Aerodynamic design of a 300kW horizontal axis wind turbine for province of Semnan[

合集下载

进入风洞,你也可以飞

进入风洞,你也可以飞

风流一代·青春进入风洞,你也可以飞■文/祝师基至IN 生活悦玩人没有翅膀,如何才能平地飞起?或许,有人说这只有在武侠小说里才能看到。

其实不然,现在一个普通的人只要借助一种SKY DIVE 户外风洞飞行装置,就能轻松实现“飞行梦”。

风洞是进行空气动力实验最常用、最有效的工具,过去多用在飞机测试或宇航员的训练上,现在可以轻松应用于民用娱乐方面。

这种装置底部是略有弹性的铁丝网,其下有数台鼓风机产生瞬间风力,将人高高托起。

一般而言,时速180千米的风力就能将一个成年人稳稳托住,而连接风洞的鼓风机可以在瞬间为风洞提供时速达250千米的大风。

这样一来,没有飞行经验的你被风洞吹起,完全能实现在空中自由翱翔的梦想。

娱乐风洞“叩门”中国今年38岁的贝塔斯此前是一名特技表演人员,2000年在美国接触到了风洞,他被那惊险刺激的飞行模式深深地吸引,于是开始幻想自己以后从事与之相关的事业。

2004年他在拉脱维亚成立Aerodium 公司,次年建立了第一座娱乐风洞。

为了让风洞表演更加安全,贝坦斯常常一边抱着笔记本电脑进行理论知识学习,一边做着模拟实验。

2006年,贝塔斯迎来了极好的风洞展示机会。

这年,在都灵举办的冬奥会闭幕式上,Aerodium 公司的风洞可谓出尽了风头,当时媒体这样说:“贝塔斯带领他的团队使得这场表演得到了5亿人的关注,一下子让风洞这项娱乐被很多人知晓。

”据说,这场表演之后,贝塔斯先后建立了20多座风洞,大约是全球市场的五分之一,包括在保加利亚的阳光海滩、泰国的芭堤雅、拉脱维亚的锡古达尔等地,娱乐了大约100万人。

对此,贝塔斯自豪地说:“我们改变了这个行业,也改变了娱乐的历史。

”为了赢得更多普通人对风洞娱乐项目的青睐,在公司研发人员的努力下,Aerodium 陆续拥有了迷你风洞、移动开放式风洞、完全开放式风洞、开放式的专业风洞和封闭环流风洞等不同类型、不同规格、不同体验的风洞。

这些风洞在游乐场、购物中心、体育场和其他地点,在炎热、潮湿、干燥或过冷的气候中照样可以运作自如,使得人们在任何地点、任何时间都可以无拘无束地享受这项极限运动带来的刺激。

中国300兆瓦燃气轮机总体设计

中国300兆瓦燃气轮机总体设计

中国300兆瓦燃气轮机总体设计
中国300兆瓦燃气轮机总体设计是基于燃气轮机技术的电力发电
装置。

该设计旨在提高能源利用率,减少环境污染,并满足中国不断
增长的电力需求。

该燃气轮机总体设计包括以下关键组件:压气机、燃烧器、涡轮、发电机和辅助设备。

压气机负责将进气压缩至高压状态,燃烧器将燃
气与空气混合并进行燃烧反应,涡轮通过高温高压的气体驱动以产生
机械能,进而驱动发电机以转化为电能。

为了提高能源利用率,该设计采用了废热回收技术。

通过从排气
中回收热能,并利用该热能产生蒸汽,再通过蒸汽涡轮驱动发电机发电,可以使整个系统的能效得到提高。

为了减少环境污染,该设计采用了低排放燃烧技术。

燃烧器使用
先进的燃烧系统,通过优化燃烧过程,减少氮氧化物和颗粒物的排放。

为了满足电力需求的增长,该设计考虑了灵活性和可扩展性。


计中提供了多个并联装置的选项,以便根据实际需要对装置进行灵活
布置和扩展。

总体而言,中国300兆瓦燃气轮机总体设计旨在提高能源利用效率,减少环境污染,并满足中国不断增长的电力需求。

该设计综合考
虑了技术创新、环境保护和可持续发展等方面的要求,具有良好的经
济性和可靠性。

航空发动机专业英语之空气动力学

航空发动机专业英语之空气动力学

Introduced how to reduce the impact of emissions on aircraft performance and meet environmental regulations by optimizing exhaust emission design and control technologies.
With the continuous improvement of aircraft performance, the aerodynamic design of aircraft engines is affecting more string requirements, including higher take off and landing speeds, longer flight distances, and more complex flight conditions
Detailed description
Definition and Concepts
Understanding the characteristics and classification of fluids helps to gain a deeper understanding of the working principles of aircraft engines.
Air inlet aerodynamics
Explored the effects of aerodynamic phenomena in combustion chambers on combustion efficiency and emissions, including flame propagation speed, combustion stability, and combustion chamber outlet temperature distribution.

