1-1半导体的基础知识
半导体基本知识一、本征半导体和导电特性

(2) 截止区
IB = 0 时, IC = ICEO(很小)。(ICEO<0.001mA)
IC/mA 4
3 2.3 2 1.5 1
O3
100 µA 80µA 60 µA
截止时, 两结都处于反 向偏置,此时 IC 0, UCE UCC 。
40 µA
20 µA
IB =0
6
9 12UCE/V
截止区
章目录 上一页 下一页 返回 退出
章目录 上一页 下一页 返回 退出
• 二极管的用途:整流、检波、限幅、钳位、 隔离、 开关、元件保护等。
章目录 上一页 下一页 返回 退出
五、稳压二极管 I
_+
UZ
使用时要加限流电阻
O
U
稳压管正常工作 时加反向电压
IZ
IZ
UZ
IZM
章目录 上一页 下一页 返回 退出
主要参数
1 稳定电压UZ 稳压管正常工作(反向击穿)时管子两端的电压。
O
IB f (U ) BE UCE常数
UCE≥1V
正常工作时发射结电压: NPN型硅管
UBE 0.6 ~ 0.7V PNP型锗管
UBE 0.2 ~ 0.3V
0.4 0.8 UBE/V
死区电压: 硅管0.5V, 锗管0.1V。
章目录 上一页 下一页 返回 退出
2.输出特性 IC f (UCE ) IB 常数
• 管子工作状态的判断 • P20 习题1-9
章目录 上一页 下一页 返回 退出
1.4 光电器件
1.4. 1 发光二极管(LED) 当发光二极管加上正向电压并有足够大的正向电
流时,就能发出一定波长范围的光。 目前的发光管可以发出从红外到可见波段的光,
半导体的基本 知识

们通常把导电性和导电导热性差或不好的材料,如金刚石、人工晶体、 墟泊、陶瓷等,称为绝缘体。而把导电、导热都比较好的金属如金、 银、铜、铁、锡、铝等称为导体。可以简单地把介于导和绝缘体之间 的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚 的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存 在才真正被学术界认可。 • 半导体的发现实际上可以追溯到很久以前,1833年,英国巴拉迪 最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情 况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的
• 半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大 类。锗和硅是最常用的元素半导体;化合物半导体包括l一V族化合物 (砷化嫁、磷化嫁等),II一VI族化合物(硫化福、硫化锌等)、氧化物(锰、 铬合物组成的 固溶体(嫁铝砷、嫁砷磷等)。除上述晶态半导体外,还有非晶态的玻 璃半导体、有机半导体等。
上一页 下一页 返回
第一节 半导体的基本知识
• 三、杂质半导体 • 半导体中的杂质对电导率的影响非常大,本征半导体经过掺杂就形
成杂质半导体,一般可分为N型半导体和P型半导体。半导体中掺入 微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状 态,在禁带中产生附加的杂质能级。能提供电子载流子的杂质称为施 主杂质,相应能级称为施主能级,位于禁带上方靠近导带底附近。例 如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂 质原子作为晶格的一分子,其五个价电子中有四个与周围的锗(或硅) 原子形成共价键,多余的一个电子被束缚于杂质原子附近,产生类氢 浅能级一施主能级。施主能级上的电子跃迁到导带所需能量比从价带 激发到导带所需能量小得多,很易激发到导带成为电子载流子,因此 对于掺入施主杂质的半导体,导电载流子主要是被激发到导带中的电 子,属电子导电型,称为N型半导体。
半导体基础知识(1)

