高中数学 第一章 等差数列第二课时教案 北师大版必修5
北师大版高中数学必修5同步学案:第1章 等差数列的概念及其通项公式

§2 等差数列2.1 等差数列第1课时等差数列的概念及其通项公式学习目标核心素养1.理解等差数列的概念.(难点)2.掌握等差数列的判定方法.(重点) 3.会求等差数列的通项公式及利用通项公式求特定的项.(重点、难点) 1.通过等差数列概念的学习培养学生的数学抽象素养.2.借助于等差数列的通项公式提升学生的数学运算素养.1.等差数列的概念阅读教材P10~P11例1以上部分,完成下列问题.文字语言从第2项起,每一项与它前一项的差等于同一个常数,这样的数列就叫作等差数列.这个常数称为等差数列的公差,通常用字母d 表示符号语言若a n-a n-1=d(n≥2),则数列{a n}为等差数列思考:(1)数列{a n}的各项为:n,2n,3n,4n,…,数列{a n}是等差数列吗?[提示] 不是,该数每一项与其前一项的差都是n,不是常数,所以不是等差数列.(2)若一个数列从第二项起每一项与它前一项的差都是常数,这个数列一定是等差数列吗?[提示] 不一定,当一个数列从第二项起每一项与它前一项的差都是同一个常数时,这个数列才是等差数列.如数列:1,2,3,5,7,9,就不是等差数列.2.等差数列的通项公式如果等差数列{a n}的首项为a1,公差为d,那么它的通项公式为a n=a1+(n-1)d.思考:(1)若已知等差数列{a n}的首项a1和第二项a2,可以求其通项公式吗?[提示] 可以,可利用a2-a1=d求出d,即可求出通项公式.(2)等差数列的通项公式一定是n的一次函数吗?[提示] 不一定,当公差为0时,等差数列的通项公式不是n的一次函数,而是常数函数.3.等差数列通项公式的推导如果等差数列{a n}的首项是a1,公差是d,根据等差数列的定义得到a2-a1=d,a3-a2=d,a4-a3=d,…所以a2=a1+d,a 3=a 2+d =a 1+d +d =a 1+2d, a 4=a 3+d =a 1+2d +d =a 1+3d, ……由此归纳出等差数列的通项公式为a n =a 1+(n -1)d .1.等差数列{a n }中a 1=2,公差d =3,则a n =( ) A .2n +1 B .3n +1 C .2n -1D .3n -1D [a n =a 1+(n -1)d =2+3(n -1)=3n -1.] 2.在等差数列{a n }中,a 1=0,a 3=4,则公差d =( ) A .4 B .2 C .-4D .-2B [a 3-a 1=4-0=2d,故d =2.]3.等差数列32,-12,-52,…的第10项为( )A .-372B .-332C .372D .332B [由a 1=32,d =-12-32=-2,得a n =32+(n -1)(-2)=-2n +72.所以a 10=-2×10+72=-332.]4.已知等差数列{a n }中,d =-13,a 7=8,则a 1=________.10 [由a 7=a 1+6d =8且d =-13代入解得a 1=8-6d =8+2=10.]等差数列的判定【例1(1)a n =3-2n ;(2)a n =n 2-n.[解] (1)因为a n +1-a n =[3-2(n +1)]-(3-2n)=-2,是常数,所以数列{a n }是等差数列.(2)因为a n +1-a n =[(n +1)2-(n +1)]-(n 2-n)=2n,不是常数,所以数列{a n }不是等差数列.等差数列的判断方法——定义法等差数列的定义是判断一个数列是否为等差数列的重要依据,要证明一个数列是等差数列,可用a n +1-a n =d(常数)或a n -a n -1=d(d 为常数且n≥2).但若要说明一个数列不是等差数列,则只需举出一个反例即可.[提醒] 当d >0时,等差数列{a n }是递增数列; 当d <0时,等差数列{a n }是递减数列; 当d =0时,等差数列{a n }是常数列.1.若数列{a n }满足a n +1=a n2a n +1,a 1=1,求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列.[证明] 由a n +1=a n 2a n +1得1a n +1=2a n +1a n =2+1a n ,即1a n +1-1a n =2,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为2的等差数列.等差数列的通项公式及应用【例2】 (1)求等差数列8,5,2,…的第20项;(2)在等差数列{a n }中,已知a 6=12,a 18=36,求通项公式a n . [解] (1)由a 1=8,a 2=5,得d =a 2-a 1=5-8=-3, 故a n =8-3(n -1)=11-3n, 则a 20=11-3×20=-49.(2)由题意可得⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36,解得d =2,a 1=2,故a n =2n.等差数列通项公式的四个应用(1)已知a n ,a 1,n,d 中的任意三个量,可以求出第四个量.(2)由等差数列的通项公式可以求出该数列中的任意项,也可以判断某一个数是不是该数列中的项. (3)根据等差数列的两个已知条件建立关于“基本量”a 1和d 的方程组,求出a 1和d,从而确定通项公式,求出待求项.(4)若数列{a n }的通项公式是关于n 的一次函数或常数函数,则可判断数列{a n }是等差数列.2.(1)等差数列{a n }中,a 2=4,公差d =3,a n =22,求n ;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项?[解] (1)由条件知⎩⎪⎨⎪⎧a 1+3=4,a 1+3(n -1)=22,解得a 1=1,n =8;(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1. 由题意,令-401=-4n -1,得n =100, 即-401是这个数列的第100项.等差数列的实际应用[1.一种游戏软件的租金,第一天5元,以后每一天比前一天多1元,那么第n(n≥2)天的租金怎样表示?每天的租金数有什么特点?[提示] 每天的租金构成以5为首项,以1为公差的等差数列,a n =5+(n -1)×1=n +4(n≥2). 2.直角三角形三边长成等差数列,你能求出三边的比吗?[提示] 设直角三角形的三边长分别为a,a +d,a +2d(a >0,d >0),则(a +2d)2=a 2+(a +d)2,即a 2-2ad -3d 2=0,解得a =3d,则三边长分别为3d,4d,5d, 故三边长的比为3∶4∶5.