【初一英语试题精选】七年级下数学第4章三角形单元测试题(北师大版附答案)

合集下载

北师大七级下第四章三角形单元测试题(一)含答案

北师大七级下第四章三角形单元测试题(一)含答案

北师大版七年级下册三角形单元测试题(一)一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为( )A.10B.12C.14D.162.满足下列条件的△ABC中,不是直角三角形的是()A、∠B+∠A=∠CB、∠A:∠B:∠C=2:3:5C、∠A=2∠B=3∠CD、一个外角等于和它相邻的一个内角3.一个三角形的三个内角中,锐角的个数最少为 ( )A.0B.1C.2 D.34.三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B、钝角三角形C、直角三角形D、无法确定5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( )A.中线B.角平分线C.高线D.三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是 ( )A.∠1B.∠2C.∠B D.∠1、∠2和∠B7.下列命题中的真命题是()A、锐角大于它的余角B、锐角大于它的补角C、钝角大于它的补角D、锐角与钝角之和等于平角8.已知:a、b、c是△ABC三边长,且M=(a+b+c)(a+b-c)(a-b-c),那么( )A.M>0 B. M=0C.M<0 D.不能确定9.锐角三角形中,最大角α的取值范围是()A、00<α<900ºB、600<α<900ºC、600<α<1800D、600º≤α<900º10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A.5个B.4个C.3个D.2个二、填空题1.直角三角形中两个锐角的差为20º,则两个锐角的度数分别为.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________.3.把下列命题“对顶角相等”改写成:如果 ,那么 .4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________. 5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c≥b≥a>0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.如下图左,DH ∥GE ∥BC ,AC ∥EF ,那么与∠HDC 相等的角有 .8.如图5—13,在△ABC 中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是△ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A=50°,那么∠D=_____.10.如图5—15,△ABC 中,∠A=60°,∠ABC、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC=_____.MHGFED CBA11.如图5—16,该五角星中,∠A+∠B+∠C+∠D+∠E=________度.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、解答题1.如图5—17,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图:(1) 画△ABC 的外角∠BCD ,再画∠BCD 的平分线CE. (2) 若∠A=∠B ,请完成下面的证明:已知:△ABC 中,∠A=∠B ,CE 是外角∠BCD 的平分线 求证:CE ∥AB5.如图5—21,△ABC 中,∠B=34°,∠ACB=104°,AD 是BC 边上的高,AE 是∠BAC 的平分线,求∠DAE 的度数.6.如图5—22,在△ABC 中,∠ACB=90°,CD 是AB 边上的高,AB =13cm ,BC =12cm ,AC =5cm ,求:(1)△ABC 的面积;(2)CD 的长.7.看图填空:(1) 如下图左,∠A +∠D =180º(已知)∴∥( )CBA∴∠1= ( ) ∵∠1=65º(已知)∴∠C =65º( )(2) 如上图右,已知,∠ADC =∠ABC ,BE 、DF 分别平分∠ABC 、∠ADC ,且∠1=∠2,求证:∠A=∠C.证明:∵BE 、DF 分别平分∠ABC 、∠ADC (已知)∴ ∠1=21∠ABC ,∠3=21∠ADC ( ) ∵∠ABC =∠ADC (已知) ∴21∠ABC =21∠ADC ( ) ∴∠1=∠3( ) ∵∠1=∠2(已知)∴∠2=∠3( )∴( )∥( )( ) ∴∠A +∠=180º ,∠C +∠=180º( ) ∴∠A =∠C ( )8.已知:如图5—24,P 是△ABC 内任一点,求证:AB +AC >BP +PC .1DCB A答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C二、1.3; 2.; 3.锐角(等腰锐角); 4.;5.10; 6.和; 7.; 8.;9.; 10.; 11.; 12.. 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是的平分线.3.假设此零件合格,连接BD ,则;可知.这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线, ∴ D 为BC 的中点,. ∵的周长-的周长=5cm . ∴. 又∵, ∴.5.由三角形内角和定理,得32周长20,164<<<<BC cm 37︒65︒25︒100GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,︒65︒120︒180126<<x BAC ∠︒=︒-︒=∠+∠37143180CBD CDB ()︒=︒+︒-︒=∠+∠40203090CBD CDB BD CD =ADC ∆ABD ∆cm AB AC 5=-cm AB AC 11=+cm AC 8=. ∴. 又∵ AE 平分∠BAC . ∴. ∴. 又∵,∴.6.(1)∵在△ABC 中,,,,(2)∵ CD 是AB 边上的高, ∴. 即. ∴. 7.如图,延长BP 交AC 于D , ∵, ∴. 8.∵, ∴, ∴. 又∵,∴. ∴,∵, ∴.︒=∠+∠+∠180BAC ACB B ︒=︒-︒-︒=∠4210434180BAC ︒=︒⨯=∠=∠21422121BAC BAE ︒=︒+︒=∠+∠=∠552134BAE B AED ︒=∠+∠90DAE AED ︒=︒-︒=∠-︒=∠35559090AED DAE ︒=∠90ACB cm AC 5=cm BC 12=().3012521212cm BC AC S ABC =⨯⨯=⋅=∴∆CD AB S ABC ⋅=∆21CD ⨯⨯=132130()cm CD 1360=A PDC PDC BPC ∠>∠∠>∠,A BPC ∠>∠A C ∠=∠74C A ∠=∠74C B C ∠<∠<∠74︒=∠+∠+∠180C B A ︒=∠+∠+∠18074C B C C B ∠-︒=∠711180C C C ∠<∠-︒<∠71118074︒<∠<︒8470C又∵为整数, ∴∠C 的度数为7的倍数. ∴,∴. 9.如图,延长BP 交AC 于点D .在△BAD 中,, 即:. 在△PDC 中,. ①+②得, 即.C A ∠=∠74︒=∠77C ︒=∠=∠4474C A BD AD AB >+PD BP AD AB +>+PC DC PD >+PC PD BP DC PD AD AB ++>+++PC BP AC AB +>+。

北师大版初中数学七年级下册第四单元《三角形》单元测试卷(标准困难)(含答案解析)

北师大版初中数学七年级下册第四单元《三角形》单元测试卷(标准困难)(含答案解析)

北师大版初中数学七年级下册第四单元《三角形》单元测试卷(标准困难)(含答案解析)考试范围:第四单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为( )A. 15B. 16C. 18D. 192. 题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=√2,则正确的是( )A. 只有甲答的对B. 甲、丙答案合在一起才完整C. 甲、乙答案合在一起才完整D. 三人答案合在一起才完整3. 在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为( )A. 12B. 13C. 14D. 164. 如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为( )A. 30°B. 25°C. 35°D. 65°5. 如图,在长方形ABCD中AB=DC=4,AD=BC=5.延长BC到E,使CE=2,连接DE.动点P从点B出发,以每秒2个单位的速度沿BC−CD−DA向终点A运动,设点P运动的时间为t秒,存在这样的t,使△DCP和△DCE全等,则t的值为( )A. t=12B. t=32C. t=32或t=112D. t=12或t=326. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°7. 如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,如果BC=27,BD:CD=2:1,则DE的长是( )A. 2B. 9C. 18D. 278. 用直尺和圆规作一个角等于已知角,如图,能得出∠O=∠O′的依据是( )A. SASB. ASAC. SSSD. AAS9. 如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②连接AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是( )A. ①②③④B. ①④③②C. ①④②③D. ②①④③10. 尺规作图“作一个角等于已知角“的依据是( )A. ASAB. SASC. SSSD. AAS11. 为了测量池塘两侧A,B两点间的距离,在地面上找一点C,连接AC,BC,使∠ACB=90°,然后在BC的延长线上确定点D,使CD=BC,得到△ABC≌△ADC,通过测量AD的长,得AB的长.那么△ABC≌△ADC 的理由是( )A. SASB. AASC. ASAD. SSS12. 如图,要测量河两岸相对的A、B两点的距离,可以在与AB垂直的河岸BF上取C、D两点,且使BC=CD,从点D出发沿与河岸BF的垂直方向移动到点E,使点E与A,C在一条直线上,可得△ABC≌△EDC,这时测得DE的长就是AB的长.判定△ABC≌△EDC最直接的依据是( )A. ASAB. HLC. SASD. SSS第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70∘,∠ABC=48∘,那么∠3=.14. D,E分别是△ABC的边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为______.15. 如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.16. 如图,已知△ABC(AC>AB),DE=BC,以D,E为顶点作三角形,使所作的三角形△ABC 全等,这样的三角形最多可以作出______个.三、解答题(本大题共9小题,共72.0分。

