编号是:");for(i=1;i<=n;i++){if(put[i]==1)printf("%d ",order[i]);}return 0;}5、实验结果:四、实验分析1、:n后问题分析只要不要在同一直线和斜线上就行。

算法设计与分析实验报告

算法设计与分析实验报告

实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。

2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。

三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。

递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。

否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。

2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。

在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。

五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

算法实验报告(完美版)

算法实验报告(完美版)

实验报告实验一:一、实验名称二分搜索法二、实验目的编写程序实现用二分法在一有序序列中查找一个数三、实验内容1、程序源代码#include<stdio.h>int Research(int a[],int x,int n){int left=0,right=n-1,mid;if(n>0&&x>=a[0]){while(left<right){mid=(left+right+1)/2;if(x<a[mid])right=mid-1;elseleft=mid;}if(x==a[left])return left;}return -1;}void Input(){int a[30],n,i,j,x;printf("输入数组长度n :");scanf("%d",&n);printf("输入有序数组:\n\n");for(i=0;i<n;i++){printf("a[%d]:",i);scanf("%d",&a[i]);}printf("输入要查询的数字:");scanf("%d",&x);j=Research(a,x,n);if(j>=0)printf("%d 在数组中的下标为%d!\n\n",x,j);elseprintf("没找到!\n\n");}main(){Input();}运行结果图一图二实验心得:本次实验让我了解了二分搜索法的基本思想,同时我们应该注意二分搜索法必须是在有序的元素中进行,不能在无序的元素中使用。

快速排序:#include<iostream>using namespace std;#define MAXSIZE 100int Partition(int q[MAXSIZE],int low,int hight);void Qsort(int q[],int low,int hight);int main(){int q[MAXSIZE]; //存储数列的数组q[0]=0;int n=0;cout<<"请输入需要排序的数的个数:";cin>>n;cout<<"\n请输入需要排序的数:\n";for(int i=1;i<=n;i++) //用循环方式输入数列{cin>>q[i];}Qsort(q,1,n); //调用Partition()函数cout<<"\n排序后结果为:\n";for(i=1;i<=n;i++) //循环输出结果{cout<<q[i]<<" ";}cout<<endl;return 0;}int Partition(int q[MAXSIZE],int low,int high) //对数列及数列部分划分成高低两个部分{int pivotkey; //用于标记q[low]这个关键数q[0]=q[low]; //q[0]用于存储q[low]这个数,q[low]空出pivotkey=q[low];while(low<high) //判断长度是否大于1{while(low<high && q[high]>=pivotkey)high--;q[low]=q[high]; //当pivotkey的值大于q[high],将q[high]放入q[low]中,q[high]空出while(low<high && q[low]<=pivotkey)low++;q[high]=q[low]; //当pivotkey的值小于q[low],将q[low]放入q[high]中,q[low]空出}q[low]=q[0]; //将q[0]中存储的数放入它合适的位置return low;}void Qsort(int q[MAXSIZE],int low,int high){int pivotkey; //记录关键数上一次排序后的位子if(low<high){pivotkey=Partition(q,low,high);Qsort(q,low,pivotkey-1); //对比关键数小的数(左侧)排序Qsort(q,pivotkey+1,high); //对比关键数大的数(右侧)排序}}运行结果:实验总结:在实验过程中,我只考虑了对数进行排序,没有其他的指针,所以就直接用了int型的数组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.实验目的:掌握深度优先遍历,并用深度优先遍历去解决实际问题。

实验内容:
要求在一个n*n的棋盘上放置n个皇后,使得它们彼此不受攻击。

一个皇后可以攻击与之处在同一行或同一列或同一斜线上的任何其他棋子。

二.概要设计:
深度优先遍历,假设某一行为当前状态,不断检查该行所有的位置是否能放一个皇后,检索的状态有两种:
( 1)先从首位开始检查,如果不能放置,接着检查该行第二个位置,依次检查下去,直到在该行找到一个可以放置一个皇后的地方,然后保存当前状态,转到下一行重复上述方法的检索。

(2)如果检查了该行所有的位置均不能放置一个皇后,说明上一行皇后放置的位置无法让所有的皇后找到自己合适的位置,因此就要回溯到上一行,重新检查该皇后位置后面的位置。

int main()
{
cin>>n;
for(int i=0;i<15;i++)
{
for(int j=0;j<n;j++)
g[i][j]='.';
}
dfs(0); //从第0行开始
}
主函数初始化棋盘,调用dfs去搜索
三.详细设计
void dfs(int u)
{
if(u==n)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
cout<<g[i][j];
}
cout<<endl;
}
cout<<endl;
return ;
}
for(int i=0;i<n;i++) //枚举每一列
{
if(!col[i]&&!dg[u+i]&&!udg[i-u+n])
{
col[i]=dg[u+i]=udg[i-u+n]=true;
g[u][i]='Q';
dfs(u+1);
col[i]=dg[u+i]=udg[i-u+n]=false;
g[u][i]='.';
}
}
}
问题的解可表示为x[1:n],表示皇后i放在棋盘的第i行的第
x[i]列。

x[i]≠x[j] ,i≠j :不允许将任何两个皇后放在同一列上
|j-i|≠|x[j]-x[i]| :不允许两个皇后位于同一条斜线上。

四.调试分析
刚开始没有考虑斜边的情况,导致程序一直出错,开了一个数组加上斜边的情况后,程序成长运行了
五.使用说明和测试结果
运行程序后,输入一个维度n,代表有几个皇后,然后程序会打印所有皇后的占位
六.心得体会:要有相当耐心才行,这是很费时的。

采用回溯算法进行求解,在搜索的过程中,将不满足条件要求的分支树减去,可以有效的降低算法的时间复杂性。

七.源代码
#include<iostream>
using namespace std;
const int N=100;
char g[N][N];
bool col[N],dg[N],udg[N];//每一列,左对角线右对角线int n;
void dfs(int u)
{
if(u==n)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
cout<<g[i][j];
}
cout<<endl;
}
cout<<endl;
return ;
}
for(int i=0;i<n;i++) //枚举每一列
{
if(!col[i]&&!dg[u+i]&&!udg[i-u+n])
{
col[i]=dg[u+i]=udg[i-u+n]=true;
g[u][i]='Q';
dfs(u+1);
col[i]=dg[u+i]=udg[i-u+n]=false;
g[u][i]='.';
}
}
}
int main()
{
cin>>n;
for(int i=0;i<15;i++)
{
for(int j=0;j<n;j++)
g[i][j]='.';
}
dfs(0); //从第0行开始}。

相关文档
最新文档