【例3】 某市出租车的计价标准为1.2 元/km,起步价为10元,即最初的4 km(不含4 km)计费10元,如果某人乘坐该市的出租车去往14 km 处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?思路探究:某人需支付的车费构成等差数列,运用等差数列的知识去解决.[解] 根据题意,当该市出租车的行程大于或等于4 km 时,每增加1 km,乘客需要支付1.2元.所以,可以建立一个等差数列{a n }来计算车费. 令a 1=11.2,表示4 km 处的车费,公差d =1.2, 那么当出租车行至14 km 处时,n =11,此时需要支付车费a 11=11.2+(11-1)×1.2=23.2(元).即需要支付车费23.2元.1.(变条件)在例3中,若某人乘坐该市的出租车去往18.5 km(不足1 km,按1 km 计费),且一路畅通,等候时间为0,那么,需支付多少车费?[解] 由题意知,当出租车行至18.5 km 处时,n =16,此时需支付车费a 16=11.2+(16-1)×1.2=29.2(元).2.(变结论)在例3中,若某人乘坐该市的出租车去往n km(n ∈ N +)处的目的地,求其需支付的车费a n .[解] 当n ∈{1,2,3}时,a n =10,当n ∈N +,且n≥4时,a n =11.2+(n -4)×1.2=1.2n +6.4.所以a n =⎩⎪⎨⎪⎧10,n ∈{1,2,3},1.2n +6.4,n≥4且n ∈N +.应用等差数列解决实际问题的步骤(1)审题,读懂题意,把握已知条件与求解问题. (2)将实际问题抽象为等差数列模型. (3)利用等差数列解决问题.(4)验证答案是否符合实际问题的意义.1.等差数列的通项公式为a n =a 1+(n -1)d,已知a 1,n,d,a n 这四个量中的三个,可以求得另一个量. 2.等差数列的判定关键是看a n +1-a n (或a n -a n -1(n≥2))是否为一个与n 无关的常数. 3.对于通项公式的理解.a n =a 1+(n -1)d ⇒a n =nd +(a 1-d),所以,当d≠0时,a n 是关于n 的一次函数,一次项系数就是等差数列的公差,当d =0时,等差数列{a n }为常数列:a 1,a 1,a 1,…,a 1,…1.判断正误(正确的打“√”,错误的打“×”) (1)常数列是等差数列.( )(2)-1,-2,-3,-4,-5不是等差数列.( ) (3)若数列{a n }是等差数列,则其公差d =a 7-a 8.( ) [答案] (1)√ (2)× (3)×[提示] (1)正确,(2)不正确,数列-1,-2,-3,-4,-5是公差为-1的等差数列;(3)不正确,公差d =a 8-a 7.2.下列数列是等差数列的是( ) A .13,15,17,19 B .1,3,5,7 C .1,-1,1,-1D .0,0,0,0D [由等差数列的定义知:0,0,0,0是等差数列,选D .] 3.在等差数列{a n }中,a 2=4,a 8=a 6+3,则a 1=________.52 [由已知得⎩⎪⎨⎪⎧a 1+d =4,a 1+7d =a 1+5d +3,解得a 1=52.]4.在等差数列{a n }中,a 5=10,a 12=31,求a 20,a n . [解] 由a 5=10,a 12=31, 得7d =a 12-a 5=21,所以d =3,a 1=a 5-4d =10-4×3=-2. 所以a 20=a 1+19d =-2+19×3=55,a n =a 1+(n -1)d =-2+3(n -1)=3n -5(n ∈N +).。
高中数学新北师大版精品教案《北师大版高中数学必修5 2.1等差数列》

§等差数列一编写:马振华 时间:2021 5 13学习目标1 掌握等差数列的定义,通项公式;2 会求等差数列的通项公式;会证明一个数列是等差数列;3 探索通项公式推导过程中体现出的数学思想。
重点:对等差数列概念的理解及通项公式的运用。
难点:通项公式推导与应用。
学习过程使用说明:(1)预习教材,用红色笔画出疑惑之处,并尝试完成各种问题,总结规律方法; (2)用严谨认真的态度完成导学案中要求的内容。
奖励规则:(1)认真预习案的组均加2分,特别突出的加3分;(2)合作探究部分基础分2分,板书认真,展示精彩到位或特别突出可以根据情况加分,其他部分根据难易和回答的精彩与否加分。
第Ⅰ部分预习案(自主学习)(阅读课本10--12页或者查阅课外资料解答下列问题) 问题1 ★一个定义★(1) 看课本归纳并得出等差数列的定义 (2)用符号语言描述等差数列的定义 问题2 ★一个公式★根据定义填空 d a a ___12=-,d a a __13=-,d a a __14=-,… d a a n __1=-。
等差数列通项公式:+=1a a n问题3 判断下列说法是否正确,对的在括号后面画 √ 错的画 × 。
(1)(2)(3)(4)(5) (6)合作合作在等合作在数解: 解:合作探究四 ★一个猜想★已知在等差数列}{n a 中,12+=n a n ,求:(1),,,,,,987321a a a a a a ; (2)求91a a +,82a a +73a a +的值;(3)通过第(2)问的结论你能发现什么规律?并猜想如果mn=,n ,,q 为正整数)那么nm a a +与q p a a +有什么关系?第Ⅲ部分 检测案(课堂练习)1、求等差数列9,5,1,…的第10项。
2、已知在等差数列中,,35,20205-=-=a a 求这个数列的通项公式。
3、在等差数列中已知,16,675==a a 求1a 与公差d 。
高中数学第一章数列 数列在日常经济生活中的应用学案含解析北师大版必修5

§4数列在日常经济生活中的应用知识点一零存整取模型[填一填](1)单利:单利的计算是仅在原有本金上计算利息,对本金所产生的利息不再计算利息,其公式为利息=本金×利率×存期.若以P代表本金,n代表存期,r代表利率,S代表本金和利息和(以下简称本利和),则有S=P(1+nr).(2)复利:把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的.复利的计算公式是S=P(1+r)n.[答一答]1.简单总结一下本节课中几种模型的规律方法.提示:(1)银行存款中的单利是等差数列模型,本息和公式为S=P(1+nr).(2)银行存款中的复利是等比数列模型,本利和公式为S=P(1+r)n.(3)产值模型:原来产值的基础数为N,平均增长率为P,对于时间x的总产值y=N(1+P)x.(4)分期付款模型:a为贷款总额,r为年利率,b为等额还款数,则b=r(1+r)n a (1+r)n-1.知识点二数列知识的实际应用及解决问题的步骤[填一填](1)数列知识有着广泛的应用,特别是等差数列和等比数列.