中国民用航空局航空器适航审定司关于就中国特种飞行器研究所海鸥300型飞机专用条件征求意见的通知

中国民用航空局航空器适航审定司关于就中国特种飞行器研究所海鸥300型飞机专用条件征求意见的通知

中国民用航空局航空器适航审定司关于就中国特种飞行器研究所海鸥300型飞机专用条件征求意见的通知
文章属性
•【公布机关】中国民用航空局,中国民用航空局,中国民用航空局
•【公布日期】2022.11.21
•【分类】征求意见稿
正文
关于就中国特种飞行器研究所海鸥300型飞机专用条件征求
意见的通知
中国特种飞行器研究所的海鸥300型飞机是轻型水陆两栖飞机,采用了水舵设计,根据《民用航空产品和零部件合格审定规定》第21.16条规定,拟针对该型飞机颁发2份专用条件。

根据管理程序《颁发专用条件和批准豁免的程序》(AP-21-AA-2018-21R1)第3.5节有关要求,现就专用条件草案广泛征求行业和社会意见,意见征集期为15个工作日。

征求意见稿可通过中国民用航空局网站“意见征集”栏目(/HDJL/YJZJ/)下载。

任何单位和个人可使用所附《颁发专用条件/批准豁免反馈意见表》(CAAC表AAC-267)将意见反馈至我司(airworthinesspolicy ),邮件标题请注明“海鸥300专用条件反馈意见”。

民航局航空器适航审定司
2022年11月21日。

中国300兆瓦燃气轮机总体设计

中国300兆瓦燃气轮机总体设计

中国300兆瓦燃气轮机总体设计燃气轮机是一种通过燃烧燃气或液体燃料产生高温高压气体,驱动涡轮发电机发电的设备。

它具有高效率、低污染、快速启停和灵活性等优点,因此在电力行业得到广泛应用。

本文将介绍中国300兆瓦燃气轮机的总体设计。

1.涡轮机组选择:300兆瓦燃气轮机通常采用多轴式设计,包括高压轴和低压轴。

高压轴由高压压气机、燃烧室和高温涡轮组成。

低压轴由低压压气机和低压涡轮组成。

涡轮组件的选择应考虑高效率、可靠性和面积占地等因素。

2.燃气喷射系统:燃气轮机的燃气喷射系统包括燃料供应系统、点火系统和火焰控制系统。

燃料供应系统应能满足液体燃料或天然气的供应需求,并具备自动切换功能。

点火系统用于点燃燃气轮机,通常采用高能火花点火器。

火焰控制系统用于保持良好的燃烧质量和防止火焰失稳。

3.冷却系统:燃气轮机在运行中产生大量的热量,需要进行冷却以保证设备的正常运行。

冷却系统包括空气冷却系统和燃气冷却系统。

空气冷却系统通过将冷却空气引入压气机和涡轮的冷却通道来冷却设备。

燃气冷却系统通过将一部分压缩空气与燃气混合后注入燃烧室进行冷却。

4.排气系统:燃气轮机的排气系统用于将燃烧产生的高温高压气体排出轮机。

排气系统应具备良好的导流性能和降温效果,以保证设备的安全运行。

排气系统通常包括热交换器和烟囱等组件。

5.辅助系统:燃气轮机还需要辅助系统来确保设备的正常运行。

这些系统包括供汽系统、供水系统、气体处理系统和电气控制系统等。

供汽系统用于提供轮机所需的蒸汽。

供水系统用于提供冷却水和补充水。

气体处理系统用于去除进气中的杂质和控制燃气轮机的燃气成分。

电气控制系统用于监控和控制轮机的运行。

综上所述,中国300兆瓦燃气轮机的总体设计包括涡轮机组选择、燃气喷射系统、冷却系统、排气系统和辅助系统等。

这些设计因素将影响轮机的效率、可靠性和运行成本等方面。

在设计过程中,还需根据具体要求考虑环境保护和节能减排等因素,以开发出更加优化的燃气轮机设备。

前所未见 事迹材料

前所未见  事迹材料

前所未见事迹材料一款完全没有“传承”的单发涡桨飞机,扑面而来;关于单发涡桨飞机,我们并不陌生;关于德事隆航空的迪纳利,我们却知之甚少。

全新设计德事隆航空公司在今年于瑞士日内瓦举办的欧洲商务航空展上就其备受瞩目的单发涡桨飞机(SETP)研发计划公布了更多细节,包括该机型卓越的性能规格、一流的乘客体验以及项目时间表。

