13章《三角形边角关系》复习
三角形中的边角关系、命题与证明(知识点汇总 沪科8上)

第13章 三角形中的边角关系、命题与证明一、三角形(一)、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、顶点是A 、B 、C 的三角形,记作“ΔABC”,读作“三角形ABC”。
3、组成三角形的三条线段叫做三角形的边,即边AB 、BC 、AC ,有时也用a ,b ,c 来表示,顶点A 所对的边BC 用a 表示,边AC 、AB 分别用b ,c 来表示;4、∠A 、∠B 、∠C 为ΔABC 的三个内角。
(二)、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
用字母可表示为a+b>c,a+c>b,b+c>a ;a -b<c,a -c<b,b -c<a 。
2、判断三条线段a,b,c 能否组成三角形:(1)当a+b>c,a+c>b,b+c>a 同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。
3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即.4、作用:∠判断三条已知线段能否组成三角形;∠当已知两边时,可确定第三边的范围;∠证明线段不等关系。
(三)、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。
2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C 所对的边AB 称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。
注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
3、判定一个三角形的形状主要看三角形中最大角的度数。
直角三角形边角关系知识点

直角三角形边角关系专题复习一. 知识体系:1. 三种三角函数与直角三角形中边与角的关系,在Rt△中在此应注意的问题是无论是求哪一个角的三角函数,一定要先把这个角放在直角三角形中 2. 特殊角的三角函数值3. 三角函数的有关计算(对于一般角的三角函数值可利用计算器)41 2 3 4.三角函数的应用()测山的高度()测楼的高度()测塔的高度()其它⎧⎨⎪⎪⎩⎪⎪题型一:三角形内的计算问题(计算三角函数值、面积等) 例1.在ABC Rt ∆中,∠C=90° ,且21sin =A ,AB=3,求BC ,AC 及B ∠.例2.已知,四边形ABCD 中,∠ABC = ∠ADB =090,AB = 5,AD = 3,BC = 32,求四边形ABCD 的面积。
例3.如图,在Rt ABC ∆中,90BCA ∠=︒,CD 是中线,5,4BC CD ==,求AC 的长。
B变式训练:1、ABC Rt ∆中,∠C=90°,AC=4,BC=3,B cos 的值为…………………【 】 A 、51 B 、53 C 、 34 D 、 432、在菱形ABCD 中,∠ABC=60° , AC=4,则BD 的长是…………………【 】 A 、 38 B 、34 C 、32 D 、83、在ABC Rt ∆中,∠C=90° ,A tan =3,AC=10,则S △ABC 等于………【 】 A 、 3 B 、300 C 、350D 、150 4、在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( ) A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没有变化5、在ABC Rt ∆中,∠C=90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c 三边,则下列式子一定成立的是………………………………………………………………【 】 A 、B c a sin ⋅= B 、B c a cos ⋅= C 、Bac tan =D 、A a c sin ⋅= 6、等腰三角形的腰长为10cm ,顶角为120,此三角形面积为 。
沪科版八年级数学上册 第13章 《三角形边角关系》重点练

第13章《三角形中的边角关系》重点练1.下列长度的三条线段,不能组成三角形的是()A.1cm,2cm,3cm B.2cm,3cm,4cm C.3cm,4cm,5cm D.5cm,6cm,7cm2.已知三角形两边的长分别是3和6,则此三角形第三边的长可能是()A.1B.2 C.8 D.113.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为()A.2cm B.3cm C.4cm D.5cm4. 三角形的三边长分别是3,1﹣2m,8.则数m的取值范围是()A.﹣5<m<﹣2B.﹣5<m<2C.5<m<11D.0<m<2 5.△ABC的三个内角∠A,∠B,∠C满足∠A:∠B:∠C=3:4:5,则这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形6. △ABC满足条件∠A=∠B=∠C则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形7.如果一个三角形的三条高的交点恰好是三角形的一个顶点,则这个三角形的形状是()A.等腰三角形B.锐角三角形C.钝角三角形D.直角三角形8.下列四个图形中,线段BE是△ABC的高的是9、已知a,b,c是ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2cB.2a+2bC.2cD.010、已知n是正整数,若一个三角形的三边长分别是n+2、8+n、3n,则满足条件的n的值有()A.4个B.5个C.6个D.7个11、具备下列条件的△ABC中,不是直角三角形的是()A .∠A+∠B=∠CB .∠A=12∠B=13∠CC .∠A :∠B :∠C=1:2:3D .∠A=2∠B=3∠C12、如图,在ABC ∆中,AD 平分BAC ∠,EG AD ⊥,且分别交AB ,AD ,AC及BC 的延长线于点E ,H ,F ,G ,若45B ∠=︒,75ACB ∠=︒,则G ∠的度数为( )13、 如图AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC=120°,∠C=40°,则∠DAE 的度数是 ______________ .14、三角形的三边长分别为3、m 、5=_______15、已知,,a b c 分别为ABC ∆的三边,且满足32,26a b c a b c +=--=-. (1)求c 的取值范围;(2)若ABC ∆的周长为12,求c 的值.16、已知,在 ABC 中,AB=8,且BC=2a+2,AC=22. (1)求a 的取值范围;(2)若 为等腰三角形,求这个三角形的周长。
三角形中的边角关系、命题与证明