例如银行中的利息计算,计算单利时用等差数列,计算复利时用等比数列,分期付款要综合运用等差、等比数列的知识.(2)解决数列应用题的基本步骤为:①仔细阅读题目,认真审题,将实际问题转化为数列模型;②挖掘题目的条件,分析该数列是等差数列,还是等比数列,分清所求的是项的问题,还是求和问题;③检验结果,写出答案.[答一答]2.数列应用题中常见模型是哪些? 提示:等差模型和等比模型.1.数列实际应用题的解题策略解等差、等比数列应用题时,首先要认真审题,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差、等比数列问题,然后求解.2.处理分期付款问题的注意事项(1)准确计算出在贷款全部付清时,各期所付款额及利息(注:最后一次付款没有利息). (2)明确各期所付的款以及各期所付款到最后一次付款时所产生的利息之和等于商品售价及从购买到最后一次付款时的利息之和,只有掌握了这一点,才可以顺利建立等量关系.类型一 单利计算问题【例1】 有一种零存整取的储蓄项目,它是每月某日存入一笔相同的金额,这是零存;到约定日期,可以提出全部本金及利息,这是整取.它的本利和公式如下:本利和=每期存入金额×⎣⎡⎦⎤存期+12存期×(存期+1)×利率. (1)试解释这个本利和公式;(2)若每月初存入100元,月利率5.1‰,到第12个月底的本利和是多少?(3)若每月初存入一笔金额,月利率是5.1‰,希望到第12个月底取得本利和2 000元,那么每月应存入多少金额?【思路探究】 存款储蓄是单利计息,若存入金额为A ,月利率为P ,则n 个月后的利息是nAP .【解】 (1)设每期存入金额A ,每期利率P ,存入期数为n ,则各期利息之和为 AP +2AP +3AP +…+nAP =12n (n +1)AP .连同本金,就得:本利和=nA +12n (n +1)AP =A ⎣⎡⎦⎤n +12n (n +1)P . (2)当A =100,P =5.1‰,n =12时,本利和=100×⎝⎛⎭⎫12+12×12×13×5.1‰=1 239.78(元). (3)将(1)中公式变形得 A =本利和n +12n (n +1)P= 2 00012+12×12×13×5.1‰≈161.32(元).即每月应存入161.32元.规律方法 单利的计算问题,是等差数列模型的应用.王先生为今年上高中的女儿办理了“教育储蓄”,已知当年“教育储蓄”存款的月利率是2.7‰.(1)欲在3年后一次支取本息合计2万元,王先生每月大约存入多少元?(2)若教育储蓄存款总额不超过2万元,零存整取3年期教育储蓄每月至多存入多少元?此时3年后本息合计约为多少元?(精确到1元)解:(1)设王先生每月存入A 元,则有A (1+2.7‰)+A (1+2×2.7‰)+…+A (1+36×2.7‰)=20 000,利用等差数列前n 项和公式,得A ⎝⎛⎭⎫36+36×2.7‰+36×352×2.7‰=20 000,解得A ≈529元.(2)由于教育储蓄的存款总额不超过2万元,所以3年期教育储蓄每月至多存入20 00036≈555(元),这样,3年后的本息和为:555(1+2.7‰)+555(1+2×2.7‰)+…+555(1+36×2.7‰)=555⎝⎛⎭⎫36+36×2.7‰+36×352×2.7‰≈20 978(元).类型二 关于复利模型问题【例2】 小张为实现“去上海,看世博”的梦想,于2005年起,每年2月1日到银行新存入a 元(一年定期),若年利率r 保持不变,且每年到期存款自动转为新的一年定期,到2010年2月1日,将所有存款及利息全部取回,试求他可以得到的总钱数.【思路探究】 由题意知,本题为定期自动转存问题,应为等比数列前n 项和的模型. 【解】 依题意每一年的本息和构成数列{a n },则2005年2月1日存入的a 元钱到2006年1月31日所得本息和为a 1=a (1+r ).同理,到2007年1月31日所得本息和为 a 2=[a (1+r )+a ](1+r )=a (1+r )2+a (1+r ), 到2008年1月31日所得本息和为[a (1+r )2+a (1+r )+a ](1+r )=a (1+r )3+a (1+r )2+a (1+r ), 到2009年1月31日所得本息和为[a (1+r )3+a (1+r )2+a (1+r )+a ](1+r )=a (1+r )4+a (1+r )3+a (1+r )2+a (1+r ), 到2010年1月31日所得本息和为[a (1+r )4+a (1+r )3+a (1+r )2+a (1+r )+a ](1+r )=a (1+r )5+a (1+r )4+a (1+r )3+a (1+r )2+a (1+r ),所以2010年2月1日他可取回的钱数为a (1+r )5+a (1+r )4+a (1+r )3+a (1+r )2+a (1+r )=a ·(1+r )[1-(1+r )5]1-(1+r )=ar [(1+r )6-(1+r )](元).规律方法 本例主要考查阅读理解能力,这里关键是每年2月1日又新存入a 元,因此每年到期时所得钱的本息和组成一个等比数列前n 项和模型.某牛奶厂2013年初有资金1 000万元,由于引进了先进生产设备,资金年平均增长率可达到50%.每年年底扣除下一年的消费基金后,余下的资金投入再生产.这家牛奶厂每年应扣除多少消费基金,才能实现经过5年资金达到2 000万元的目标?解:设这家牛奶厂每年应扣除x 万元消费基金. 2013年底剩余资金是1 000(1+50%)-x ;2014年底剩余资金是[1 000(1+50%)-x ]·(1+50%)-x =1 000(1+50%)2-(1+50%)x -x ;……5年后达到资金1 000(1+50%)5-(1+50%)4x -(1+50%)3x -(1+50%)2x -(1+50%)x =2 000, 解得x =459(万元). 类型三 分期付款模型【例3】 用分期付款的方式购买一件家用电器,其价格为1 150元.购买当天先付150元,以后每月这一天都交付50元,并加付欠款的利息,月利率为1%,分20次付完.若交付150元以后的第1个月开始算分期付款的第1个月,问:分期付款的第10个月需交付多少钱?全部贷款付清后,买这件家电实际花了多少钱?【思路探究】 构建等差数列模型,利用等差数列的前n 项和公式求解.【解】 购买时付款150元,欠1 000元,以后每月付款50元,分20次付清.设每月付款数顺次构成数列{a n },则a 1=50+1 000×1%=60,a 2=50+(1 000-50)×1%=59.5=60-0.5×1, a 3=50+(1 000-50×2)×1%=59=60-0.5×2, ……a 10=50+(1 000-50×9)×1%=55.5=60-0.5×9, 则a n =60-0.5(n -1)=-0.5n +60.5(1≤n ≤20). 