7月,德事隆航空公司才宣布命名这款新单发涡桨飞机为“赛斯纳迪纳利(Cessna Denali)”。

“迪纳利(Denali)”名字自位于阿拉斯加的北美最高的迪纳利山。

“赛斯纳迪纳利”这一名称不仅代表该款高性能涡桨飞机的坚固性,也体现其一流顶尖的品质。

涡桨飞机,是指装有涡轮式发动机的螺旋桨飞机。

除了直升机,目前飞机主要选用涡轮螺旋桨式(涡桨)、涡轮喷气式(涡喷)和涡轮风扇式(涡扇)发动机作为动力装置,这三类发动机工作原理基本相同,都是靠燃气推动涡轮叶片使空气加压燃烧的,其主要区别在于发动机的能量输出形式不同,推力产生的方式不同。

不过长期以来,由于涡桨飞机新机交付量一直低于喷气商务机或活塞式飞机,尤其自2022年以来,涡桨飞机的交付量持续下降,各家飞机制造商和发动机厂商对于这类飞机新型号的研发也比较有限。

而去年,涡桨飞机似乎出现了一个“小春天”,业内新推出的双发涡桨飞机有Evektor EV-55 Outback、Turbine Mallard、比亚乔Avanti Evo、Mahindra Airvan 18等,而与SETP同样的单发涡桨飞机则有中航工业的领世AG300、钻石飞机的DA50-JP7、Epic E1000、Kestrel 350、Mahindra Airvan 10、派珀的M500和M600、Privateer等。

德事隆航空公司是在2022年的飞来者大会(EAA AirVenture Oshkosh 2022)上宣布的SETP项目。

德事隆航空表示,这款飞机是一款全新设计的飞机,与其他机型通常脱胎于已有机型不同,赛斯纳迪纳利与“前辈们”划清了界限。

首个星载全球大气风场激光雷达成功发射

首个星载全球大气风场激光雷达成功发射

首个星载全球大气风场激光雷达成功发射
宋晶晶
【期刊名称】《国际太空》
【年(卷),期】2018(0)9
【摘要】2018年8月22日,欧洲航天局的大气动力学任务-风神(ADMAeolus)卫星搭载“织女星”运载火箭从法属圭亚那库鲁航天中心发射升空,顺利进入轨道。

该卫星首次实现从太空对全球大气风场进行三维观测,获取对流层和较低平流层的
垂直风廓线图,所提供的数据有助于科学家进一步完善目前已知的大气特征参数,提
高建模和地球大气分析的技术水平,增强对大气动力学和气候过程的了解,为提高天
气预报质量和气候学研究做出直接贡献.
【总页数】4页(P40-43)
【作者】宋晶晶
【作者单位】北京空间科技信息研究所
【正文语种】中文
【相关文献】
1.中高层大气风场和温度场星载探测技术研究进展 [J], 王咏梅;付利平;杜述松;王
英鉴
2.用于全球大气温室气体探测的星载激光雷达研究 [J], 刘继桥;谢杨易;李世光;李
环环;马秀华;朱小磊;陈卫标
3.大气风场和温度场星载探测光谱仪的星上定标技术 [J], 石大莲;白清兰;冯玉涛;
汶德胜
4.基于三台测风激光雷达的大气湍流和三维风场研究 [J], 程志刚;李炬;张鑫宇;张京江;窦军霞;程月星
5.基于氧分子O_2(a^1Δ_g)O_(19)P_(18)发射谱线的平流层、中间层大气风场星载探测可行性探讨 [J], 冯玉涛;武魁军;傅頔;郝雄波;武俊强;付建国;胡炳樑
因版权原因,仅展示原文概要,查看原文内容请购买。

