一元一次不等式1
《一元一次不等式》完整版PPT1

变式:若x=2是不等式2x-a-2<0的一个解,则a可取的最小正整数为( ) 变式:不等式4-3x≥2x-6的非负整数解有( ) 只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.
移项
不等式的性质1
m≥2 B.
有一次,鲁班的手不慎被一片小草叶子割破了,他发现小草叶子的边缘布满了密集的小齿,于是便产生联想,根据小草的结构发明了锯子.
73
64
7.(课本P124 T2)当x或y满足什么条件时,下列关系式成立? (1)2(x+1)大于或等于1; (2)4x与7的和不小于6; (3)y与1的差不大于2y与3的差; (4)3y与7的和的四分之一小于-2.
拓展提升 8.解关于x的一元一次不等式 x+8>4x+m(m是常数).
变式:不等式 x+8>4x+m (m是常数) 的解集是 x<3,则 m=_____.
A.±1 B. 1 C. -1 D. 0
问题思考 解一元一次方程
2(1+x)=3
解:去括号 2+2x=3
移项 2x=3-2
合并同类项 2x=1
系数化为1
x1 2
解一元一次不等式 2(1+x)<3
Hale Waihona Puke 在数轴上表示解集?典例分析
例 解下列不等式,并在数轴上表示解集. 变式:不等式 x+8>4x+m (m是常数) 的解集是 x<3,则 m=_____.
(1)x +1>2x; (2) +2>0; ③移项、合并同类项,得-x>-13;
2 3个 D.
C.
1
①去分母,得5(x+2)>3(2x-1);
A.
(课本P124 T1)解下列不等式,并在数轴上表示解集:
x
一元一次不等式

一元一次不等式(1)【知识梳理】:1.不等式 :-----------连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的--------的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的------,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的----------.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的--------------.如果,0a b c >>,那么__ac bc (或___a bc c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的-----------.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。
有些问题用方程不能解决,而用不等式却能轻易解决。
一元一次不等式概念

一元一次不等式的基本性质
1 加减法性质
对不等式的两边同时加减一个数,不等式的 关系不改变。
2 乘除法性质
对不等式的两边同时乘除一个正数,不等式 的关系不改变;对不等式的两边同时乘除一 个负数,不等式的关系改变。
3 倒置性质
如果改变不等式两边的位置,不等式的关系 将相反。
4 传递性质
如果 a > b 且 b > c,则 a > c。
一元一次不等式的绝对值不等式
定义
绝对值不等式是一种特殊的一 元一次不等式,其中包含一个 未知数的绝对值表达式。
Байду номын сангаас解法
通过分情况讨论和绝对值的性 质,我们可以求解绝对值不等 式并得到其解集。
示例
例如,|2x + 3| < 7 是一个绝对 值不等式。
一元一次不等式在生活中的应用
1 经济学
不等式可以用来描述资源分配、生产优化和供求平衡等经济学问题。
一元一次不等式的图形表示
数轴
数轴可以帮助我们直观地表示一 元一次不等式中未知数的取值区 间。
阴影区域
阴影区域表示满足一元一次不等 式的所有解的范围。
开圈与实心圈
不等式中使用的开圈和实心圈表 示边界是否包含在解集里。
一元一次不等式的解集概念
一元一次不等式的解集是满足不等式的所有实数的集合。解集可能是一个区 间、一个点或者空集。
一元一次不等式的等效变形
1
消去常数项
通过加减法,将常数项移到不等式的右边,变成0。
2
移项
通过加减法,将未知数的系数移到不等式的右边,变成0。
3
合并同类项
将不等式中同类项的系数相加合并。
一元一次不等式的加减法
一元一次不等式(公开课优秀课件)

实际应用中的一元一次不等式
一元一次不等式在实际生活中 有着广泛的应用,如购物、投 资、工程等领域的决策问题。
解决实际应用中的一元一次不 等式需要将问题转化为数学模 型,然后运用代数法和图像法 求解。
解决实际应用中的一元一次不 等式需要注意问题的实际情况 和限制条件,以及解的可行性 和最优性。
一元一次不等式(公开课优秀课件)
目 录
• 一元一次不等式的定义与性质 • 一元一次不等式的解法 • 一元一次不等式的应用 • 一元一次不等式的扩展
01 一元一次不等式的定义与 性质
一元一次不等式的定义
总结词
一元一次不等式是数学中一种简单的不等式,它只含有一个变量,且变量的指 数为1。
详细描述
一元一次不等式的一般形式为 ax + b > c 或 ax + b < c,其中 a、b、c 是常 数,a ≠ 0。这个不等式表示一个线性函数在某个区间内大于或小于另一个值。
在人口发展过程中,如何预测未来人 口数量,可以通过一元一次不等式来 建立数学模型。
交通流量问题
在道路交通中,如何合理规划红绿灯 时间,ห้องสมุดไป่ตู้保证交通流畅,可以通过一 元一次不等式来求解。
一元一次不等式与其他数学知识的结合
一元一次不等式与函数
一元一次不等式可以看作是函数的值大于或小于某个常数的情况, 因此可以结合函数的性质进行求解。
代数法解一元一次不等式的步骤 包括:去分母、去括号、移项、
合并同类项、化系数为1等。
代数法解一元一次不等式需要注 意不等式的性质,如不等式的可 加性、可乘性、可除性和同向不
一元一次不等式