所以数列{a n }是以60为首项,-0.5为公差的等差数列,所以付款总数为S 20+150=20×60+20×192×(-0.5)+150=1 255(元).所以第10个月需交55.5元,全部付清实际花了1 255元.规律方法 解题时务必要注意第一次付款的利息是1 000元欠款的利息,而不是950元的利息,而最后一次付款的利息是50元欠款的利息.某人在2015年年初向银行申请个人住房公积金贷款20万元购买住房,月利率为3.375‰,按复利计算,每月等额还贷一次,并从贷款后的次月初开始还贷.如果10年还清,那么每月应还贷多少元?(参考数据:1.003 375120≈1.498 28)解:方法一:由题意知借款总额a =200 000(元),还款次数n =12×10=120, 还款期限m =10(年)=120(个月), 月利率r =3.375‰ .代入公式得,每月还款数额为: 200 000×0.003 375×(1+0.003 375)120(1+0.003 375)120-1≈2 029.66.故如果10年还清,每月应还贷约2 029.66元.方法二:设每月应还贷x 元,共付款12×10=120(次),则有x [1+(1+0.003 375)+(1+0.003 375)2+…+(1+0.003 375)119]=200 000×(1+0.003 375)120,解方程得x ≈2 029.66.故每月应还贷约2 029.66元. 类型四 增长率问题【例4】 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游业.根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14.(1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式;(2)至少经过几年旅游业的总收入才能超过总投入?【思路探究】 (1)由题设知各年的投入费用及旅游业收入分别构成等比数列,利用等比数列的前n 项和公式易得a n 与b n ;(2)建立a n 与b n 的不等关系,解不等式即得.【解】 (1)第一年投入为800万元,第二年投入为800⎝⎛⎭⎫1-15万元,…,第n 年投入为800⎝⎛⎭⎫1-15n -1万元,各年投入依次构成以800为首项,1-15=45为公比的等比数列,所以n 年内的总投入为a n =800⎣⎡⎦⎤1-⎝⎛⎭⎫45n 1-45=4 000-4 000·⎝⎛⎭⎫45n . 第一年旅游业收入为400万元,第二年旅游业收入为400⎝⎛⎭⎫1+14万元,…,第n 年旅游业收入为400⎝⎛⎭⎫1+14n -1万元,各年旅游业收入依次构成以400为首项,1+14=54为公比的等比数列,所以n 年内的旅游业总收入为b n =400⎣⎡⎦⎤1-⎝⎛⎭⎫54n 1-54=1 600⎝⎛⎭⎫54n -1 600. (2)设经过n 年旅游业的总收入才能超过总投入,则b n -a n >0,即1 600⎝⎛⎭⎫54n-1 600-4 000+4 000⎝⎛⎭⎫45n>0,化简得2⎝⎛⎭⎫54n +5⎝⎛⎭⎫45n-7>0.设⎝⎛⎭⎫45n=x ,代入上式得5x 2-7x +2>0,根据二次函数y =5x 2-7x +2的图像解此不等式, 得x <25或x >1(舍去),即⎝⎛⎭⎫45n <25,由此得n ≥5.故至少经过5年旅游业的总收入才能超过总投入.规律方法 当问题中涉及的各量依次以相同的倍数变化时,则考虑构建等比数列模型.其解题步骤为:(1)由题意构建等比数列模型(有时需要从特殊情况入手,归纳总结出一般规律,进而构建等比数列模型);(2)确定其首项a 1与公比q ,分清是求第n 项a n ,还是求前n 项和S n ; (3)利用等比数列的通项公式及前n 项和公式求解; (4)经过检验得出实际问题的答案.某商场出售甲、乙两种不同价格的笔记本电脑,其中甲商品因供不应求,连续两次提价10%,而乙商品由于外观过时而滞销,只得连续两次降价10%,最后甲、乙两种电脑均以9 801元售出.若商场同时售出甲、乙电脑各一台,与价格不升不降比较,商场赢利情况是少赚598元.解析:设甲原价是m 元,则m (1+10%)2=9 801⇒m =9 8011.21,设乙原价是n 元,则n (1-10%)2=9 801⇒n =9 8010.81.(m +n )-2×9 801=9 801×⎝⎛⎭⎫11.21+10.81-19 602=9 801× 2.021.21×0.81-19 602=20 200-19 602=598.——多维探究系列——数列中的探索性问题探索性问题是一种具有开放性和发散性的问题,此类题目的条件或结论不完备,要求考生自己去探索,结合已知条件,进行观察、分析、比较和概括.它对考生的数学思想、数学意识及综合运用数学方法解决问题的能力提出了较高的要求.这类问题不仅考查考生的探索能力,而且给考生提供了创新思维的空间,所以备受高考的青睐,是高考重点考查的内容.探索性问题一般可以分为:条件探索性问题、规律探索性问题、结论探索性问题、存在探索性问题等.【例5】 已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18. (1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.【思路分析】 (1)根据已知条件得出关于a 1,q 的方程组,求解即可;(2)只需表示出前n 项和,解指数不等式.【规范解答】 (1)设等比数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧ S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18,即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3×(-2)n -1. (2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n .若存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013, 即(-2)n ≤-2 012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.【名师点评】 求解此类题需要同学们熟练运用公式和相关概念来构建方程(组),进而求得数列的通项.本例题的难点在于对不等式2n ≥2 012的求解及对n 的奇偶性的讨论.建议熟记2的1~10次幂的值.