北师大版七年级数学下册第4章《三角形》单元测试题 含答案

北师大版七年级数学下册第4章《三角形》单元测试题 含答案

北师大版七年级数学下册第4章《三角形》单元测试题(满分100分)一.选择题(共10小题,满分30分,每小题3分)1.以下是四位同学在钝角三角形△ABC中画AC边上的高,其中正确的是()A.B.C.D.2.一个三角形的两边长分别是3和7,则第三边长可能是()A.2B.3C.9D.103.如图,AD是△ABC的中线,则下列结论正确的是()A.AD⊥BC B.∠BAD=∠CAD C.AB=AC D.BD=CD4.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是()A.SAS B.SSS C.AAS D.ASA5.下列说法正确的有()(1)等边三角形是等腰三角形;(2)三角形的两边之差大于第三边;(3)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.A.1个B.2个C.3个D.4个6.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC7.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,∠CAD=25°,则∠ABE的度数为()A.30°B.15°C.25°D.20°8.如图,△ABC中,三条中线AD,BE,CF相交于点O,若△ABC的面积是10,则△OCD 的面积是()A.2B.1.5C.D.59.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列结论中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°;③AD=BD;④点D在AB的垂直平分线上③S△ABD=S△ACDA.2个B.3个C.4个D.5个10.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM 平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4B.3C.2D.1二.填空题(共7小题,满分28分,每小题4分)11.如图,自行车的主框架采用了三角形结构,这样设计的依据是三角形具有.12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.13.如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=20米,则AB=.14.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE ⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.15.如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD 的周长为cm.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作经过点A的直线的垂线段BD,CE,若BD=3厘米,CE=4厘米,则DE的长为.17.如图,已知△ABC中,AB=AC=16cm,∠B=∠C,BC=10cm,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若当△BPD与△CQP全等时,则点Q运动速度可能为厘米/秒.三.解答题(共6小题,满分56分)18.如图,已知∠EFD=∠BCA,BC=EF,AF=DC,则AB=DE.请通过完成以下填空的形式说明理由.证明:∵AF=DC(已知)∴AF+=DC+(等式的性质)即=在△ABC和△DEF中BC=EF(已知)∠=∠(已知)=(已证)∴≌(SAS)∴=(全等三角形的对应边相等)19.如图,Rt△ABC中,∠ABC=90°,AB=6,BC=8.(1)尺规作图:作出AC的垂直平分线,交AC于点D,交BC于点E(保留作图痕迹,不写作法).(2)求CE的长.20.如图,AE=AD,∠ABE=∠ACD,BE与CD相交于O.(1)如图1,求证:AB=AC;(2)如图2,连接BC、AO,请直接写出图2中所有的全等三角形(除△ABE≌△ACD 外).21.如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED=BD.(1)求证:△ABD≌△CED;(2)若CE为∠ACD的角平分线,求∠BAC的度数.22.在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°(1)如图1,当点A、C、D在同一条直线上时,AC=12,EC=5,①求证:AF⊥BD;②求AF的长度;(2)如图2,当点A、C、D不在同一条直线上时,求证:AF⊥BD.23.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度;如图2,当点D在线段BC上,如果∠BAC=60°,则∠BCE=度;(2)设∠BAC=α,∠BCE=β,如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、高BD交AC的延长线于点D处,符合题意;B、没有经过顶点B,不符合题意;C、做的是BC边上的高线AD,不符合题意;D、没有经过顶点B,不符合题意.故选:A.2.解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.3.解:∵AD是△ABC的中线,∴BD=DC,故选:D.4.解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D',故选:B.5.解:(1)等边三角形是一特殊的等腰三角形,正确;(2)根据三角形的三边关系知,三角形的两边之差小于第三边,错误;(3)三角形按边分类可以分为不等边三角形和等腰三角形,错误;(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形,正确.综上所述,正确的结论有2个.故选:B.6.解:选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项符合题意;选项B、添加AC=DF可用AAS进行判定,故本选项不符合题意;选项C、添加AB=DE可用AAS进行判定,故本选项不符合题意;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项不符合题意.故选:A.7.解:证明:∵AD⊥BC,∴∠BDF=∠ADC,又∵∠BFD=∠AFE,∴∠CAD=∠FBD,在△BDF和△ACD中,∴△BDF≌△ACD(AAS)∴∠DBF=∠CAD=25°,∵DB=DA,∠ADB=90°,∴∠ABD=45°,∴∠ABE=∠ABD﹣∠DBF=20°故选:D.8.解:∵△ABC中,三条中线AD,BE,CF相交于点O,∴=,CD=BD,∴S△ACD=S△ABD=S△ABC==5,∴S△OCD=S△ACD==,故选:C.9.解:利用基本作图得AD平分∠BAC,所以①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°,而AD平分∠BAC,∴∠CAD=∠DAB=30°,∴∠ADC=90°﹣∠CAD=60°,所以②正确;∵∠DAB=∠B=30°,∴DA=DB,所以③正确;∴点D在AB的垂直平分线上,所以④正确;∵AD=CD,∴BD=CD,∴S△ABD=S△ACD,所以⑤错误.故选:C.10.解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图2所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM∵△AOC≌△BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,在△COM和△BOM中,,∴△COM≌△BOM(ASA),∴OB=OC,∵OA=OB∴OA=OC与OA>OC矛盾,∴③错误;正确的个数有3个;故选:B.二.填空题(共7小题,满分28分,每小题4分)11.解:自行车的主框架采用了三角形结构,这样设计的依据是三角形具稳定性,故答案为:稳定性.12.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.13.解:∵点C是AD的中点,也是BE的中点,∴AC=DC,BC=EC,∵在△ACB和△DCE中,,∴△ACB≌△DCE(SAS),∴DE=AB,∵DE=20米,∴AB=20米,故答案为:20米.14.解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.15.解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD周长的差=(AB+BD+AD)﹣(AC+AD+CD)=AB﹣AC,∵△ABD的周长为25cm,AB比AC长6cm,∴△ACD周长为:25﹣6=19cm.故答案为19.16.解:∵BD⊥DE,CE⊥DE,BA⊥AC,∴∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴DB=AE=3厘米,CE=AD=4厘米,则DE=AD+AE=4+3=7厘米.故答案为:7厘米.17.解:∵AB=16cm,BC=10cm,点D为AB的中点,∴BD=×16=8cm,设点P、Q的运动时间为t,则BP=2t,PC=(10﹣2t)cm①当BD=PC时,10﹣2t=8,解得:t=1,则BP=CQ=2,故点Q的运动速度为:2÷1=2(厘米/秒);②当BP=PC时,∵BC=10cm,∴BP=PC=5cm,∴t=5÷2=2.5(秒).故点Q的运动速度为8÷2.5=3.2(厘米/秒).故答案为:2或3.2.三.解答题(共6小题)18.解:∵AF=DC(已知),∴AF+FC=DC+FC(等式的性质)即AC=DF,在△ABC和△DEF中,,∴△ABC≌△≌DEF(SAS),∴AB=DE(全等三角形的对应边相等);故答案为:FC,FC;AC,DF;BCA,EFD;AC,DF;△ABC,△DEF;AB,DE.19.解:(1)如图所示:点D,E即为所求;(2)∵∠ABC=90°,AB=6,BC=8,∴AC==10,∵AC的垂直平分线,交AC于点D,交BC于点E,∴DC=AD=5,∵∠B=∠EDC=90°,∠C=∠C,∴△CDE∽△CBA,∴=,则=,解得:CE=.20.(1)证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:∵AD=AE,∴BD=CE,而△ABE≌△ACD,∴CD=BE,∵BD=CE,CD=BE,BC=CB,∴△BDC≌△CEB(SSS);∴∠BCD=∠EBC,∴OB=OC,∴OD=OE,而∠BOD=∠COE,∴△DOB≌△EOC(SAS);∵AB=AC,∠ABO=∠ACO,BO=CO,∴△AOB≌△AOC(SAS);∵AD=AE,OD=OE,AO=AO,∴△ADO≌△AEO(SSS).21.(1)证明:∵AD⊥BC,∠ACB=45°,∴∠ADB=∠CDE=90°,△ADC是等腰直角三角形,∴AD=CD,∠CAD=∠ACD=45°,在△ABD与△CED中,,∴△ABD≌△CED(SAS);(2)解:∵CE为∠ACD的角平分线,∴∠ECD=∠ACD=22.5°,由(1)得:△ABD≌△CED,∴∠BAD=∠ECD=22.5°,∴∠BAC=∠BAD+∠CAD=22.5°+45°=67.5°.22.解:(1)①证明:如图1,∵在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠1=∠2,∵∠AEC=∠BEF,∴∠BFE=∠ACE=90°,∴AF⊥BD.②∵∠ECD=90°,BC=AC=12,DC=EC=5,∴根据勾股定理得:BD=13,∵S△ABD=AD•BC=BD•AF,即∴AF=.(2)证明:如图2,∵∠ACB=∠ECD,∴∠ACB+∠ACD=∠ECD+∠ACD,∴∠BCD=∠ACE,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠BF A=∠BCA=90°,∴AF⊥BD.23.解:(1)∵∠BAC=90°,∴∠DAE=∠BAC=90°,∵AB=AC,AD=AE,∴∠B=∠ACB=45°,∠ADE=∠AED=45°,∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=45°,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)∵∠BAC=60°,∴∠DAE=∠BAC=60°,∵AB=AC,AD=AE,∴∠B=∠ACB=60°,∠ADE=∠AED=60°,由(1)得,∠ACE=∠B=60°,∴∠BCE=∠ACB+∠ACE=120°,故答案为:120;(3)α+β=180°,理由如下:∵∠BAC=α,∴∠B=∠ACB=(180°﹣α),由(1)得,∠ACE=∠B=(180°﹣α),∴β=∠BCE=∠ACB+∠ACE=180°﹣α,∴α+β=180°.。