半导体基础知识(详细篇)2.1.1概念根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。
1.导体:容易导电的物体。
如:铁、铜等2.绝缘体:几乎不导电的物体。
如:橡胶等3.半导体:半导体是导电性能介于导体和半导体之间的物体。
在一定条件下可导电。
半导体的电阻率为10-3~109Ω·cm。
典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。
半导体特点:1)在外界能源的作用下,导电性能显著变化。
光敏元件、热敏元件属于此类。
2)在纯净半导体内掺入杂质,导电性能显著增加。
二极管、三极管属于此类。
2.1.2本征半导体1.本征半导体本征半导体——化学成分纯净的半导体。
制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。
它在物理结构上呈单晶体形态。
电子技术中用的最多的是硅和锗。
硅和锗都是4价元素,它们的外层电子都是4个。
其简化原子结构模型如下图:外层电子受原子核的束缚力最小,成为价电子。
物质的性质是由价电子决定的。
2.本征半导体的共价键结构本征晶体中各原子之间靠得很近,使原分属于各原子的四个价电子同时受到相邻原子的吸引,分别与周围的四个原子的价电子形成共价键。
共价键中的价电子为这些原子所共有,并为它们所束缚,在空间形成排列有序的晶体。
如下图所示:硅晶体的空间排列与共价键结构平面示意图3.共价键共价键上的两个电子是由相邻原子各用一个电子组成的,这两个电子被成为束缚电子。
束缚电子同时受两个原子的约束,如果没有足够的能量,不易脱离轨道。
因此,在绝对温度T=0°K(-273°C)时,由于共价键中的电子被束缚着,本征半导体中没有自由电子,不导电。
只有在激发下,本征半导体才能导电。
4.电子与空穴本征激发电子与空穴的产生当导体处于热力学温度0°K时,导体中没有自由电子。
当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚,而参与导电,成为自由电子。
第1章 半导体物理基础

EC EF 令:n N C exp kT
则:
EF EV p NV exp kT
EC EV kT NV EF Ei ln( ) 2 2 NC
在室温下,第二项比禁带宽度小得多。因此,本征半导体的 本征费米能级Ei相当靠近禁带的中央。
图1.4.2 费密能级与 杂质浓度、导电类型 和环境温度的关系
平衡载流子浓度的计算
对非简并半导体
N型半导体: n0 多子:电子
完全电离:
P型半导体: p0 多子:空穴 > n0
> p0
少子:空穴
少子:电子
一般情况 ND≈1015 - 1020cm-3
一般情况 NA≈1015 - 1020cm-3
n0 N D ? ni n0 ? p0 2 n0 p0 ni
施主。由于带负电载流子增加,硅变成n型。
1.3.2
P型半导体
受主和受主能级
受主杂质:在半导体中提供空穴的杂质
• 对于Si而言掺入的受主杂质一般为III族元素,如 B、Ga • NA ≡ 受主杂质浓度 [cm-3] • 一般情况下
NA >> ni
(NA: 1015 - 1020
cm-3 )
• 常温下 受主杂质完全电离
空导带
Eg = 9 eV
填满的价带
半导体:
半导体材料的电导率介于导体和绝缘体之间,且易受温 度、光照、磁场及微量杂质原子的影响,其禁带宽度较小(约 为1eV),如图所示。 在 T =0K时,所有电子都位于价 带,而导带中并无电子,因此半导 体在低温时是不良导体。在室温及 正常气压下,硅的 Eg 值为 1.12eV , 而砷化镓为 1.42eV 。因此在室温下 ,热能 kT 占 Eg 的一定比例,有些电 子可以从价带激发到导带。因为导 带中有许多未被占据的能态,故只 要小的外加能量,就可以轻易移动 这些电子,产生可观的电流。
第一章 半导体器件知识

第一章《半导体器件的基础知识》一、填空:1、半导体的导电能力随着(掺入杂质)、(光照)、(温度)和(输入电压和电流的改变)条件的不同而发生很大的变化,其中,提高半导体导电能力最有效的办法是(掺入杂质)。
2、(纯净的半导体)叫本征半导体。
3、半导体可分为(P )型半导体和(N )型半导体,前者( 空穴)是多子,(电子)是少子。
4、PN结加(正向电压)时导通,加(反向电压)时截止,这种特性称为(单向导电)性。
5、PN结的反向击穿可分为(电)击穿和(热)击穿,当发生(热)击穿时,反向电压撤除后,PN结不能恢复单向导电性。
6、由于管芯结构的不同,二极管可分为(点)接触型、(面)接触型、(平面)接触型三种,其中(点)接触型的二极管PN结面积(小),适宜半导体在高频检波电路和开关电路,也可以作小电流整流,面接触型和平面型二极管PN结接触面(大),载流量(大),适于在(大电流)电路中使用。
7、二极管的两个主要参数是(最大整流电流)和(最高反向电压)使用时不能超过,否则会损坏二极管。
8、在一定的范围内,反向漏电流与反加的反向电压(无关),但随着温度的上升而(上升),反向饱和电流越大,管子的性能就越(差)。
9、硅二极管的死区电压为(0、5)V,锗二极管的死区电压为(0、2)V。
10、三极管起放大作用的外部条件(发射结正偏)和(集电结反偏)11、晶体三极管具有电流放大作用的实质是利用(基极)电流实现对(集电极)电流的控制。
12、3DG8D表示(NPN型硅材料高频小功率三极管);3AX31E表示(PNP型锗材料低频小功率三极管)。
13、三极管的恒流特性表现在(放大)区,在饱和区,三极管失去(放大)作用,集电结、发射结均(正)偏。
14 集---射击穿电压V(BR)CEO是指(基极开路)时集电极和发射极间所承受的最大反向电压,使用时,集电极电源电压应(>)这个数值。
15三极管的三种基本联结方式可分为(共基极电路),(共集电极电路)和(共发射极电路)。
第1章半导体基础知识