已知数列{a n }中,a 1=1,且点P (a n ,a n +1)(n ∈N +)在直线x -y +1=0上. (1)求数列{a n }的通项公式;(2)设b n =1a n,S n 表示数列{b n }的前n 项和,试问:是否存在关于n 的关系式g (n ),使得S 1+S 2+S 3+…+S n -1=(S n -1)·g (n )对于一切不小于2的自然数n 恒成立?若存在,写出g (n )的解析式,并加以证明;若不存在,试说明理由.解:(1)由点P (a n ,a n +1)在直线x -y +1=0上, 即a n +1-a n =1,且a 1=1,即数列{a n }是以1为首项,1为公差的等差数列. 则a n =1+(n -1)×1=n (n ∈N +).(2)假设存在满足条件的g (n ), 由b n =1n ,可得S n =1+12+13+…+1n ,S n -S n -1=1n (n ≥2),nS n -(n -1)S n -1=S n -1+1, (n -1)S n -1-(n -2)S n -2=S n -2+1, …2S 2-S 1=S 1+1.以上(n -1)个等式等号两端分别相加得 nS n -S 1=S 1+S 2+S 3+…+S n -1+n -1,即S 1+S 2+S 3+…+S n -1=nS n -n =n (S n -1),n ≥2.令g (n )=n ,故存在关于n 的关系式g (n )=n ,使得S 1+S 2+S 3+…+S n -1=(S n -1)·g (n )对于一切不小于2的自然数n 恒成立.一、选择题1.有一种细菌和一种病毒,每个细菌在每秒钟末能在杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要( B )A .6秒钟B .7秒钟C .8秒钟D .9秒钟解析:依题意,得1+21+22+…+2n -1≥100, ∴1-2n 1-2≥100,∴2n ≥101,∴n ≥7, 则所求为7秒钟.2.某林厂年初有森林木材存量S 立方米,木材以每年25%的增长率生长,而每年末都砍伐固定的木材量x 立方米,为实现经过两次砍伐后的木材的存量增加50%,则x 的值是( C )A.S 32B.S 34C.S 36D.S 38解析:一次砍伐后木材的存量为S (1+25%)-x ; 二次砍伐后木材存量为[S (1+25%)-x ](1+25%)-x =2516S -54x -x =S (1+50%),解得x =S 36. 3.某工厂2013年年底制订生产计划,要使工厂的年总产值到2023年年底在原有基础上翻两番,则年总产值的平均增长率为( A )A .4110-1B .5110-1C .3110-1D .4111-1二、填空题4.一个工厂的生产总值月平均增长率是p ,那么年平均增长率为(1+p )12-1.解析:一年12个月,故1月至12月产值构成公比为1+p 的等比数列,设去年年底产值为a ,∴a 12=a (1+p )12,∴年平均增长率为a (1+p )12-aa=(1+p )12-1.5.今年,某公司投入资金500万元,由于坚持改革、大胆创新,以后每年投入资金比上一年增加30%,那么7年后该公司共投入资金5 0003(1.37-1)万元.解析:设第n 年投入的资金为a n 万元, 则a n +1=a n +a n ×30%=1.3a n ,则a n +1a n=1.3,所以数列{a n }是首项为500,公比为1.3的等比数列,所以7年后该公司共投入资金S 7=a 1(1-q 7)1-q =500×(1-1.37)1-1.3=5 0003(1.37-1)(万元).。
高三数学必修五教案《等差数列》优秀4篇

等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次白话文为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。
数学等差数列教案篇一【教学目标】一、知识与技能1、掌握等差数列前n项和公式;2、体会等差数列前n项和公式的推导过程;3、会简单运用等差数列前n项和公式。
二、过程与方法1.通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;2、通过公式的'运用体会方程的思想。
三、情感态度与价值观结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
【教学重点】等差数列前n项和公式的推导和应用。
【教学难点】在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。
【重点、难点解决策略】本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。
利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。
【教学用具】多媒体软件,电脑【教学过程】一、明确数列前n项和的定义,确定本节课中心任务:本节课我们来学习《等差数列的前n项和》,那么什么叫数列的前n项和呢,对于数列{an}:a1,a2,a3,…,an,…我们称a1+a2+a3+…+an为数列{an}的前n项和,用sn表示,记sn=a1+a2+a3+…+an,如S1 =a1, S7 =a1+a2+a3+……+a7,下面我们来共同探究如何求等差数列的前n项和。
二、问题牵引,探究发现问题1:(播放媒体资料情景引入)印度泰姬陵世界七大奇迹之一。
传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见图),奢靡之程度,可见一斑。
你知道这个图案一共花了多少圆宝石吗?即: S100=1+2+3+······+100=?著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。
数学北师大版高中必修5北师大版高二年级数学必修5第一章第二节等差数列教案

§2.2等差数列的概念教案新余渝水一中数学教师习先滨教材地位与作用本教学内容是新课标北师大版必修5第一章第2节等差数列,等差数列这一节,在整个高中数学内容中是极其重要的一个内容,就这几十年高考以来,几乎每年都要考等差数列。
数列不仅有着广泛的实际应用,而且启着承上启下的作用一方面,数列作为一种特殊的函数,与函数思想密不可分,另一方面,学习数列也进一步学习数列的极限的内容做好准备。
教学目标1、知识与技能⑴理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想。
⑵能用定义判断一个数列是否为等差数列;会用等差数的通项公式解决相关问题。
2、过程与方法通过实际问题的分析,在引导学生观察、归纳等差数列概念与推导等差数列通项公式过程,使学生认识到等差数列是一种重要的数学模型,能初步从一次函数角度处理等差数列问题。