北师大版七年级数学下册 第四章《三角形》单元测试卷(含答案)

北师大版七年级数学下册  第四章《三角形》单元测试卷(含答案)

七年级下第4章《三角形》单元测试卷一、选择题(每题3分,共30分) 1.图中三角形的个数是( ) A .8 B .9 C .10 D .11 2.下面四个图形中,线段BE 是⊿ABC 的高的图是( )A B C D3.以下各组线段为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .2cm ,3cm ,6cm 4.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定 5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高, DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( )A 、3个B 、4个C 、5个D 、6个6.下面说法正确的个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=21∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在∆ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形。

A 、3个 B 、4个 C 、5个 D 、6个7.在∆ABC 中,C B ∠∠,的平分线相交于点P ,设,︒=∠x A 用x 的代数式表示BPC ∠的度数,正确的是( ) (A )x 2190+(B )x 2190- (C )x 290+ (D )x +90 8.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( ) A 、900 B 、1200 C 、1600 D 、1800 9.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个10.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。

北师大版七年级下学期数学第4章三角形单元测试题及答案

北师大版七年级下学期数学第4章三角形单元测试题及答案

七年级下第4章《三角形》单元测试卷一、选择题(每题3分,共30分) 1.图中三角形的个数是( )A .8B .9C .10D .112.下面四个图形中,线段BE 是⊿ABC 的高的图是( )A B C D 3.以下各组线段为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .2cm ,3cm ,6cm 4.三角形一个外角小于与它相邻的内角,这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .属于哪一类不能确定 5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高, DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个 6.下面说法正确的个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A =∠B =21∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在 ABC 中,若∠A +∠B =∠C ,则此三角形是直角三角形。

A 、3个B 、4个C 、5个D 、6个第1题图第5题图7.在∆ABC 中,C B ∠∠,的平分线相交于点P ,设,︒=∠x A 用x 的代数式表示BPC ∠的度数,正确的是( ) (A )x 2190+(B )x 2190- (C )x 290+ (D )x +90 8.如图,将一副三角板叠放在一起,使直角的顶点重合于O , 则∠AOC +∠DOB =( )A 、900B 、1200C 、1600D 、1809.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个10.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。