第1章半导体基础知识
§1 半导体基础知识
一、本征半导体 二、杂质半导体 三、PN结的形成及其单向导电性 四、PN结的电容效应
第1章半导体基础知识
一、本征半导体
1、什么是半导体?什么是本征半导体?
导电性介于导体与绝缘体之间的物质称为半导体。
导体--铁、铝、铜等金属元素等低价元素,其最外层电 子在外电场作用下很容易产生定向移动,形成电流。
漂移运动
因电场作用所产 生的运动称为漂移 运动。
参与扩散运动和漂移运动的载流子数目相同,达到动态 平衡,就形成了PN结。
第1章半导体基础知识
PN 结的单向导电性
空间电荷区也称耗尽层
必要吗?
PN结加正向电压Βιβλιοθήκη 通:PN结加反向电压截止:
耗尽层变窄,扩散运动加 耗尽层变宽,阻止扩散运动,
剧,由于外电源的作用,形 有利于漂移运动,形成漂移电
频率高。
频率低。
流大。
第1章半导体基础知识
二、二极管的伏安特性及电压电流方程
二极管的电流与其端电压的关系称为伏安特性:i f (u)
U D
击穿
iDIS(eU T1) (常温 U T下 2m 6 V电)压
反向饱 开启 和电流 电压
UT =kT/q 称为温度的电压当量
材料 开启电压 导通电压 反向饱和电流
多数载流子
杂质半导体主要靠多数载流
5
子导电。掺入杂质越多,多子
浓度越高,导电性越强,实现
导电性可控。
磷(P)
第1章半导体基础知识
2. P型半导体
3
多数载流子
P型半导体主要靠空穴导电, 掺入杂质越多,空穴浓度越高, 导电性越强,
第1章常用半导体器件

纯净的具有晶体结构的半导体
一、导体、半导体和绝缘体 导体、
导体:自然界中很容易导电的物质称为导体, 导体:自然界中很容易导电的物质称为导体,金属 导体 一般都是导体。 一般都是导体。 绝缘体:有的物质几乎不导电,称为绝缘体 绝缘体, 绝缘体:有的物质几乎不导电,称为绝缘体,如橡 陶瓷、塑料和石英。 皮、陶瓷、塑料和石英。 半导体: 半导体:另有一类物质的导电特性处于导体和绝缘 半导体, 体之间,称为半导体 如锗、 体之间,称为半导体,如锗、硅、砷化镓 和一些硫化物、氧化物等。 和一些硫化物、氧化物等。
二、P 型半导体
杂质元素, 在硅或锗的晶体中掺入少量的 3 价杂质元素,如 铟等, 型半导体。 硼、镓、铟等,即构成 P 型半导体。
+4 +4 +4
3 价杂质原子称为 受主原子。 受主原子。 空穴浓度多于电子 浓度, 浓度,即 p >> n。空穴 。 为多数载流子, 为多数载流子 , 电子为 少数载流子。 少数载流子。
五、PN结的电容效应 结的电容效应
上的电压发生变化时, 当PN上的电压发生变化时,PN 结中储存的电荷量 上的电压发生变化时 将随之发生变化, 结具有电容效应。 将随之发生变化,使PN结具有电容效应。 结具有电容效应 势垒电容 电容效应包括两部分 扩散电容 1. 势垒电容 b 势垒电容C 结的空间电荷区变化形成的。 是由 PN 结的空间电荷区变化形成的。
公式推导过程略
四、PN结的伏安特性 结的伏安特性
i = f (u )之间的关系曲线。 之间的关系曲线。
i/ mA
60 40 20 –50 –25 0 0.5 1.0 u / V – 0.002
正向特性
第一章半导体基础知识