领会函数与数列关系的前提下,把研究函数的方法迁移过来研究数列,培养学生的知识、方法迁移能力;培养学生观察、分析、归纳能力和应用数学公式的能力。
3、情感、态度与价值观通过对等差数列的研究,使学生体验从特殊到一般,再从一般到特殊的认识事物的规律,养成细心观察、认真分析、善于总结的良好思维习惯;培养学生主动探索、勇于发现的求知精神。
教学重点,难点教学重点:等差数列的定义及等差数列的通项公式。
教学难点:通项公式的推导及从函数的角度理解通项公式。
学情分析:学习等差数列这一内容是在学习了函数和数列的概念、数列的通项公式的基础上对数列知识的进一步深入拓展与研究。
教法分析:由于我校学生生源还存在一定问题,自然我校学生学习基础比较薄弱,大多数学生对数学不感兴趣,为了提高我校学生对数学的学习兴趣和课堂参与教学的积极性,教师在教学时需要多引导学生列举更多的有关生活中能产生等差数列的例子,以便学生更深的理解等差数列的定义。
在讲解等差数列通项公式时,要根据学生的心理特点去研究探讨,顺利的归纳出等差数列的通项公式。
高中数学第一章数列2.1.2等差数列的性质课时素养评价含解析北师大版必修5

等差数列的性质(20分钟35分)1.在等差数列{a n}中,a10=30,a20=50,则a40等于( )A.40B.70C.80D.90【解析】选D.方法一:设公差为d.因为a20=a10+10d,所以50=30+10d,所以d=2,a40=a20+20d=50+20×2=90.方法二:因为2a20=a10+a30,所以2×50=30+a30,所以a30=70,又因为2a30=a20+a40,所以2×70=50+a40,所以a40=90.2.在等差数列{a n}中,已知a1=2,a2+a3=13,则a4+a5+a6等于( )A.40B.42C.43D.45【解析】选B.因为a2+a3=13,所以2a1+3d=13.因为a1=2,所以d=3.所以a4+a5+a6=3a5=3(a1+4d)=42.3.在等差数列{a n}中,首项a1=0,公差d≠0.若a k=a1+a2+a3+…+a7,则k= ( )A.22B.23C.24D.25【解题指南】利用等差数列的性质得:a1+a2+a3+…+a7=7a4.【解析】选A.因为数列{a n}为等差数列,首项a1=0,公差d≠0,所以a k=a1+(k-1)d=a1+a2+a3+…+a7=7a4=21d.解得k=22.4.设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13等于 ( )A.120B.105C.90D.75【解析】选B.设公差为d.因为a1+a2+a3=3a2=15,所以a2=5,又因为a1a2a3=80,所以a1a3=16,即(a2-d)(a2+d)=16,因为d>0,所以d=3.则a11+a12+a13=3a12=3(a2+10d)=105.5.(2020·重庆高一检测)等差数列中a2+a4+a6+a8=20,则a3+a7= .【解析】a2+a4+a6+a8=2=20,所以a3+a7=10.答案:106.(1)三个数成等差数列,和为6,积为-24,求这三个数;(2)四个数成递增等差数列,中间两数的和为2,首末两项的积为-8,求这四个数.【解析】(1)方法一:设等差数列的等差中项为a,公差为d,则这三个数分别为a-d,a,a+d,由已知,3a=6且a(a-d)(a+d)=-24,所以a=2,代入a(a-d)(a+d)=-24,化简得d2=16,于是d=±4,所以这三个数为-2,2,6或6,2,-2.方法二:设首项为a,公差为d,则这三个数分别为a,a+d,a+2d,由已知,3a+3d=6,且a(a+d)(a+2d)=-24,所以a=2-d,代入a(a+d)(a+2d)=-24,得2(2-d)(2+d)=-24,整理得4-d2=-12,即d2=16,于是d=±4,所以,这三个数为-2,2,6或6,2,-2.(2)方法一:设这四个数为a-3d,a-d,a+d,a+3d(公差为2d),由已知,2a=2,且(a-3d)(a+3d)=-8,即a=1,a2-9d2=-8,所以d2=1,所以d=1或d=-1.又四个数成递增等差数列,所以d>0,所以d=1,所以所求的四个数为-2,0,2,4.方法二:设这四个数为a,a+d,a+2d,a+3d(公差为d),由已知,2a+3d=2,且a(a+3d)=-8, 把a=1-d代入a(a+3d)=-8,得=-8,即1-d2=-8,化简得d2=4,所以d=2或-2.又四个数成递增等差数列,所以d>0,所以d=2,所以所求的四个数为-2,0,2,4.【补偿训练】设数列{a n}是等差数列,b n=,又因为b1+b2+b3=,b1b2b3=,求通项a n.【解析】因为b1b2b3=,又因为b n=,所以··=.所以=,所以a1+a2+a3=3,又因为{a n}成等差数列,所以a2=1,a1+a3=2,所以b1b3=,b1+b3=,所以或即或所以a n=2n-3或a n=-2n+5.(30分钟60分)一、选择题(每小题5分,共25分)1.(2020·石嘴山高一检测)在等差数列中,若a1+a2=4,a3+a4=12,则a5+a6= ( )A.8B.16C.20D.28【解析】选C.因为为等差数列,则a1+a2,a3+a4,a5+a6也成等差数列,公差为12-4=8.所以a5+a6=a3+a4+8=12+8=20.2.在数列中,已知a n+1-a n=a n+2-a n+1,a1 011=1,则该数列中a1+a2 021= ( )A.1B.2C.3D.4【解题指南】根据条件判断出为等差数列,利用等差数列的等差中项得到答案.【解析】选B.因为a n+1-a n=a n+2-a n+1,所以2a n+1=a n+a n+2,所以为等差数列,因为a1 011=1,所以a1+a2 021=2a1 011=2.【光速解题】选B.根据题意,可以让a1=a2=…=a2 021=1求解.3.(2020·邢台高一检测)在等差数列{a n}中,若a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9的值为( )A.30B.27C.24D.21【解题指南】首先由等差中项的性质知:a4=13,a5=11,由d=a5-a4,a3+a6+a9=3a6,计算a6代入即可. 【解析】选B.因为a1+a4+a7=3a4=39,所以a4=13.因为a2+a5+a8=3a5=33,所以a5=11.所以d=a5-a4=-2.又a6=a5+d=9,所以a3+a6+a9=3a6=27.4.