北师大版数学七年级下册第4章《三角形》单元测试试题 附答案解析

北师大版数学七年级下册第4章《三角形》单元测试试题  附答案解析

北师大版七年级下册第4章《三角形》单元测试题(满分120分)班级:________姓名:________座位:________成绩:________一.选择题(共10小题,满分30分)1.一个三角形的两边长分别是2和4,则第三边的长可能是()A.1B.2C.4D.72.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.3.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线B.高线C.中线D.无法确定4.如图,在△ABC中,点D在BC的延长线上,若∠A=60°,∠B=40°,则∠ACD的度数是()A.140°B.120°C.110°D.100°5.如图,在△ABC中,CD平分∠ACB,DE∥BC.已知∠A=74°,∠B=46°,则∠BDC 的度数为()A.104°B.106°C.134°D.136°6.如图,AB=AC,若要使△ABE≌△ACD.则添加的一个条件不能是()A.∠B=∠C B.∠ADC=∠AEB C.BD=CE D.BE=CD7.如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,如图所示的这种方法,是利用了三角形全等中的()A.SSS B.ASA C.AAS D.SAS8.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是()A.1B.2C.3D.49.如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD =42°,则∠BFD=()A.45°B.54°C.56°D.66°10.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.7二.填空题(共6小题,满分24分)11.下列4个图形中,属于全等的2个图形是.(填序号)12.如图,某人将一块三角形玻璃打碎成两块,带块(填序号)能到玻璃店配一块完全一样的玻璃,用到的数学道理是.13.如图,Rt△ABC中,∠C=90°,∠B=25°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD 的度数是.14.如图,在△ABC中,AC=BC,过点A,B分别作过点C的直线的垂线AE,BF.若AE =CF=3,BF=4.5,则EF=.15.边长为整数、周长为20的三角形的个数为.16.如图,Rt△ABC中,∠BAC=90°,AB=6,AC=3,G是△ABC重心,则S△AGC=.三.解答题(共8小题,满分66分)17.如图,在一个三角形的一条边上取四个点,把这些点与这条边所对的顶点连接起来.问图中共有多少个三角形.请你通过与数线段或数角的问题进行类比来思考.18.如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.19.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.20.如图,已知B,D在线段AC上,且AD=CB,BF=DE,∠AED=∠CFB=90°求证:(1)△AED≌△CFB;(2)BE∥DF.21.如图,已知锐角△ABC,AB>BC.(1)尺规作图:求作△ABC的角平分线BD;(保留作图痕迹,不写作法)(2)点E在AB边上,当BE满足什么条件时?∠BED=∠C.并说明理由.22.如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.23.如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO 和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG=°;若∠MON=90°,则∠ACG=°;(2)若∠MON=n°.请求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=n°,过C作直线与AB交F.若CF∥OA时,求∠BGO﹣∠ACF的度数.(用含n的代数式表示)24.如图1所示,在Rt△ABC中,∠C=90°,点D是线段CA延长线上一点,且AD=AB,点F是线段AB上一点,连接DF,以DF为斜边作等腰Rt△DFE,连接EA,EA满足条件EA⊥AB.(1)若∠AEF=20°,∠ADE=50°,BC=2,求AB的长度;(2)求证:AE=AF+BC;(3)如图2,点F是线段BA延长线上一点,探究AE、AF、BC之间的数量关系,并证明你的结论.参考答案一.选择题(共10小题)1.【解答】解:设第三边的长为x,由题意得:4﹣2<x<4+2,2<x<6,故选:C.2.【解答】解:BC边上的高应从点A向BC引垂线,只有选项D符合条件,故选:D.3.【解答】解:由于BD=CD,则点D是边BC的中点,所以AD一定是△ABC的一条中线.故选:C.4.【解答】解:∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=100°,故选:D.5.【解答】解:∵∠A=74°,∠B=46°,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=∠ACD=∠ACB=×60°=30°,∴∠BDC=180°﹣∠B﹣∠BCD=104°,故选:A.6.【解答】解:A、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;C、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;故选:D.7.【解答】解:观察图形发现:AC=DC,BC=BC,∠ACB=∠DCB,所以利用了三角形全等中的SAS,故选:D.8.【解答】解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C.9.【解答】解:∵AD是△ABC的高,∴∠ADB=90°,∵∠BAD=42°,∴∠ABD=180°﹣∠ADB﹣∠BAD=48°,∵BE是△ABC的角平分线,∴∠ABF=∠ABD=24°,∴∠BFD=∠BAD+∠ABF=42°+24°=66°,故选:D.10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22﹣BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=为整数,∴BC边长为偶数,∴BC=4,6,8,10,故选:A.二.填空题(共6小题)11.【解答】解:根据全等三角形的判定(SAS)可知属于全等的2个图形是①③,故答案为:①③.12.【解答】解:第①块只保留了原三角形的一个角和部分边,根据这两块中的任一块不能配一块与原来完全一样的;第②块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带②去.故答案为:②,ASA.13.【解答】解:∵Rt△ABC中,∠C=90°,∠B=25°,∴∠CAB=90°﹣∠B=90°﹣25°=65°,由作图过程可知:MN是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=25°,∴∠CAD=∠CAB﹣∠DAB=65°﹣25°=40°.答:∠CAD的度数是40°.故答案为:40°.14.【解答】解:∵过点A,B分别作过点C的直线的垂线AE,BF,∴∠AEC=∠CFB=90°,在Rt△AEC和Rt△CFB中,,∴Rt△AEC≌Rt△CFB(HL),∴EC=BF=4.5,∴EF=EC+CF=4.5+3=7.5,故答案为:7.5.15.【解答】解:边长为整数、周长为20的三角形分别是:(9,9,2)(8,8,4)(7,7,6)(6,6,8)(9,6,5)(9,7,4)(9,8,3)(8,7,5),共8个.故答案为:8.16.【解答】解:延长AG交BC于E.∵∠BAC=90°,AB=6,AC=3,∴S△ABC=•AB•AC=9,∵G是△ABC的重心,∴AG=2GE,BE=EC,∴S△AEC=×9=4.5,∴S△AGC=×S△AEC=3,故答案为3三.解答题(共8小题)17.【解答】解:如图所示,图中三角形的个数有△ABC,△ACD,△ADE,△AEF,△AFG,△ABD,△ABE,△ABF,△ABG,△ACE,△ACF,△ACG,△ADF,△ADG,△AEG.18.【解答】解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SSS).19.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.20.【解答】证明(1)∵∠AED=∠CFB=90°,在Rt△AED和Rt△CFB中,∴Rt△AED≌Rt△CFB(HL).(2)∵△AED≌△CFB,∴∠BDE=∠DBF,在△DBE和△BDF中,∴△DBE≌△BDF(SAS),∴∠DBE=∠BDF,∴BE∥DF.21.【解答】解:(1)如图,线段BD即为所求.(2)结论:BE=BC.理由:∵BD平分∠ABC,∵BE=BC,BD=BD,∴△BDE≌△BDC(SAS),∴∠BED=∠C.22.【解答】解:(1))∠1与∠B相等,理由:∵,△ABC中,∠ACB=90°,∴∠1+∠F=90°,∵FD⊥AB,∴∠B+∠F=90°,∴∠1=∠B;(2)若BC=BD,AB与FB相等,理由:∵△ABC中,∠ACB=90°,DF⊥AB,∴∠ACB=∠FDB=90°,在△ACB和△FDB中,,∴△ACB≌△FDB(AAS),∴AB=FB.23.【解答】解:(1)∵∠MON=60°,∴∠OBA+∠OAB=120°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×120°=60°,∴∠ACB=180°﹣60°=120°,∴∠ACG=60°;∵∠MON=90°,∴∠OBA+∠OAB=90°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×90°=45°,∴∠ACB=180°﹣45°=135°;故答案为:60,45;(2)在△AOB中,∠OBA+∠OAB=180°﹣∠AOB=180°﹣n°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=(∠OBA+∠OAB)=(180°﹣n°),即∠ABC+∠BAC=90°﹣n°,∴∠ACB=180°﹣(∠ABC+∠BAC)=180°﹣(90°﹣n°)=90°+n°,∴∠ACG=180°﹣(90°+n°)=90°﹣n°;(3)∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠ABC=ABO,∠BAC=∠OAC=,∵CF∥AO,∴∠ACF=∠CAG,∵∠BGO=∠BAG+∠ABG,∴∠BGO﹣∠ACF=∠BAG+∠ABG﹣∠ACF=2∠BAC+∠ABG﹣∠BAC=∠ABG+∠BAC=90°﹣n°.24.【解答】解:(1)在等腰直角三角形DEF中,∠DEF=90°,∵∠1=20°,∴∠2=∠DEF﹣∠1=70°,∵∠EDA+∠2+∠3=180°,∴∠3=60°,∵EA⊥AB,∴∠EAB=90°,∵∠3+∠EAB+∠A=180°,∴∠4=30°,∵∠C=90°,∴AB=2BC=4;(2)如图1,过D作DM⊥AE于M,在△DEM中,∠2+∠5=90°,∵∠2+∠1=90°,∵DE=FE,在△DEM与△EF A中,,∴△DEM≌△EF A,∴AF=EM,∵∠4+∠B=90°,∵∠3+∠EAB+∠4=180°,∴∠3+∠4=90°,∴∠3=∠B,在△DAM与△ABC中,,∴△DAM≌△ABC,∴BC=AM,∴AE=EM+AM=AF+BC;(3)如图2,过D作DM⊥AE交AE的延长线于M,∵∠C=90°,∴∠1+∠B=90°,∵∠2+∠MAB+∠1=180°,∠MAB=90°,∴∠2+∠1=90°,∠2=∠B,在△ADM与△BAC中,,∴△ADM≌△BAC,∵EF=DE,∠DEF=90°,∵∠3+∠DEF+∠4=180°,∴∠3+∠4=90°,∵∠3+∠5=90°,∴∠4=∠5,在△MED与△AFE中,,∴△MED≌△AFE,∴ME=AF,∴AE+AF=AE+ME=AM=BC,即AE+AF=BC.。