燃气轮机高速动力涡轮气动设计及试验

燃气轮机高速动力涡轮气动设计及试验

燃气轮机高速动力涡轮气动设计及试验张剑;曾军;李剑白【摘要】Under the full consideration of the strength and life, the aerodynamic design of a high-speed power turbine and exhaust casing were completed according to design requirements and characteristics of power turbine for a 30 MW gas turbine booster. One dimensional scheme design of two stage high-speed power turbine, 3D blade design and exhaust system design were completed. And the analysis of quasi three-dimensional flow field and full three-dimensional flow performance were also carried out.The power turbine was fit on the gas generator to carry out performance test.The results indicated that the aerodynamic efficiency of the power turbine and total pressure recovery coefficient of exhaust system exceeded design re-quirements.The thermal efficiency of gas turbine was 0.6% higher than design point.%基于30 MW级燃气轮机增压机组动力涡轮设计要求及其研制特点、难点,在注重强度寿命的前提下开展了高速动力涡轮及排气系统的气动设计.完成了两级高速动力涡轮的一维方案设计、叶片造型设计和排气系统设计,并进行了准三维分析和全三维流动评估.动力涡轮直接串装燃气发生器,开展了燃气轮机整机工厂性能试验.试验结果表明:该动力涡轮气动效率和排气段总压恢复系数均超过指标要求,燃气轮机整机热效率超过设计要求0.6个百分点.【期刊名称】《燃气涡轮试验与研究》【年(卷),期】2018(031)002【总页数】6页(P16-21)【关键词】燃气轮机;高速动力涡轮;排气系统;气动设计;试验验证【作者】张剑;曾军;李剑白【作者单位】中国航发四川燃气涡轮研究院,成都610500;中国航发四川燃气涡轮研究院,成都610500;中国航发四川燃气涡轮研究院,成都610500【正文语种】中文【中图分类】TK471 引言目前,我国天然气输送管线使用的燃气轮机(以下简称燃机)均为国外机组,其中干线增压所选用的30 MW级燃机主要是英国Rolls-Royce公司的RB211-6562和美国GE公司的PGT25+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Aerodynamic design of a 300kW horizontal axis wind turbine for province of SemnanA.Sedaghat ⇑,M.MirhosseiniDepartment of Mechanical Engineering,Isfahan University of Technology,Isfahan 84156-83111,Irana r t i c l e i n f o Article history:Available online 12April 2012Keywords:Horizontal axis wind turbine (HAWT)Aerodynamic design BEM theory Chord Twista b s t r a c tIn this research,Blade Element Momentum theory (BEM)is used to design a HAWT blade for a 300kW horizontal axis wind turbine.The airfoil is RISØ-A1-18,produced by RISØNational Laboratory,Denmark.Desirable properties of this airfoil are related to enhancement of aerodynamic and structure interactions.Design parameters considered here are wind tip speed ratio,nominal wind speed and diameter of rotor.The nominal wind speed was obtained from statistical analysis of wind speed data from province of Semnan in Iran.BEM is used for obtaining maximum lift to drag ratio for each elemental constitution of the blade.Obtaining chord and twist distribution at assumed tip speed ratio of blade,the aerodynamic shape of the blade in every part is specified which correspond to maximum accessible power coefficient.The design parameters are trust coefficients,power coefficient,angle of attack,angle of relative wind,drag and lift coefficients,axial and angular induction factors.The blade design distributions are presented versus rotor radius for BEM results.The blade shape then can be modified for ease of manufacturing,structural concerns,and to reduce costs.Ó2012Elsevier Ltd.All rights reserved.1.IntroductionIn consideration of the pertinent policies such as geographical position,environmental protection and government’s tax allow-ance,many countries proffered huge funds on technology of wind-power electricity generation and so it developed very fast than compare with technology of thermal power.Utilizing of wind energy has been progressed by more than 50countries in the whole world considerably [1].Wind turbines have exhibited their ability to sustain whereas wind energy is a clean,raw material-costless,favorable renewable energy.Wind turbine are classified into two configurations based on their rotational rotor axis with respect to the ground:the older generation,lower-power vertical axis (e.g.Savonius and Darrieus rotor)and the higher power,horizontal-axis at wide commercial deployment (e.g.AWE series 54-900,52-750,Vestas series v39,and v66,and Nordtank-300).The potential energy of wind is estimated to be about 6500MW in Iran [2].Germany,for example,produced some 4400MW of electricity from wind;while,Iran with a similar level of available wind power produces approximately 100MW according to recent news from the ministry of power in Iran [3].There are abundant wind resources freely available in Northern part of Iran.Manjil,Binalood,and Semnan areas are located in the northern part of the country.There are 21installed wind turbines in Manjil,1with 500kW,5with 550kW and 15with 300kW capacities plus 27more wind turbines were installed by 1999in Manjil,Roodbar and Harzevil and recent employment of 28.4MW in Binalood [3–5].Semnan province,as shown in Fig.1,with 5.6%of the whole area of Iran is the sixth big province in the country.Semnan province area is 95,815km 2.Semnan is located between N34°400–N37°100latitude and E51°590–E57°40longitude [4].The province of Semnan is bordered from east by the province of Khorasan razavi,from north,Northern Khorasan,Mazandaran and Golestan provinces,from south,Yazd and Esfahan provinces,west,Tehran and Qom provinces.The center of province,Semnan is located at 228km from Tehran and the distance from