(2020·福州高三检测)在等差数列中,已知a1=3,公差d=2,若a m=a1+a2+a3+a4+a5(m∈N*),则m= ( )A.19B.18C.17D.16【解题指南】依题意a n=2n+1,且a1+a2+a3+a4+a5=5a3=35,令a m=35解方程即可.【解析】选C.根据题意,数列{a n}是等差数列,且a1=3,公差d=2,所以a n=a1+(n-1)d=3+2n-2=2n+1,又因为a m=2m+1=a1+a2+a3+a4+a5=5a3=35(m∈N*),所以m=17.5.设等差数列满足a3+a7=36,a4a6=275,且a n a n+1有最小值,则这个最小值为( )A.-10B.-12C.-14D.-16【解题指南】设该等差数列的首项为a1,公差为d,根据题意,分析可得(a1+2d)+(a1+6d)=36,(a1+3d)(a1+5d)=275,解可得a1与d的值,即可得数列的通项,将其代入a n a n+1中,结合二次函数的性质分析可得答案.【解析】选B.根据题意,设该等差数列的首项为a1,公差为d,若a3+a7=36,a4a6=275,则有(a1+2d)+(a1+6d)=36,(a1+3d)(a1+5d)=275,解得或,则数列的通项为a n=7n-17或a n=-7n+53,当a n=7n-17时,a n a n+1=(7n-17)(7n-10)=49=49-,分析可得当n=2时,a n a n+1有最小值,且其最小值为-12;当a n=-7n+53时,a n a n+1=(-7n+53)(-7n+46)=(7n-53)(7n-46)=49,因为=≈7.07,分析可得当n=7时,a n a n+1有最小值,且其最小值为-12;即a n a n+1有最小值-12.【误区警示】本题因为d有两个解,所以求解a n易错,最后在计算a n a n+1的最值时由于计算量较大,也容易出错.二、填空题(每小题5分,共15分)6.(5分)已知{a n}为等差数列,且a6=4,则a4a7的最大值为.【解析】设等差数列的公差为d,则a4a7=(a6-2d)(a6+d)=(4-2d)(4+d)=-2(d+1)2+18,即a4a7的最大值为18.答案:187.已知数列{a n}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为.【解析】由等差数列的性质得a1+a7+a13=3a7=4π,所以a7=.所以tan(a2+a12)=tan(2a7)=tan =tan =-.答案:-8.在△ABC中,若lgsin A,lgsin B,lgsin C成等差数列,且三个内角A,B,C也成等差数列,则△ABC的形状为.【解析】因为lgsin A,lgsin B,lgsin C成等差数列,得lgsin A+lgsin C=2lgsin B,即sin2 B=sin Asin C①,又三内角A,B,C也成等差数列,所以B=60°,代入①得sin Asin C=②,设A=60°-α,C=60°+α,代入②得sin(60°+α)sin(60°-α)=,⇒cos2α-sin2α=,即cos2α=1,所以α=0°,所以A=B=C=60°,所以△ABC为等边三角形.答案:等边三角形三、解答题(每小题10分,共20分)9.已知无穷等差数列{a n},首项a1=3,公差d=-5,依次取出项的序号被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求数列{b n}的通项公式;(3)数列{b n}中的第110项是数列{a n}中的第几项?【解析】(1)由题意,等差数列{a n}的通项公式为a n=3+(n-1)(-5)=8-5n,设数列{b n}的第n项是数列{a n}的第m项,则需满足m=4n-1,n∈N+,所以b1=a3=8-5×3=-7,b2=a7=8-5×7=-27.(2)由(1)知b n+1-b n=a4(n+1)-1-a4n-1=4d=-20,所以新数列{b n}也为等差数列,且首项为b1=-7,公差为d′=-20,所以b n=b1+(n-1)d′=-7+(n-1)×(-20)=13-20n.(3)因为m=4n-1,n∈N+,所以当n=110时,m=4×110-1=439,所以数列{b n}中的第110项是数列{a n}中的第439项.10.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产,已知该厂连续生产n个月的累计产量为f(n)=n(n+1)(2n-1)吨,但如果月产量超过96吨,将会给环境造成危害.(1)请你代表环保部门给厂拟定最长的生产周期.(2)若该厂在环保部门的规定下生产,但需要每月交纳a万元环保税,已知每吨售价0.6万元,第n个月的工人工资为g(n)=n2-n-1万元,若每月都赢利,求出a的范围?【解析】(1)设化工厂每个月的产量构成数列{a n},则a n=f(n)-f(n-1)=n(n+1)(2n-1)-(n-1)n(2n-3)=3n2-2n,所以产量逐月递增.当3n2-2n≤96时,解得n≤6,所以环保部门给厂拟定最长的生产周期为6个月.(2)若每月都赢利,则(3n2-2n)--a>0恒成立,所以a<,当n=2时,=,所以a<.又因为a>0,所以0<a<.1.在数表中,已知每行、每列中的数都成等差数列.第1列第2列第3列…第1行 1 2 3 …第2行 2 4 6 …第3行 3 6 9 ………………那么位于表中的第n行第n+1列的数是.【解析】观察可知,第n行的数构成以n为首项,n为公差的等差数列,所以第n行第n+1列的数是n+[(n+1)-1]×n=n2+n.答案:n2+n2.已知,,成等差数列,求证:,,也成等差数列. 【证明】因为,,成等差数列,所以=+,即2ac=b(a+c).因为+=====,所以,,成等差数列.。
北师大版高中数学必修5:等差数列_课件2(2)

(2)方法一:∵a3+a7=a4+a6=2a5=a2+a8, ∴a3+a4+a5+a6+a7=5a5=450. ∴a5=90,∴a2+a8=2a5=180. 方法二:因为{an}为等差数列,设首项为a1,
等差数列性质的应用 (1)在等差数列{an}中,a1+a4+a7=15,a2a4a6
=45,求数列的通项公式; (2)设{an}为等差数列,若a3+a4+a5+a6+a7=
450, 求a2+a8.
(1)先利用等差数列的性质转化为求a2、a6,再 求出首项a1和公差d,得出通项公式;
组成公差为 md 的等差数列
1.下列说法中,正确的是( )
A.若{an}是等差数列,则{|an|}也是等差数列 B.若{|an|}是等差数列,则{an}也是等差数列 C是.等若差存数在列自然数n使2an+1=an+an+2,则{an}
D2a.n+若1={aann}+是a等n+差2 数列,则对任意正整数n都有 答案: D
等差数列的性质
1.进一步了解等差数列的项与序号之间的规 律.