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)1.如果∠A=∠B﹣∠C,那么△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定2.下列各组线段能组成一个三角形的是()A.2cm,3cm,6cm B.6cm,8cm,10cmC.5cm,5cm,10cm D.4cm,6cm,10cm3.画△ABC的边BC上的高,正确的是()A.B.C.D.4.已知在△ABC和△A′B′C′中,AB=A′B′,AC=A′C′,下列条件中,不一定能得到△ABC≌△A′B′C′的是()A.BC=B'C' B.∠A=∠A′C.∠C=∠C′D.∠B=∠B′=90°5.如图,△ABC中,AB=15,BC=9,BD是AC边上的中线,若△ABD的周长为30,则△BCD的周长是()A.20B.24C.26D.286.如图,∠1=140°,∠2=100°,则∠3=()A.100°B.120°C.130°D.140°7.如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是()A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B 8.如图,△ABC的高CD、BE相交于点O,如果∠A=60°,那么∠BOC的大小为()A.60°B.100°C.120°D.130°9.如图,点C,F,B,E在同一直线上,∠C=∠DFE=90°,添加下列条件,仍不能判定△ACB与△DFE全等的是()A.∠A=∠D,AB=DE B.AC=DF,CF=BEC.AB=DE,BC=EF D.∠A=∠D,∠ABC=∠E10.如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=58°,∠2=24°,则∠A的度数为()A.56°B.34°C.36°D.24°11.如图,点A,F,C,D在同一条直线上,BC∥EF,AC=FD,请你添加一个条件,使得△ABC≌△DEF.12.如图,在△ABC中,已知点D、点E分别为BC、AD的中点,且△BDE的面积为3,则△ABC的面积是.13.如图,E为△ABC的BC边上一点,点D在BA的延长线上,DE交AC于点F,∠B=46°,∠C=30°,∠EFC=70°,则∠D=.14.如图,∠ABC与∠ACB的平分线交于I点,若∠ABC+∠ACB=100°,则∠BIC =;若∠A=50°,则∠BIC=.15.如图,△ABC的两条高BD,CE相交于点O,若∠A=75°,则∠ABD=,∠ACE=,∠BOC=.16.如图,三角形ABC的面积为1,分别延长AB、BC、CA至M、N、P,使得BM=2AB,CN=3BC,AP=4CA,则三角形MNP面积是.17.将一副三角板如图所示摆放,若∠BAE=125°,则∠CAD的度数是.18.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P=°.19.设a、b、c是△ABC的三边,化简:|a+b﹣c|﹣|b﹣c﹣a|=.20.如图所示,在△ABC中,AD平分∠BAC,BE是高线,∠BAC=50°,∠EBC=20°,则∠ADC的度数为.21.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,下列结论正确的是.A.∠1=∠2;B.BE=CF;C.△CAN≌△ABM;D.CD=DN.22.如图,在△ABC中,点E为边BC的中点,连接AE,点D为线段AE上的一点(不与A,E重合),连接BD、CD,若BD=CD,求证:∠ADB=∠ADC.23.已知:如图,在△ABC和△DEF中,点B、E、C、F四点在一条直线上,且BE=CF,AB=DE,∠B=∠DEF.求证:△ABC≌△DEF.24.如图,△ABC中,点D、E在边BC上,∠ADC=∠AEB,CD=BE.求证:∠BAD=∠CAE.25.风筝起源于中国,至今已有2300多年的历史,如图,在小明设计的“风筝”图案中,已知AB=AD.∠B=∠D,∠BAE=∠DAC.求证:AC=AE.26.如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD =BE.(1)求证:△ABD≌△ECB.(2)若∠BDC=70°.求∠ADB的度数.27.如图,点A,B,C,D在同一条直线上,AB=CD,∠A=∠D,AE=DF.(1)求证:△ACE≌△DBF.(2)若BF⊥CE于点H,求∠HBC的度数.28.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.参考答案1.解:因为∠A+∠B+C=180°,且∠A=∠B﹣∠C,所以∠B﹣∠C+∠B+C=180°,所以∠B=90°,所以△ABC是直角三角形.故选:C.2.解:A、2+3<6,不能组成三角形,不符合题意;B、6+8=14>10,能组成三角形,符合题意;C、5+5=10,不能组成三角形,不符合题意;D、4+6=10,不能组成三角形,不符合题意;故选:B.3.解:A.此图形中AD是BC边上的高,符合题意;B.此图形中CD不是BC边上的高,不符合题意;C.此图形中CD是AB边上的高,不符合题意;D.此图形中AD是AB边上的高,不符合题意;故选:A.4.解:A、由AB=A′B′,AC=A′C′,BC=B'C'可以判定△ABC≌△A′B′C′(SSS),不符合题意.B、由AB=A′B′,AC=A′C′,∠A=∠A′可以判定△ABC≌△A′B′C′(SAS),不符合题意.C、由AB=A′B′,AC=A′C′,∠C=∠C′不可以判定△ABC≌△A′B′C′(SSA),符合题意.D、由AB=A′B′,AC=A′C′,∠B=∠B′=90°可以判定Rt△ABC≌Rt△A′B′C′(HL),不符合题意.故选:C.5.解:∵BD是AC边上的中线,∴AD=CD.∵△ABD的周长为30,∴AB+BD+AD=30.∴BD+AD=30﹣AB=30﹣15=15.∴△BCD的周长为BC+CD+BD=BC+AD+BD=9+15=24.故选:B.6.解:∵∠1=140°,∠2=100°,∴∠3=360°﹣140°﹣100°=120°,故选:B.7.解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE,∴2∠DFE=180°﹣∠FGC,故选:C.8.解:如图,∵CD、BE均为△ABC的高,∴∠BEC=∠ADC=90°,∵∠A=60°,∴∠OCE=180°﹣∠ADC﹣∠A=180°﹣90°﹣60°=30°,则∠BOC=∠BEC+∠OCE=90°+30°=120°.故选:C.9.解:A、∵∠A=∠D,AB=DE,∠C=∠DFE=90°,根据AAS判定△ACB与△DFE 全等,不符合题意;B、∵CF=BE,可得,BC=EF,AC=DF,BC=EF,∠C=∠DFE=90°,根据SAS判定△ACB与△DFE全等,不符合题意;C、∵AB=DE,BC=EF,∠C=∠DFE=90°,根据HL判断Rt△ACB与Rt△DFE全等,不符合题意;D、∵∠A=∠D,∠ABC=∠E,∠C=∠DFE=90°,由AAA不能判定△ACB与△DFE全等,符合题意;故选:D.10.解:如图,∵∠1=54°,a∥b,∴∠3=∠1=58°.∵∠2=24°,∠A=∠3﹣∠2,∴∠A=58°﹣24°=34°.故选:B.11.解:∵BC∥EF,∴∠BCA=∠EFD,若添加BC=EF,且AC=FD,由“SAS”可证△ABC≌△DEF;若添加∠B=∠E,且AC=FD,由“AAS”可证△ABC≌△DEF;若添加∠A=∠D,且AC=FD,由“ASA”可证△ABC≌△DEF;故答案为:BC=EF或∠B=∠E或∠A=∠D(答案不唯一).12.解:∵点E为AD的中点,△BDE的面积为3,∴△ABD的面积为3×2=6,∵点D为BC的中点,∴△ABC的面积为6×2=12.故答案为:12.13.解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°﹣∠DAC﹣∠AFD=34°,故答案为:34°.14.解:∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB)=50°,∴∠BIC=180°﹣(∠IBC+∠ICB)=130°;当∠A=50°时,∠ABC+∠ACB=180°﹣∠A=130°,∴∠IBC+∠ICB=(∠ABC+∠ACB)=65°,∴∠BIC=180°﹣(∠IBC+∠ICB)=115°.故答案为:130°;115°.15.解:∵△ABC的两条高BD,CE相交于点O,∴∠AEC=∠ADB=90°,∵∠A=75°,∴∠ABD=180°﹣∠A﹣∠ADB=180°﹣75°﹣90°=15°,∠ACE=180°﹣∠A﹣∠AEC=180°﹣75°﹣90°=15°,在△ABC中,∠DBC+∠ECB=180°﹣∠A﹣∠ABD﹣∠ACE=180°﹣75°﹣15°﹣15°=75°,在△BOC中,∠BOC=180°﹣(∠DBC+∠ECB)=180°﹣75°=105°.故答案为:15°,15°,105°.16.解:连接MC,AN∵2AB=BM,∴S△BCM=2S△ABC,∴S△BCM=2×1=2,∵3BC=CN,∴S△MNC=3S△BCM,S△ACN=3S△ABC,∴S△MNC=3×2=6,S△ACN=3×1=3,∵4CA=AP,∴S△ANP=4S△ACN,S△AMP=4S△AMC,∴S△ANP=4×3=12,S△AMP=4×(2+1)=12,∵S△MNP=S△ABC+S△BCM+S△MNC+S△ACN+S△ANP+S△AMP,∴S△MNP=1+2+6+3+12+12=36.故答案为:36.17.解:∵∠BAE=125°,∴∠DAE=∠BAE﹣∠BAD=125°﹣90°=35°,∴∠CAD=∠CAE﹣∠DAE=90°﹣35°=55°,故答案为:55°.18.解:∵BP是△ABC中∠ABC的平分线,∠ABP=15°,∴∠CBP=∠ABP=15°,∵CP是∠ACB的外角的平分线,∠ACP=50°,∴∠PCM=∠ACP=50°,∴∠P=∠PCM﹣∠CBP=50°﹣15°=35°,故答案为:35.19.解:∵a、b、c分别为△ABC的三边长,∴a+b﹣c>0,b﹣c﹣a<0,∴|a+b﹣c|﹣|b﹣c﹣a|=a+b﹣c+b﹣c﹣a=2b﹣2c,故答案为:2b﹣2c.20.解:∵AD平分∠BAC,BE是高,∠BAC=50°,∴∠BAD=∠BAC=25°,∠ABE=40°.∵∠EBC=20°,∴∠ADC=∠ABD+∠BAD=∠ABE+∠EBC+∠BAD=40°+20°+25°=85°.故答案为:85°.21.解:如图,∵∠E=∠F=90°,∠B=∠C,AE=AF,∴Rt△ABE≌Rt△ACF(AAS),∴∠F AC=∠EAB,BE=CF,AB=AC,∴∠1=∠2,故A,B正确;又∠B=∠C,∠CAN=∠BAM,∴△ACN≌△ABM(ASA),故C错误;∵△ACN≌△ABM(ASA),∴AN=AM,∴MC=BN,而∠B=∠C,∠CDM=∠BDN,∴△DMC≌△DMB(AAS),∴DC=DB,∴DC≠DN,故D错误.故答案为:A,B;22.证明:∵点E为边BC的中点,∴BE=CE,在△BDE和△CDE中,,∴△BDE≌△CDE(SSS),∴∠BDE=∠CDE,∠DBE=∠DCE,∴∠ADB=∠ADC,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),∴∠ADB=∠ADC.23.证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS).24.证明:∵∠ADC=∠AEB,∴AD=AE,在△ADC和△AEB中,,∴△ADC≌△AEB(SAS),∴∠BAE=∠DAC,∴∠BAD=∠CAE.25.证明:∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(ASA),∴AC=AE.26.证明:(1)∵AD∥BC,∴∠ADB=∠CBE,在△ABD和△ECB中,,∴△ABD≌△ECB(AAS);(2)∵△ABD≌△ECB,∴BD=BC,∴∠BDC=∠BCD=70°,∴∠DBC=40°,∴∠ADB=∠CBD=40°.27.(1)证明:∵AB=CD,∴AB+BC=CD+BC.∴AC=BD.在△ABC和△EDF中,,∴△ACE≌△DBF(SAS);(2)解:由(1)知△ACE≌△DBF,∴∠ACE=∠DBF.∵BF⊥CE,∴∠BHC=90°,∴∠HBC+∠HCB=90°,∴∠HBC=∠HCB=45°.28.(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.综上所述,∠A的度数是90°或60°或120°.。