系数为1),由不等式 两边同时除以-1(化系数为1 ), 的性质3,得 x<-1 根据不等式的性质3,得 x> 2
-1 0
0 1 2
解一元一次不等式的步骤: ①去括号(括号外是“+”还是“-”)
②移项(将一边移到另一边要变号)
③合并同类项 ④化系数为1(不等式的性质2,不变号 不等式的性质3,变号)
若关于x+3=3x-m的方程 的解是正数,求 m的 取值范围.
1 1 (x+3)< -2x 3 2
解: 去分母,得3(x+3)<2-12x 去括号,得3x+9<2-12x
移项,得 3x+12x<2-9
合并同类项,得15x<-7 化系数为1,得x<7 15
解不等式:
3x 2 < 2
2x 3 3
1+x≥0 2x-1<5 x < 4
2x +7<4x +13
3x -4>5x +3
这些式子的两边都是整式,
只含有一个未知数、并且 未知数的次数为1, 像这样子的式子叫做一元 一次不等式
解: 去括号,得 3x-6+1=x-2x+1 移项,得 3x-x+2x=1+6-1 合并同类项,得4x=6 系数化为1,得x=
1、什么叫一元一次方程? 答:只含有一个未知数,并且未知数的指数为1 的方程。 2、一元一次方程是一个等式,请问一元一次方 程(等号)的两边是什么样的式子? 答:一元一次方程(等式)的两边都是整式,只 含有一个未知数,并且未知数的指数为1。 3、一元一次方程的(完美)定义:两个“只含 有一个未知数,并且未知数的指数为1”的整式 用等号连接起来的式子。
一元一次不等式与一次函数

一元一次不等式与一次函数
一元一次不等式和一次函数是初中数学中的两个重要概念,它们的关系如下:
一元一次不等式:指只有一个未知数(一元),且方程中未知数的最高次数为1(一次)的不等式,例如:2x+1>5 或者x-3<7。
一次函数:指只有一个未知数(一元),且方程中未知数的最高次数为1(一次)的函数,例如:y=2x+1 或者y=x-3。
这两个概念之间的关系在于,我们可以将一元一次不等式转化为一次函数的形式进行分析和解决。
具体来说,我们可以将不等式中的未知数视为函数的自变量x,将不等式的两边分别视为函数的因变量y,例如:2x+1>5 可以转化为y=2x+1 和y=5 两个函数,我们可以画出这两个函数的图像,通过比较函数图像来解决不等式的解集。
例如,将不等式x-3<7 转化为一次函数的形式,得到y=x-3 和y=7 两个函数,我们可以在坐标系中画出这两个函数的图像,发现两个函数的交点在x=10 处,因此不等式的解集为x<10。
总之,一元一次不等式和一次函数之间有着紧密的联系,将不等式转化为函数的形式可以帮助我们更好地分析和解决问题。
一元一次不等式-图

一元一次不等式图像的基本概念
定义
一元一次不等式图像是指将一元 一次不等式表示的数学关系转换 为图形表示,通过图形直观地展 示不等式的解集。
特点
一元一次不等式图像具有直观、 简洁、易于理解的特点,能够清 晰地表达不等式的解集和取值范 围。
一元一次不等式图像的绘制方法
确定不等式的解集
根据一元一次不等式的解 法,确定不等式的解集, 即不等式成立的x的取值范 围。
总结词
一元一次不等式的解集是指满足该不等式的未知数的取值范围。
详细描述
解集是满足一元一次不等式条件的未知数的取值范围。解集可以通过移项、合 并同类项、化简等步骤求得。解集通常表示为区间或集合的形式。
02
一元一次不等式的解法
代数法解一元一次不等式
01
02
03
04
移项
将不等式两边的项进行移位, 使不等式只包含一个变量。
时间安排
在安排时间时,我们也会使用到一元一次不等式。例如,我们需要在一个小时内 完成一项任务,那么我们可以用一元一次不等式来表示这个时间范围。
数学建模中的一元一次不等式
线性规划
在解决线性规划问题时,我们需要使用 一元一次不等式来描述约束条件。例如 ,如果我们需要最大化一个目标函数, 同时满足一些约束条件,那么这些约束 条件可以用一元一次不等式来表示。
一元一次不等式-图
目录 CONTENT
• 一元一次不等式的概念 • 一元一次不等式的解法 • 一元一次不等式的图解法 • 一元一次不等式的实际应用
01
一元一次不等式的概念
一元一次不等式的定义
总结词
一元一次不等式是只含有一个变量, 且变量的指数为1的不等式。
详细描述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:一元一次不等式(一)
主备人: 审核人: 复核人: 课型:新授 总第 课时
【教学目标】会解简单的一元一次不等式,并能在数轴上表示其解集。
【重点、难点】掌握简单的一元一次不等式的解法
【教学过程】 教学笔记 先学后教预习指导
1.不等式的三条基本性质是什么?
2.运用不等式基本性质把下列不等式化成x>a 或x<a 的形式。
①x-4<6 ②2x>x-5 ③ ④
3.什么叫一元一次方程?
解一元一次方程的步骤是什么?
4、什么是一元一次不等式
当堂训练巩固提高c
1.解下列不等式,并把它们的解集分别表示在数轴上:
(1)5x<200; (2)
(3)x-4≥2(x+2) (4)
2)
1(+-x 6431<-x x
x 5
13154+≥-3
5421-<-x x
2.求不等式4(4x+1)≤24的正整数解。
教学笔记
3课本48页1题
(1) (2)
(2) (4)
(5) (6)
达标检测反馈提高
1、请写出解集为3x <的不等式: .(写出一个即可)
2、不等式930x ->的非负整数解是
3、解下列不等式,并把它们的解集在数轴上表示出来:
(1) 1
12x x -+≥ (2)2(3)3(2)x x -+>+
【课堂板书(师)知识归类(生)】。