interna-tional waters of Persian Gulf and Caspian Sea in turn is 1600and 200km.This province includes 5townships,13districts,18cities and 29villages.According to the latest statistics in 2001,the pop-ulation of the province is estimated to be 558,000that 73.5%were in urban area and 26.5%were rural dwellers [7].In general,the dominant prevailing wind in the area is blowing from the north-west to the southeast and is called Tooraneh.Also other winds in the province called Shahriari,Kavir and Khorasan winds,blow from west,south and east to west in different seasons of the year,respectively [8,9].Detailed statistical study of wind at 10m,30m and 40m height in Semnan province is presented in [4].2.Aerodynamic of a horizontal axis wind turbine (HAWT)In the development of modern commercial wind turbines,the size has contiguously increased to the latest multi-MW turbines such as the wind farm shown in Fig.2.Generally,the two0196-8904/$-see front matter Ó2012Elsevier Ltd.All rights reserved./10.1016/j.enconman.2012.01.033Corresponding author.E-mail address:sedaghat@cc.iut.ac.ir (A.Sedaghat).Fig.1.The location of Semnan province in the map of Iran[6].Fig.2.Group of HAWTs in a wind farm in UK[10].fundamental objectives of the design of a HAWT turbine aremaximize its annual energy production(AEP)and to minimizethe cost of energy(COE)produced[11–13].Recently,focus hasbeen intensified on designing wind turbine rotors for maximumaerodynamic performance[14–22].According to particularly chal-lenges and difficulties to achieve a good efficiency and thusobtaining better economical performance,any improvementthe aerodynamic design of wind turbines infers a significant bene-that increase.Aerodynamic efficiency of wind turbines extre-mely depends on the performance of the rotor blade,the airfoilsection,and the design form.The theoretical maximum for theFig.4.Actuator disk modelling of a wind turbine in a stream tube.r U¼U ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiC ð1þ2=k ÞC 2ð1þ1=k ÞÀ1!v u u t ð6ÞFor Haddadeh region in province of Semnan in Iran,k =1.6,c =6.52,and the annual mean wind speed and the corresponding rated wind speed is calculated to be 5.85and 8at a height of 40m,respectively [4].2.2.Rotor specification for HAWTsThe design of the blade requires a great number of design vari-ables parameters to control rotor shape and airfoil characteristics including:the number of blade B ,the rotor diameter D ,the section airfoil lift to drag ratio that depend on the angle of attack a ,and the chord length c ,and twist angle h t at each section of blade.In com-mercial HAWTs,it is normally chosen three blades (B =3).If fewer than three blades are selected,there will be a number of structural problems that must be considered in the hub design.To determine rotor diameter from Eq.(1),the maximum acces-sible power coefficient,C p ,max ,is sought.According to the type of application,we need an optimum wind tip speed ratio,defined as the rotational speed of blade tip,R X ,to the wind speed,U ;i.e.k ¼R X =U .For a water pumping windmill,for which greater torque is needed,we use 1<k <3.For electric power generation,we nor-mally use 4<k <10.The machines with higher speeds use less material in the blades and have smaller gearboxes,but require more sophisticated airfoils.In this work,the maximum accessible power coefficient,C p ,max ,and the corresponding optimum value of k opt is calculated from the empirical relation [23]:C p ;max¼16 k 1:32þk À820ÀÁ2B "#À1Àð0:57Þk 2Cl Cd k þ12BÀÁð7ÞFig.3shows a group of C p –k curves for a three bladed HAWTIn order to specify the airfoil type,the maximum lift-to-drag ra-tio is criterion with other dynamical,roughness sensitivity,and stall behavior of airfoil for the class of wind power considered.Fun-damentally,the determination of the rotor size depends on the re-quired energy and blown mean wind speed.As relative wind speed is the resultant of the stream wind speed,blade section speed and rotor induced flow.Lift force is the main force for operating the wind turbine to produce useful power.Airfoils for HAWT are often designed to be used at low attack angle,where the drag coefficient is usually much lower than the lift coefficient.Especially,at bladeFig.5.Annular control volumes for calculating wake rotation.Fig.6.Annular control volumes for calculating wake rotation.tip airfoils with high lift to drag ratio,low roughness sensitivity, low noise character should be selected to insure the nearest opti-mum aerodynamic performance.Griffiths[24]showed that the output power is greatly affected by the airfoil lift-to-drag ratio.A general aviation airfoil shape is NACA series,and dedicated airfoil shapes used in modern wind turbines are:S8series developed by National Renewable Energy Laboratory(NREL)in USA,FFA-W ser-ies developed by FOI in Sweden,RISØ-A1series developed by RISØin Denmark,DU series developed by Delft University of Technology in Netherlands.It has been found in some applications that more than one airfoil shape can be used for the wind turbine blade