北师大版初中数学七年级下册《第4章 三角形》单元测试卷

北师大版初中数学七年级下册《第4章 三角形》单元测试卷

北师大新版七年级下学期《第4章三角形》单元测试卷一.选择题(共12小题)1.图中的三角形被木板遮住了一部分,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能2.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.3.在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.4.如图,△ABC中,D、E分别是BC、AD的中点,若△ABC的面积是18,则△ABE的面积是()A.9B.6C.4.5D.45.下列各组数不可能是一个三角形的边长的是()A.7,8,9B.5,6,7C.3,4,5D.1,2,36.若三角形的三边长分别为3,1+2x,8,则x的取值范围是()A.2<x<5B.3<x<8C.4<x<7D.5<x<97.下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形8.下列图形中,有稳定性的是()A.长方形B.梯形C.平行四边形D.三角形9.下列条件中,不能判定两个三角形全等的是()A.两边及其夹角分别相等B.两角及其夹边分别相等C.三个角分别相等D.三边分别相等10.如图,已知点B,E,C,F在一条直线上,AC=DF,∠ACB=∠DFE,要使△ABC≌△DEF,不可以添加的条件是()A.BE=CF B.∠A=∠D C.∠B=∠DEF D.AB=DE11.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离即可求.依据是()A.SAS B.SSS C.AAS D.ASA12.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=a,EF=b,圆形容器的壁厚是()A.a B.b C.b﹣a D.(b﹣a)二.填空题(共6小题)13.如图,△ABC的中线BE、CD交于点G,则值为.14.如图,将△ABC沿着平行于BC的直线DE折叠,点A落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为.15.如果将一副三角板按如图方式叠放,那么∠1的大小为(度).16.一副学生用的三角板如图放置,则∠AOD的度数为.17.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是.18.如图,在△ABC中,∠C=90°.按以下步骤作图:①以点A为圆心,小于AC的长为半径作圆弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径作圆弧,两弧相交于点G;③作射线AG交BC边于点D.若∠CAB=50°,则∠ADC的大小为度.三.解答题(共14小题)19.已知:如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:△OBC是等腰三角形.20.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.21.如图,点B、E、C、F在同一直线上,若AB⊥BF,DE⊥BF,AB=DE,AC=DF.求证:△ABC≌△DEF.22.已知:如图,ED⊥AB,FC⊥AB,垂足分别为D、C,AE∥BF,且AE=BF.求证:△AED≌△BFC.23.如图,已知CA=CD,AB=DE,∠A=∠D,求证:∠BCE=∠ACD.24.如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.25.如图,AB⊥CB,DC⊥CB,E、F在BC上,∠A=∠D,BE=CF,求证:AF=DE.26.如图,在四边形ABCD中,AB=AD,AC是∠BAD的角平分线.(1)求证:△ABC≌△ADC;(2)若∠BCD=60°,AC=BC,求∠ADB的度数.27.如图,已知C是线段AE上一点,DC⊥AE,DC=AC,B是CD上一点,CB=CE.(Ⅰ)求证:△ACB≌△DCE;(Ⅱ)若∠E=65°,求∠A的度数;(Ⅲ)若AE=11,BC=3,求BD的长,(直接写出结果)28.如图,点B在线段AC上,AD∥BE,∠ABD=∠E,AD=BC,求证:BD=EC.29.如图,点D在线段BC上,∠B=∠ADB,∠BAD=∠CAE,∠C=∠E.求证:AC=AE.30.如图,AF=BE,AC∥BD,CE∥DF,求证:CE=DF.31.(1)如图1,四边形ABCD中,∠A=∠B=90°,∠ADC,∠BCD的角平分线交于AB 边上的点E,求证:①CD=AD+BC;②E是AB的中点;(2)如图2,(1)中的条件“∠A=∠B=90°”改为“条件AD∥BC”,其他条件不变,(1)中的结论是否都依然成立?请什么理由.32.如图,在△ABC中,AB=AC,点D在BC上,DE⊥AB,DF⊥AC,垂足分别为E、F,ED=FD.求证:AD是△ABC的中线.北师大新版七年级下学期《第4章三角形》2019年单元测试卷参考答案与试题解析一.选择题(共12小题)1.图中的三角形被木板遮住了一部分,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能【分析】三角形按角分类,可以分为锐角三角形、直角三角形、钝角三角形.有一个角是直角的三角形是直角三角形;有一个角是钝角的三角形是钝角三角形;三个角都是锐角的三角形是锐角三角形.【解答】解:从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角.故选:D.【点评】此题考查了三角形的分类.2.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.【分析】根据高线的定义即可得出结论.【解答】解:B,C,D都不是△ABC的边BC上的高,故选:A.【点评】本题考查的是作图﹣基本作图,熟知三角形高线的定义是解答此题的关键.3.在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.【解答】解:过点A作直线BC的垂线段,即画BC边上的高,所以画法正确的是D.故选:D.【点评】考查了三角形的高的概念,能够正确作三角形一边上的高.4.如图,△ABC中,D、E分别是BC、AD的中点,若△ABC的面积是18,则△ABE的面积是()A.9B.6C.4.5D.4【分析】中线AD把△ABC分成面积相等的两个三角形,中线BE又把△ABD分成面积相等的两个三角形,所以△ABE的面积是△ABC的面积的.【解答】解:∵D、E分别是BC,AD的中点,∴△ABD是△ABC面积的,△ABE是△ABD面积的,∴△ABE的面积=18××=18×=4.5.故选:C.【点评】本题考查了三角形的面积计算,解题的关键是熟悉三角形的中线把三角形分成面积相等的两个小三角形.5.下列各组数不可能是一个三角形的边长的是()A.7,8,9B.5,6,7C.3,4,5D.1,2,3【分析】在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【解答】解:A、7+8>9,能构成三角形;B、5+6>7,能构成三角形;C、3+4>5,能构成三角形;D、1+2=3,不能构成三角形.故选:D.【点评】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.6.若三角形的三边长分别为3,1+2x,8,则x的取值范围是()A.2<x<5B.3<x<8C.4<x<7D.5<x<9【分析】首先根据三角形的三边关系定理三角形两边之和大于第三边.三角形的两边差小于第三边可得8﹣3<1+2x<3+8,解不等式即可.【解答】解:根据三角形的三边关系可得:8﹣3<1+2x<3+8,解得:2<x<5.故选:A.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.7.下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形【分析】根据全等图形的定义进行判断即可.【解答】解:A:两个面积相等的图形不一定是全等图形,故A错误;B:长方形不一定是全等图形,故B错误;C:两个全等图形形状一定相同,故C正确;D:两个正方形不一定是全等图形,故D错误;故选:C.【点评】本题考查了全等图形,熟练运用“能够完全重合的两个图形叫做全等形”是本题的关键.8.下列图形中,有稳定性的是()A.