第一章半导体基础知识〖本章主要内容〗本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。
首先介绍构成PN结的半导体材料、PN结的形成及其特点。
其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。
然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。
〖本章学时分配〗本章分为4讲,每讲2学时。
第一讲常用半导体器件一、主要内容1、半导体及其导电性能根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。
半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9Ω∙cm。
典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。
半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。
2、本征半导体的结构及其导电性能本征半导体是纯净的、没有结构缺陷的半导体单晶。
制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。
在热力学温度零度和没有外界激发时,本征半导体不导电。
3、半导体的本征激发与复合现象当导体处于热力学温度0K时,导体中没有自由电子。
当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。
这一现象称为本征激发(也称热激发)。
因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。
游离的部分自由电子也可能回到空穴中去,称为复合。
在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。
4、半导体的导电机理自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.3 PN 结 一、PN 结(PN Junction)的形成 1. 载流子的浓度差引起多子的扩散
内建电场 2. 复合使交界面形成空间电荷区 (耗尽层) 空间电荷区特点: 无载流子, 阻止扩散进行,利于少子的漂移。 3. 扩散和漂移达到动态平衡
扩散电流 等于漂移电流,总电流 I = 0。
二、PN 结的单向导电性 1. 外加正向电压(正向偏置) — forward bias IF
重点与难点 重点与难点 重点: PN结的特性; 重点: PN结的特性; 难点: PN结的形成。 难点: PN结的形成。
了解本门课程的基本内容;
1.1.1 本征半导体
半导体 — 导电能力介于导体和绝缘体之间的物质。 本征半导体 — 纯净的半导体。如硅、锗单晶体。 载流子 — 自由运动的带电粒子。 共价键 — 相邻原子共有价电子所形成的束缚。
P区
外电场
N区
内电场
扩散运动加强形成正向电流 外电场使多子向 PN 结移动I ,F。 中和部分离子使空间电荷区变窄。 I =I I I
F 多子 少子 多子
+
U
R
限流电阻
2. 外加反向电压(反向偏置) — reverse bias IR
P区 N区
漂移运动加强形成反向电流 IR
U R PN 结的单向导电性:正偏导通,呈小电阻,电流较大; 反偏截止,电阻很大,电流近似为零。
内电场 外电场
+
IR = I少子 0
小 结
一、两种半导体和两种载流子
两种载流 子的运动 电子 — 自由电子 空穴 — 价电子 两 种 N 型 (多电子) 半导体 P 型 (多空穴)
二、PN结 特性 — 单向导电
正向电阻小(理想为 0),反向电阻大()。
思考、讨论题: 1.1.1 1.1.3
第1章
半导体二极管
1.1 半导体的基础知 识
1.1.1 本征半导体
1.1.2 杂质半导体
1.1.3 PN 结
授课主要内容 本征半导体和杂质半导体 本征半导体和杂质半导体 PN结的形成 PN结的形成
目的和要求
授课主要内容
目的和要求 了解模拟电路的特点及应用、分类及学习方法; 了解本征半导体和杂质半导体; 了解本征半导体和杂质半导体; 掌握 PN结的特性。 掌握 PN结的特性。
3. 本征半导体导电能力弱,并与温度有关。
1.1.2 杂质半导体 一、N 型半导体和 P 型半导体
N型 +4 +4 +4 +4 P型 +4 +4
+4 磷原子
+5
+4 自由电子
+4 硼原子
+3
+4 空穴
电子为多数载流子 空穴为少数载流子 载流子数 电子数
空穴 — 多子 电子 — 少子 受主 施主 原子 离子 载流子数 空穴数 离子 原子
复
合: 自由电子和空穴在运动中相遇重新结合 成对消失的过程。
漂
移: 自由电子和空穴在电场作用下的定向运
动。
两种载流子 电子(自由电子) 空穴 结论:
两种载流子的运动 自由电子(在共价键以外)的运动 空穴(在共价键以内)的运动
1. 本征半导体中电子空穴成对出现,且数量少;
2. 半导体中有电子和空穴两种载流子参与导电;
硅(锗)的原子结构 Si 2 8 4 简化 模型 硅(锗)的共价键结构 +4 +4
Ge 2 8 18 4
+4 价电子
自 由 空 电 穴 子
(束缚电子)
+4 空穴
+4 空穴可在共 价键内移动
惯性核
本征激发: 在室温或光照下价电子获得足够能量摆 脱共价键的束缚成为自由电子,并在共价键 中留下一个空位(空穴)的过程。