de-sign,but there will be bending between these airfoils which may add to uncertainties in the design process.In this project,the RISØtype airfoils are used[25].In this class of airfoils,the different families of modern airfoils applied in wind turbines,are verified that with regarding verification of criteria re-late to design of wind turbines,the airfoils RISØ-A1-18,FFA-W3-301,FFA-W3-241,DU93-W-210,were proper choices from which RISØ-A1-18is selected for the300kW HAWT in this study[25]. The experimental results of RISØ-A1are related to open test part of VELUX wind tunnel measurements with1%turbulence.Details of these tests and measurement instruments are given in[26].Also the tests were carried out in the Reynolds number equal to 1.6Â106.A generalized analysis on manufacturing,industrializa-tion,and costs shows that the obtained chord length and twist an-gle from the theoretical analysis should be modified[27].Whereas the chord length and twist angle of the wind turbines design are not linear,one procedure for this goal(e.g.simplification in CNC machining for blade’s mold manufacturers)is applyingfitted linear relationship on the chord length and twist angle curves separately, yet not considered here.From the experimental data for the RISØ-A-18airfoil[25],lift coefficient against angle of attack,i.e.Cl–a,and drag coefficient against angle of attack,i.e.Cd–a,is used and approximated by a lin-ear equation for the lift coefficient and a quadratic equation for the drag coefficient versus the angle of attack.The maximum lift to drag ratio(Cl/Cd)is calculated to be(Cl/Cd)max=167at the angle of attack of a=7°for RISØ-A1-18airfoil.From Fig.3for the RISØ-A-18aerofoil with the maximum lift to drag ratio equals of 167,the optimum tip speed ratio is obtained to be k opt=10for the corresponding maximum power coefficient of C p,max=0.51. Assuming a mechanical-electrical efficiency of g=0.9and adopting the rated wind speed of U¼8m from the statistical analysis of wind data at Semnan province[4],the Rotor diameter is calculated from Eq.(1)to be equals to D=54m.To obtain an optimum blade shape as a guide,i.e.chord length and twist angle distribution along the blade,the Blade Element Momentum(BEM)theory is employed discussed next[23].The blade shape then can be modi-90 A.Sedaghat,M.Mirhosseini/Energy Conversion and Management63(2012)87–94fied for ease of manufacturing,structural concerns,and to reduce costs.2.3.Rotor design using BEM theoryThe primitive blade shape is determined using an optimum shape blade considering wake rotating.Ultimate blade shape and its performance are specified with iterative relations and including drag,tip losses and ease of manufacturing.It is also worth empha-sizing that with more accurate aerodynamic coefficients at high at-tack angles,the more accurate design and performance prediction can be obtained.But the aerodynamic coefficients of a rotating air-foil are different from the ones of a linear moving airfoil at stall conditions.Considering the rotor as an actuator disk which its effects are a sudden drop in pressure and assuming constant speed at the rotor [23],the linear momentum theory is used for airflow through a one dimensional tube as shown in Fig.4.From Betz theory,an ideal wind turbine reduces wind speed to two third of the freestream value[23].Since the wind turbine pro-duces a useful torque for generating power,the conservation of moment of momentum must be satisfied by employing a wake rotation downstream of the wind turbine in some annular control volumes as shown in Fig.5.In actuator disk theory,friction drag is ignored which is not realistic.In order to modify this shortcoming[23],blade element theory is considered to incorporate the effects of drag force exerted on each elemental constitution of blade as shown in Fig.6.Adopting the procedure discussed in Manwell[23],one may calculate the power coefficient through an iterative method to the following form:C p¼8=k2Z kk hF k3rað1ÀaÞ1ÀðCd=ClÞcot h½ d k rð8ÞF is tip loss correction factor,a is axial induction factor, a is angular induction factor,k r¼r X=U is the local speed ratio for an element of blade at radial distance of r.The element dimension is c as the local chord length and dr as the width of element.The drag to lift ratio ðCd=ClÞcorresponds to the local airfoil section.2.4.Rotor control for HAWTsIn high wind speeds,it is noteworthy to be able to control and limit the rotational mechanical power.The power limitation may be done either by stall control,pitch control or active stall control. Pitch control system in wind turbines have become the more appli-cable type of installed wind turbines in recent years.For low wind speeds,the speed controller can continuously adjust the speed ofA.Sedaghat,M.Mirhosseini/Energy Conversion and Management63(2012)87–9491the rotor to maintain the tip speed ratio constant to produce the maximum power coefficient,and to improve the efficiency of the turbine.For higher wind speeds however pitch angle regulation is required to keep the rotational