长方形B.梯形C.平行四边形D.三角形【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:因为三角形具有稳定性,所以下面图形中稳定性最好的是三角形.故选:D.【点评】此题考查了三角形的稳定性,关键是根据三角形的稳定性和四边形的不稳定性解答.9.下列条件中,不能判定两个三角形全等的是()A.两边及其夹角分别相等B.两角及其夹边分别相等C.三个角分别相等D.三边分别相等【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理判断即可.【解答】解:∵全等三角形的判定定理有SAS,ASA,AAS,SSS,∴A、根据SAS即可推出两三角形全等,正确,故本选项错误;B、根据ASA即可推出两三角形全等,正确,故本选项错误;C、根据三个角分别相等不能推出两三角形全等,错误,故本选项正确;D、根据SSS即可推出两三角形全等,正确,故本选项错误;故选:C.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.如图,已知点B,E,C,F在一条直线上,AC=DF,∠ACB=∠DFE,要使△ABC≌△DEF,不可以添加的条件是()A.BE=CF B.∠A=∠D C.∠B=∠DEF D.AB=DE【分析】根据全等三角形的判定方法一一判断即可.【解答】解:A、添加BE=CF,根据SAS可以判断△ABC≌△DEF,本选项不符合题意.B、添加∠A=∠D,根据ASA可以判断△ABC≌△DEF,本选项不符合题意.C、添加∠B=∠DEF,根据AAS可以判断△ABC≌△DEF,本选项不符合题意.D、添加AB=DE,无法判断△ABC≌△DEF,本选项符合题意.故选:D.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.11.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离即可求.依据是()A.SAS B.SSS C.AAS D.ASA【分析】根据全等三角形的判定与性质,可得答案.【解答】解:在△ABC和△DEC中,,△ABC≌△DEC(SAS),∴AB=DE=58米,故选:A.【点评】本题考查了全等三角形的判定与性质,利用全等三角形的判定与性质是解题关键.12.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=a,EF=b,圆形容器的壁厚是()A.a B.b C.b﹣a D.(b﹣a)【分析】连接AB,只要证明△AOB≌△DOC,可得AB=CD,即可解决问题.【解答】解:连接AB.在△AOB和△DOC中,,∴△AOB≌△DOC,∴AB=CD=a,∵EF=b,∴圆形容器的壁厚是(b﹣a),故选:D.【点评】本题考查全等三角形的应用,解题的关键是利用全等三角形的性质解决实际问题.属于中考常考题型.二.填空题(共6小题)13.如图,△ABC的中线BE、CD交于点G,则值为.【分析】根据三角形重心的性质即可求解.【解答】解:∵△ABC的中线BE、CD交于点G,∴CG:DG=2:1,∴==.故答案为:.【点评】考查了三角形的重心,重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1.14.如图,将△ABC沿着平行于BC的直线DE折叠,点A落到点A′,若∠C=125°,∠A=20°,则∠BDA′的度数为110°.【分析】根据三角形的内角和等于180°求出∠B,根据两直线平行,同位角相等可得∠ADE=∠B,再根据翻折变换的性质可得∠A′DE=∠ADE,然后根据平角等于180°列式计算即可得解.【解答】解:∵∠C=125°,∠A=20°,∴∠B=180°﹣∠A﹣∠C=180°﹣20°﹣125°=35°,∵△ABC沿着平行于BC的直线折叠,点A落到点A′,∴∠ADE=∠B=35°,∴∠A′DE=∠ADE=35°,∴∠A′DB=180°﹣35°﹣35°=110°.故答案为:110°.【点评】本题考查了平行线的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.15.如果将一副三角板按如图方式叠放,那么∠1的大小为75(度).【分析】依据三角形内角和定理,即可得到∠ABC的度数,再根据三角形外角性质,即可得到∠1的度数.【解答】解:如图,∵∠C=60°,∴Rt△ABC中,∠ABC=30°,又∵∠BAD=45°,∴∠1=∠ABC+∠BAD=30°+45°=75°,故答案为:75.【点评】本题考查了三角形内角和定理,根据三角形的内角和以及另外两角的度数求出第三个角的度数是关键.16.一副学生用的三角板如图放置,则∠AOD的度数为105°.【分析】依据三角形内角和定理,即可得到∠BOC=105°,再根据对顶角相等,即可得出∠AOD的度数.【解答】解:由题可得,∠ACB=45°,∠DBC=30°,∴△BCO中,∠BOC=180°﹣45°﹣30°=105°,∴∠AOD=∠BOC=105°,故答案为:105°.【点评】本题考查了三角形的内角和定理以及对顶角的性质,利用三角形内角和为180°是关键.17.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是30°.【分析】较小的锐角为x,根据直角三角形的两锐角互余列式计算,得到答案.【解答】解:设较小的锐角为x,则较大的锐角为2x,则x+2x=90°,解得,x=30°,故答案为:30°.【点评】本题考查的是直角三角形的性质,掌握直角三角形的两锐角互余是解题的关键.18.如图,在△ABC中,∠C=90°.按以下步骤作图:①以点A为圆心,小于AC的长为半径作圆弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径作圆弧,两弧相交于点G;③作射线AG交BC边于点D.若∠CAB=50°,则∠ADC的大小为65度.【分析】利用基本作图得到AG平分∠BAC,则根据角平分线的定义得到∠CAD=∠CAB=25°,然后利用互余计算∠ADC的度数.【解答】解:由作法得AG平分∠BAC,∴∠BAD=∠CAD=∠CAB=25°,∵∠C=90°,∴∠ADC=90°﹣25°=65°.故答案为65.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三.解答题(共14小题)19.已知:如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:△OBC是等腰三角形.【分析】由“HL”可证Rt△ABC≌Rt△DBC,可得∠ACB=∠DBC,可证△OBC是等腰三角形.【解答】证明:∵AC=DB,BC=BC∴Rt△ABC≌Rt△DBC(HL)∴∠ACB=∠DBC∴OB=OC∴△OBC是等腰三角形【点评】本题考查了全等三角形的判定和性质,等腰三角形的判定,熟练运用全等三角形的判定是本题的关键.20.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.【分析】(1)先证明∠ABC=∠DEF,再根据ASA即可证明.(2)根据全等三角形的性质即可解答.【解答】(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.【点评】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形的条件,记住平行线的判定方法,属于基础题,中考常考题型.21.如图,点B、E、C、F在同一直线上,若AB⊥BF,DE⊥BF,AB=DE,AC=DF.求证:△ABC≌△DEF.【分析】根据HL判定定理证明Rt△ABC≌Rt△DEF即可.【解答】证明:∵AB⊥BF,DE⊥BF,AB=DE,AC=DF∴在Rt△ABC与Rt△DEF中,∴Rt△ABC≌Rt△DEF(HL)【点评】本题主要考查三角形全等的判定;要牢固掌握并灵活运用这些知识.22.已知:如图,ED⊥AB,FC⊥AB,垂足分别为D、C,AE∥BF,且AE=BF.求证:△AED≌△BFC.【分析】根据垂直的定义得到∠ADE=∠BCF=90°根据平行线的性质得到∠A=∠B,根据全等三角形的判定证明即可.【解答】证明:∵ED⊥AB,FC⊥AB,∴∠ADE=∠BCF=90°,∵AE‖BF,∴∠A=∠B,在△ADE与△BCF中,,∴△ADE≌△BCF(AAS)【点评】本题考查了全等三角形的性质和判定,平行线的性质,解此题的关键是推出△AED≌△BFC,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.23.