高效学案4、三角形中的重要线段(1)三角形的角平分线:三角形的一个内角的平分线与它的对边相交,连接这个角的顶点和交点之间的线段.(2)三角形的中线:三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.(3)三角形的高:从三角形一个顶点向它的对边作一条垂线,三角形顶点和垂足之间的线段称三角形这条边上的高.三、经典例题【例1】以下列各组线段长为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .2cm ,3cm ,6cm【变式1】两根木棒的长分别为7cm 和10cm ,要选择第三根棒,将它钉成一个三角形框架,那么第三根木棒长x cm 的范围是__________.【变式2】若a 、b 、c 是△ABC 的三边,化简c b a a c b c b a +--+--+--.【变式3】如图,已知P 是△ABC 内一点,连结AP ,PB ,PC .求证:PA+PB+PC >21(AB+AC+BC).【例2】等腰三角形的两边长分别为5 cm 和10 cm ,则此三角形的周长是( )A .15cmB .20cmC .25 cmD .20 cm 或25 cm【例3】已知△ABC 中:(1)∠A=20°,∠B ﹣∠C=40°,则∠B=______;(2)∠A=120°,2∠B+∠C=80°,则∠B=_______;(3)∠B=∠A+40°,∠C=∠B ﹣50°,则∠B=_______;(4)∠A :∠B :∠C=1:3:5,则∠B=_______.E DA 2 1 ABC 【变式】如图把△ABC 纸片沿DE 折叠,当点A 在四边形BCDE 的内部时,则∠A 与∠1、∠2之间有一种数量关系始终保持不变.请试着找出这个规律,你发现的规律是( )A.∠A=∠2+∠1B.2∠A=∠2+∠1C.3∠A=2∠1+∠2D.3∠A=2∠1+2∠2【例4】如图,α、β、γ分别是△ABC 的外角,且α:β:γ= 2:3:4,则α =__________.【变式1】如图,五角星ABCDE ,求E D C B A ∠+∠+∠+∠+∠的度数.【变式2】已知:如图1,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关 ;(2)在图2中,若∠D=40°,∠B=36°,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .利用(1)的结论,试求∠P 的度数;(3)如果图2中∠D 和∠B 为任意角时,其他条件不变,试问∠P 与∠D 、∠B 之间存在着怎样的数量关系?【例5】如图,∆ABC 中,AD 是BC 上的中线,BE 是∆ABD 中AD 边上的中线,若∆ABC 的面积是24,则∆ABE 的面积是________.【例6】如图,在△ABC 中,BE ⊥AC ,BC=5cm ,AC=8cm ,BE=3cm .(1)求△ABC 的面积;(2)画出△ABC 中的BC 边上的高AD ,并求出AD 的值.【例7】已知:如图AB//CD 直线EF 分别交AB 、CD 于点E 、F ,BEF ∠的平分线与DFE ∠的平分线相交于P ,求证 90=∠P .【变式】如图,∠MON=90°,点A ,B 分别在射线OM ,ON 上运动,BE 平分∠NBA ,BE 的反向延长线与∠BAO 的平分线交于点C .∠BAO=45°则∠C 的度数是( )A .30°B .45°C .55°D .60°【例8】如图,△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A=70°,则∠BOC= 度.【变式】认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 探究2:如图2中,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 探究3:如图3中,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?四、方法归纳1、三角形的边的关系,只需验证:两个较短的边之和大于第三边即可.2、三角形的两边长分别为b a ,,则第三边长c 的取值范围是:b a c b a +<<-.3、三角形的几种“心”.(1)重心:三条中线的交点.(2)外心:三边垂直平分线的交点.(3)内心:三条内角平分线的交点.(4)垂心:三条高线的交点.五、课后作业【作业1】1.如图所示,共有_______个三角形,以AD 为一边的三角形有___________________,∠C 是△ADC 的________边的对角,AE 是△ABE 中∠_____的对边.2.一个三角形周长为27cm ,三边长为2:3:4,则最长边为______cm.3.已知在△ABC 中,5=a ,3=b ,那么第三边c 的取值范围是_____________.4.在△ABC 中,2∠A=3∠B=6∠C ,则△ABC 是________三角形.5.在△ABC 中,已知∠B -∠A=5°,∠C -∠B=20°,则∠A=_______.6.如图,在△ABC 中,∠ACB=90°,∠ABC=25°,CD ⊥AB 于D ,则∠ACD =_________.7.