speed constant.Small changes in pitch angle can reduce considerably the power output.There-fore,the purpose of the pitch angle control may be expressed as [28,29]:1.Optimizing the power output of the wind turbine.3.Results and discussionFig.7a shows that chord length distribution from the BEM anal-ysis.The maximum chord length calculated to be 2.6m at nearly 10%of blade length from the blade root to the value of nearly 0.3m at tip.From the practical point of view,higher chord length near the root contribute less to the power gained from wind turbine and therefore it can be modified to reduce material weights and costs and also provide ease of manufacturing [30–33].Fig.7b shows the twist angle distribution across the blade length varying from 38°in root to nearly 0°near tip of blade.The twist angle var-iation along the rotor blade maintains the optimum sectional angle of attack for producing the maximum lift to drag ratio at each section.In Fig.8a,the angle of relative wind is varying from 43°in root to 3°at tip producing the much desirable angle of attack value of 7°as shown in Fig.8b.The angle of attack,a ,is constant for the full length of the blade except from 90%of the blade length near to tip that rapidly decreases to values of 6.2°due to tip losses.Tip losses are due to tip vortexes generated at the tip of blades.The undesirable effects of tip losses may be reduced by incorporating new technologies developed in aviation industry [34]such as wingtips implemented in fixed wing aircrafts or reshaping tip blades in aircraft propellers.Fig.9a demonstrates that for any angle of attack,Cl is almost constant to the value of 1.11except at the tip which it drops to the value of 1.05.Drag coefficient distribution is shown in Fig.9b which exhibit a constant value of 0.0069everywhere.This provides a lift to drag ratio of 161nearly for 90%of the length of blade a very desirable value for wind turbine blades.For large HAWT blades,the Fig.13.Monthly power density of Haddadeh at 40m.92 A.Sedaghat,M.Mirhosseini /Energy Conversion and Management 63(2012)87–94comprehensive methods such as experimental measurements [33]and/or computational fluid dynamics (CFD)techniques [35].Fig.11a shows the local thrust coefficient,C t ,which is almost equals to the constant value of nearly 0.88which gradually de-creases to about 0.84near in both the root and the tip of blade.Fig.11b shows the power coefficient for the rotor blade which pos-sess its maximum (C p =1.1)near tip at 90%of the blade length.The variation of power coefficient across the rotor blade is nearly a lin-ear function except a small margin near the tip of blade.An opti-mum power distribution along the blade may concern with reducing blade’s loads towards the tip of blade.This accomplish in some designs by using variable airfoil sections from root to tip of blade to reduce the maximum lift coefficient Cl max at sections near the tip of blade [31].In Fig.12,the characteristic performance of the designed blade in terms of the power coefficient C p against tip speed ratios k is shown.It is observed that C p increases to its maximum (0.51)with k up to its optimum value of 10,and then it decreases at higher tip speed ratio values.Thus,the predicted aerodynamic characteristics of the designed 300kW HAWT is achieved according to the initial achievable opti-mum value of C p max =0.51at k =10.The monthly power density of wind at Haddadeh calculated from annual wind data [7]is pre-sented in Fig.13.The available 10minutely measured wind data at the heights of 10m,30m,and 40m were provided by the Ira-nian renewable energy organisation (SUNA)[36]for the period of 12months.Fig.14also compares the results from the measured wind data by the Iranian renewable energy organisation (SUNA)[36]and our Weibull distribution which shows power density at height of 40m is relatively good around 300W/m 2for the class of wind turbine designed here.4.ConclusionThere are abundant high quality wind resources available in Iran;however,the growth of wind turbine industry has been very slow in Iran.This work attempts to address some issues and to pre-liminary design a site specific 300kW wind turbine based on man-ufacturing and economical capabilities and also power demands in the province of Semnan.The positive attitudes in power organiza-tion in Iran for moving towards clean and renewable energies have encouraged this type of research in several universities and private organizations in Iran.This as yet requires incentives from European and other developed countries to support research in renewable energies in developing countries both economically and technolog-ically to assist moving faster towards the world of carbon free.To withstand against increasing CO 2emission into our environmentand global warming,imminent international efforts and collabora-tions are required to further develop and enhance use of wind en-ergy and other renewable resources.References[1]Mostafaeipour A.Productivity and development issues of global wind turbineindustry.J Renew Sustain Energy Rev 2010;14:1048–58.