2.理解等差数列的性质. 3.掌握等差数列的性质及其应用. 4.掌握等差中项的概念与应用.
1.灵活应用等差数列的性质,求数列中的项 (或通项)(重点,难点)
2.利用等差中项及性质设元或列方程解题(重 点)
3.常与函数、方程结合命题,三种题型均可 出现,多为中低档题.
1(n≥2,且n∈N+). (2)要证三个数a,b,c成等差数列,只需证
2b=a+c即可,若已知三个数a,b,c成等 差数列,则有2b=a+c.
高中数学北师大版必修5课件:第1章2.1.1《等差数列的概念》

2.求等差数列的通项公式除课本的归纳法外, 你还知道哪些方法? 提示:除课本上用归纳法得到通项公式外,还 有以下几种方法推出等差数列的通项公式,这 些方法是解决问题的一些重要的常规方法,要 注意体会并逐步应用. ①累加法 因为{an}为等差数列,则有 a n - a n - 1= d , an-1-an-2=d,
2.等差数列的通项公式
若{an}是首项为a1,公差为d的等差数列,则 an=a1+(n-1)d {a }的通项公式为_________________.
n
问题探究 1.等差数列的定义中为什么要强调“从第2项 起”和“差是同一个常数”这两点? 提示:通过列举反例来分析.我们知道一个数 列的第1项没有前一项,所以强调“从第2项 起”;“差是常数”和“差是同一个常数”的 意义不一样,如数列1,5,3,7中,a2-a1=5-1 =4=常数,a3-a2=3-5=-2=常数,a4- a3=7-3=4=常数,差都是常数,但是很明 显该数列不是等差数列,所以强调“差是同一 个常数”,这是等差数列定义的核心.
数列{an}的通项公式.
2.从函数的观点看,数列的表示方法有 列表法 , _______ 图像法 , ___________ 通项公式法 . _______
知新益能
1.等差数列的概念 第二项 起,每一项与它的前 如果一个数列从 _______
同一个常数 ,那么这个数列就 一项的差等于 ___________ 常数 叫做等差数列的公 叫做等差数列,这个 _____ d 表示. 差,通常用字母___
解了题意.
自我挑战
已知等差数列 {an}的首项为 a1,公
差为d且a5=10,a12=31,求数列的通项公式.
解:法一:∵a5=a1+4d,a12=a1+11d,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1 等差数列(二)
教学目标
1.知识与技能:能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。
2. 过程与方法:进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。
3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。
教学重点:会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。
教学难点:等差数列与一次函数之间的联系
教学过程:
一、等差数列的通项公式
)(1d a dn a n -+= )()(1d a dn n f -+=
特征:
1︒ 等差数列的通项公式是关于n 的一次函数,n 是自变量,+∈N n n a 是函数 2︒ 如果通项公式是关于n 的一次函数,则该数列成等差数列;
证明:若A n B A B A n A B An a n )1()()1(-++=++-=+=
它是以B A +为首项,A 为公差的等差数列。
3︒ 图象是直线)(1d a dx y -+=上一些等间隔的点,公差d 是该直线的斜率. 4︒ 公式中若 0>d 则数列递增,0<d 则数列递减;0=d 则数列为常数列 图像见教材P13页
等差数列与一次函数的异同:
例1:已知(1,1),(3,5)是等差数列{an}图像上的两点.
(1)求这个数列的通项公式;
(2)画出这个数列的图像;
(3)判断这个数列的单调性.
解:(1)略.
(2)图像是直线y=2x-1上一些等间隔的点.
(3)因为一次函数y=2x-1是增函数, 所以数列{an}是递增数列.
二、等差中项的概念
如果在a 与b 中间插入一个数A, 使a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项
若A 是a 与b 的等差中项,则2
b a A +=
或b a A +=2 证明:设公差为d ,则d a A += d a b 2+= ∴A d a d a a b a =+=++=+222 例2:一个木制梯形架的上、下两底边分别为33cm ,75cm ,把梯形的两腰各6等分,用平行
木条连接各对应点,构成梯形架的各级。
试计算梯形架中间各级的宽度。
解: 记梯形架自上而下各级宽度所构成的数列为{an},则由梯形中位
线的性质,易知每相邻三项均成等差数列,从而{an}成等差数列。
依题意有cm a 331= cm a 757=
现要求65432,,,a a a a a ,即中间5层的宽度。
)(76
33751717cm a a d =-=--=cm a 407332=+=, cm a 477403=+=,cm a 544=, cm a 615=,cm a 686=
答:梯形架中间各级的宽度自上而下依次是40cm,47cm,54cm,61cm,68cm.
例3:在-1与7之间顺次插入三个数c b a ,,使这五个数成等差数列,求此数列。
解:∵成等差数列7,,,,1c b a - ∴b 是-1与7 的等差中项 ∴ 3271=+-=
b a 又是-1与3的等差中项 ∴12
31=+-=a 7533
c 又是1与7的等差中项 ∴52
73=+=c 解:设11-=a 75=a ∴d )15(17-+-= 2=⇒d ∴所求的数列为-1,1,3,5,7 小结:
这节课你学习了哪些知识?
体会到了哪些数学思想方法?
你最大的收获是什么?
思考题:1、证明你刚才关于等差数列特征的猜想。
2、总结归纳:证明一个数列为等差数列的方法有哪些?
作业: P 19 习题1-2 第9、11、13题精美句子
1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂; 幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了
6、朋友是什么?
朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
7、一粒种子,可以无声无息地在泥土里腐烂掉,也可以长成参天的大树。
一块铀块,可以平庸无奇地在石头里沉睡下去,也可以产生惊天动地的力量。
一个人,可以碌碌无为地在世上厮混日子,也可以让生命发出耀眼的光芒。
8、青春是一首歌,她拨动着我们年轻的心弦;青春是一团火,她点燃了我们沸腾的热血;青春是一面旗帜,她召唤着我们勇敢前行;青春是一本教科书,她启迪着我们的智慧和心灵。