如图,已知CA=CD,AB=DE,∠A=∠D,求证:∠BCE=∠ACD.【分析】由“SAS”可证△ABC≌△DEC,可得∠ACB=∠DCE,则可得结论.【解答】证明:∵CA=CD,AB=DE,∠A=∠D,∴△ABC≌△DEC(SAS)∴∠ACB=∠DCE∴∠BCE=∠ACD【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形判定和性质是本题的关键.24.如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.【分析】由“SAS”可证△AFB≌△CED,可得∠A=∠C,可证AB∥CD.【解答】证明:∵DE∥BF∴∠DEF=∠BFE∵AE=CF∴AF=CE,且DE=BF,∠DEF=∠BFE∴△AFB≌△CED(SAS)∴∠A=∠C∴AB∥CD【点评】本题考查了全等三角形的判定和性质,平行线的判定和性质,熟练运用全等三角形的判定和性质是本题的关键.25.如图,AB⊥CB,DC⊥CB,E、F在BC上,∠A=∠D,BE=CF,求证:AF=DE.【分析】由题意可得∠B=∠C=90°,BF=CE,由“AAS”可证△ABF≌△DCE,可得AF=DE.【解答】证明:∵AB⊥CB,DC⊥CB,∴∠B=∠C=90°,∵BE=CF∴BF=CE,且∠A=∠D,∠B=∠C=90°,∴△ABF≌△DCE(AAS)∴AF=DE,【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.26.如图,在四边形ABCD中,AB=AD,AC是∠BAD的角平分线.(1)求证:△ABC≌△ADC;(2)若∠BCD=60°,AC=BC,求∠ADB的度数.【分析】(1)根据角平分线的性质可得∠DAC=∠BAC,从而利用SAS,可判定全等.(2)根据全等三角形的性质解答即可.【解答】证明:(1)∵AC是∠BAD的角平分线,∴∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).(2)∵△ABC≌△ADC,∠BCD=60°,∴∠DCA=∠BCA=30°,∵AC=BC,∴∠CAB=∠CAD=,∵在△ADO与△ABO中,∴△ADO≌△ABO(SAS),∴∠AOD=∠AOB=90°,∴∠ADB=90°﹣75°=15°.【点评】本题考查了全等三角形的判定和性质,注意熟练掌握全等三角形的判定定理.27.如图,已知C是线段AE上一点,DC⊥AE,DC=AC,B是CD上一点,CB=CE.(Ⅰ)求证:△ACB≌△DCE;(Ⅱ)若∠E=65°,求∠A的度数;(Ⅲ)若AE=11,BC=3,求BD的长,(直接写出结果)【分析】(Ⅰ)由“ASA”可证△ACB≌△DCE;(Ⅱ)由全等三角形的性质和直角三角形的性质可得∠A的度数;(Ⅲ)由全等三角形的性质可求AC=DC,BC=CE=3,即可求BD的长.【解答】证明:(Ⅰ)∵DC=AC,∠ACB=∠DCE=90°,BC=CE∴△ACB≌△DCE(SAS)(Ⅱ)∵△ACB≌△DCE,∴∠E=∠ABC=65°∴∠A=90°﹣∠ABC=25°(Ⅲ)∵△ACB≌△DCE∴AC=DC,BC=CE=3,∴AC=AE﹣CE=11﹣3=8=CD∴BD=CD﹣BC=8﹣3=5【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键.28.如图,点B在线段AC上,AD∥BE,∠ABD=∠E,AD=BC,求证:BD=EC.【分析】由平行线的性质可得∠A=∠EBC,由“AAS”可证△ABD≌△BEC,可得BD =EC.【解答】证明:∵AD∥BE∴∠A=∠EBC∵∠ABD=∠E,∠A=∠EBC,AD=BC∴△ABD≌△BEC(AAS)∴BD=EC【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.29.如图,点D在线段BC上,∠B=∠ADB,∠BAD=∠CAE,∠C=∠E.求证:AC=AE.【分析】欲证明AC=AE,只要证明△ABC≌△ADE(AAS)即可.【解答】证明:∵∠B=∠ADB,∴AB=AD,∵∠BAD=∠CAE,∴∠BAD+∠CAD=∠CAE+∠CAD,∴∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS),∴AC=AE.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.30.如图,AF=BE,AC∥BD,CE∥DF,求证:CE=DF.【分析】只要证明△AEC≌△BFD(ASA)即可解决问题.【解答】证明:∵AC∥BD,CE∥DF,∴∠A=∠B,∠CEA=∠DFB,∵AF=BE,∴AF+EF=BE+EF,∴AE=BF.在△AEC和△BFD中,∴△AEC≌△BFD(ASA),∴CE=DF.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.31.(1)如图1,四边形ABCD中,∠A=∠B=90°,∠ADC,∠BCD的角平分线交于AB 边上的点E,求证:①CD=AD+BC;②E是AB的中点;(2)如图2,(1)中的条件“∠A=∠B=90°”改为“条件AD∥BC”,其他条件不变,(1)中的结论是否都依然成立?请什么理由.【分析】(1)如图1﹣1中,过点E作EF⊥CD于点F.利用角平分线的性质定理可得AE=EB.利用全等三角形的性质证明AAD=DF,CB=CF即可.(2)结论仍然成立.如图2中,在CD上截取DF=DA,连接EF,利用全等三角形的性质证明即可.【解答】(1)证明:如图1﹣1中,过点E作EF⊥CD于点F.∵ED,EC分别平分∠ADC,∠BCD,且∠A=∠B=90°,∴EF=AE=BE,即E是AB中点,在Rt△AED和Rt△FED中,,∴Rt△AED≌Rt△FED(HL),∴AD=FD,同法可得:BC=CF,∴CD=DF+CF=AD+BC.(2)解:结论仍然成立.理由如下:如图2中,在CD上截取DF=DA,连接EF,在△EAD和△EFD中,,∴△EAD≌△EFD(SAS),∴EA=EF,∠DAE=∠DFE,∵AD∥BC,∴∠DAB+∠ABC=180°,∴∠EBC=∠EFC,在△EBC和△EFC中,,∴△EBC≌△EFC(ASA),∴EB=EF,BC=FC,∴CD=DF+FC=AD+BC.【点评】本题考查角平分线的性质定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.32.如图,在△ABC中,AB=AC,点D在BC上,DE⊥AB,DF⊥AC,垂足分别为E、F,ED=FD.求证:AD是△ABC的中线.【分析】由等腰三角形的性质可得∠B=∠C,由“AAS”可证△BDE≌△CDF,可证AD 是△ABC的中线.【解答】证明:∵AB=AC,∴∠B=∠C,且∠DEB=∠DFC=90°,DE=DF,∴△BDE≌△CDF(AAS)∴BD=CD∴AD是△ABC的中线【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定和性质是本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下数学第4章三角形单元测试题(北师大版附答案) w
第4三角形
一、选择题
1下列说法正确的是()
A 全等三角形是指形状相同的三角形
B 全等三角形是指面积相等的两个三角形
C 全等三角形的周长和面积相等
D 所有等边三角形是全等三角形
2已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是()
A 2
B 9
C 10
D 11
3下列各组图形中,一定是全等图形的是()
A 两个周长相等的等腰三角形
B 两个面积相等的长方形
C 两个斜边相等的直角三角形
D 两个周长相等的圆
4下列各组长度的三条线段能组成三角形的是()
A 1cm,2cm,3cm
B 1cm,1cm,2cm
C 1cm,2cm,2cm
D 1cm,3cm,5cm
5画△ABC的边AB上的高,下列画法中,正确的是()
A B
C D
6有长为2cm、3cm、4cm、6cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是
A 1个
B 2个
C 3个
D 4个
7在如图所示的长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条的点C的个数是()
A 2
B 3
C 4
D 5
8如图所示,∠1+∠2+∠3+∠4的度数为()。

相关文档
最新文档