[2]News letter from Iranian society of solar energy.A report on the largest windturbine in Germany with a capacity of 4.5MW;2003.[3]Ministry of power in Iran.<.ir/press/press_detail.php?id=21481>[accessed November 2011].[4]Mirhosseini M,SharifiF,Sedaghat A.Assessing the wind energy potentiallocations in province of Semnan in Iran.J Renew Sustain Energy Rev 2011;15:449–59.[5]Kazemi Karegar H,Zahedi A,Ohis V,Taleghani G,Khalaji M.Wind and solarenergy development in Iran.North Amir Abad (Tehran/Iran):Centre of Renewable Energy Research and Application;2006.[6]Semnan province in Iran.</wiki/Semnan_Province >[accessed November 2011].[7]Iran chamber society [Internet].</provinces/25_semnan/25_semnan.php >[cited 12.02.11].[8]Irano-British quarterly magazine No.25[Internet].</semnan-pdf-d5*******>[cited 18.01.11].[9]Semnan Meteorological Organization.<http://www.semnanmet.ir >.[10]Wikipedia [Internet].</wiki/Wind_farm >[cited16.11.11].[11]Wenzhi L,Fuhai ZH,Jianxin W,Changzeng L,3D modeling methods ofaerodynamic shape for large-scale wind turbine blades.In:International conference on information technology and computer science,IEEE conference;2009.p.7–10.doi:10.1109/ITCS.2009.10.[12]Morgan CA,Garrad AD.The design of optimum rotors for horizontal axis windturbines,wind energy conversion.In:Milborrow DJ,editor.Proceedings of 1988tenth BWEA wind energy conference.London:Mechanical Engineering Publications Ltd.;1988.p.143–7.[13]Glauert H.Aerodynamic theory.In:Durand WF,editor.Division L.Airplanepropellers,vol.4,Berlin;1935.p.324–30[chapter XI,reprinted New York:Dover;1963].[14]Belessis MA,Stamos DG,Voutsinas SG.Investigation of the capabilities of agenetic optimization algorithm in designing wind turbine rotors.In:Proceedings of European Union wind energy conference and exhibition,Goteborg,Sweden;1996.p.124–7.[15]Selig MS,Coverstone-Carroll VL.Application of a genetic algorithm to windturbine design.ASME J Energy Resour Technol 1996;118(1):22–8.[16]Giguere P,Selig MS,Tangler JL.Blade design trade-offs using low-lift airfoils forstall-regulated HAWTs,NREL/CP-500-26091.National Renewable Energy Laboratory,Golden,CO;1999.[17]Fuglsang P,Madsen HA.Optimization method for wind turbine rotors.J WindEng Ind Aerodyn 1999;80:191–206.[18]Fuglsang P,Thomsen K.Site-specific design optimization of 1.5–2.0MW windturbines.J Solar Energy Eng 2001;123:296–303.[19]Benini E,Toffolo A.Optimal design of horizontal-axis wind turbines usingblade-element theory and evolutionary computation.J Solar Energy Eng 2002;124:357–63.[20]Tempel JVD,Molenaar DP.Wind turbine structural dynamics.Wind Eng2002;26(4):211–20.[21]Jureczko M,Pawlak M,Mezyk A.Optimisation of wind turbine blades.J MaterProcess Technol 2005;167:463–71.[22]Khalfallah MG,Koliub AM.Suggestions for improving wind turbines powercurves.Desalination 2007;209:221–9.[23]Manwell J.Wind energy explained:theory design and application.John Wiley&Sons Inc.;2002.p.83–138.[24]Griffiths RT.The effect of airfoil characteristics on windmill performance.Aeronaut J 1977;81(7):322–6.[25]Fuglsang P,Sangill O,Hansen P.Design of a 21m blade with Risø-A1airfoils foractive stall controlled wind turbines.Risø-R-1374(EN),RISØNational Laboratory,Roskilde,December;2002.[26]Fuglsang P,Antoniou I,Sørensen NN,Madsen HA.Validation of a wind tunneltesting facility for blade surface pressure measurements.RISØ-R-981(EN),RISØNational Laboratory,Denmark;1998.[27]DNV/Risø.Guidelines for design of wind turbines.2nd ed.Denmark:JydskCentraltrykkeri;2002.[28]Suryanarayanan S,Dixit A.Control of large wind turbines:review andsuggested approach to multivariable design.In:Proceedings of the American control conference,Portland,USA;2005.p.686–90.[29]Burton T,Sharpe D,Jenkins N,Bossanyi E.Wind energy handbook.Chichester(UK):John Wiley &Sons Ltd.;2001.[30]Dong L,Liao M,Li Y,Song X,Xu K.Study on aerodynamic design of horizontalaxis wind turbine generator system.In:International conference on energy and environment technology,IEEE conference;2009.p.841–4.doi:10.1109/ICEET.2009.208.[31]Xudong W,Shen WZ,Zhu WJ,Sørensen JN,Jin C.Shape optimization of windturbine blades.Wind Energy2009;12:781–803.Fig.14.Annual power density in Haddadeh at 10m,30m and 40m.and Management 63(2012)87–9493[32]Johansen J,Madsen HA,Gaunaa M,Bak C.Design of a wind turbine rotor formaximum aerodynamic efficiency.Wind Energy2009;12:261–73.[33]Schreck SJ,Robinson MC.Horizontal axis wind turbine blade aerodynamics inexperiments and modeling.IEEE Trans Energy Convers2007;22(1):61–70. [34]Madsen HA,Rasmussen F.A near wake model for trailing vorticity comparedwith the blade element momentum theory.Wind Energy2004;7:325–41.[35]Madsen HA.A CFD analysis of the actuator discflow compared withmomentum theory results.In:Proceedings of the10th symposium on aerodynamics of wind turbines,IEA joint action,Edinburgh;1996.p.109–24.[36]Renewable energies organization of Iran.<http://suna.ir/executivewindand-waves-windenergy-en.html>.94 A.Sedaghat,M.Mirhosseini/Energy Conversion and Management63(2012)87–94。

相关文档
最新文档