等腰三角形周长为14,其中一边长为3,则腰长为________.8.一个三角形有两条边相等,一边长为4cm ,另一边长为9cm ,那么这个三角形的周长是__________.9.在△ABC 中,∠B ,∠C 的平分线交与点O ,若∠BOC=132°,则∠A=________.10.如图,在△ABC 中,D 、E 分别是AB 、AC 边上的点,DE ∥BC ,∠ADE=30°,∠C=120°,则∠A 等于( )A.60°B.45°C.30°D.20°11.如果三角形的一个角等于其他两个角的差,那么这个三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定12.一个三角形的两边长分别为3和7,若第三边长为偶数,则第三边为( )A.4,6B.4,6,8C.6,8D.6,8,1013.能将三角形的面积分成相等的两部分的是( )A.三角形的角平分线B.三角形的中线C.三角形的高线D.以上都不对14.在△ABC 中,若∠A :∠B :∠C=1:2:3,则△ABC 是( )A.锐角三角形B.直角三角形C.钝角三角形D.正三角形15.如图,AD 、AF 分别是△ABC 的高和角平分线,已知∠B=36°,∠C=76°,求∠DAF 数.(提示:先证明∠DAF=21(∠C -∠B ))16.如图,已知I 为△ABC 的内角平分线的交点.求证:∠BIC=90°+21∠A.17.如图,在△ABC 中,∠B = 60°,∠C = 50°,AD 是∠BAC 的平分线,DE 平分∠ADC 交AC 于E ,求∠BDE 的度数.18.如图,在△ABC 中,∠B=∠C ,FD ⊥BC ,DE ⊥AB ,垂足分别为D 、E ,已知∠AFD=150°,求∠EDF 等于多少度?【作业2】1.如图,AD ,BE ,CF 是△ABC 的中线、高、角平分线.则:BD=___=21___;∠___=∠___=90°;∠___=∠___=21∠___. 2.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,已知AB=6,BC=4,AD=5,则CE=______.3.如图,AD 、AE 分别是△ABC 的中线、高,且AB=5,AC=3,则△ABD 与△ACD 的周长的差是_________,△ACD 与△ABD 的面积关系为__________.第1题 第2题 第3题 第4题 第5题4.如图,△ABC 的周长是21cm ,AB=AC ,中线BD 分△ABC 为两个三角形,且△ABD 的周长比△BCD 的周长大6cm ,则AB= ,BC=_________.5.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且2ABC cm 8=∆S ,则阴影部分的面积等于_________.6.在△ABC 中,若AB=5,AC=2,且三角形周长为偶数,则BC=________.7.△ABC 的三边长是a ,b ,c ,则c b a a c b c b a +++-----=________.第8题 第9题 第10题8.如图,在Rt △ABC 中,∠C=90°,点B 沿CB 所在直线远离C 点移动,下列说法不正确的是( )A.三角形面积随之增大B.∠CAB 的度数随之增大C.边AB 的长度随之增大D.BC 边上的高随之增大9.如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°10.如图,在△ABC 中,BO ,CO 分别平分∠ABC 和∠ACB ,则∠BOC 与∠A 的大小关系是( )A.∠BOC=2∠AB.∠BOC=90°+∠AC.∠BOC=90°+21∠A D.∠BOC=90°21-∠A11.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个12.如图,在△ABC中,∠ABC与∠ACB的平分线相交于D,已知∠A=50°,求∠BDC的度数.13.如图,已知BD为∠ABC的平分线,CD为△ABC的外角∠ACE的平分线,CD与BD交于点D,试说明∠A=2∠D.14.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.15.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.16.已知:∠MON=40°,OE 平分∠MON ,点A 、B 、C 分别是射线OM 、OE 、ON 上的动点(A 、B 、C 不与点O 重合),连接AC 交射线OE 于点D .设∠OAC x =°.21(1)如图1,若AB ∥ON ,则①∠ABO 的度数是 ;②当∠BAD=∠ABD 时,=x ;当∠BAD=∠BDA 时,=x .(2)如图2,若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.第二节:命题与证明一、课堂导入有个学生请教爱因斯坦逻辑学有什么用。
第十三章 三角形边角关系及命题与证明 (含答案)

第十三章三角形边角关系及命题与证明一、单选题1.已知△ABC的两条高分别为4和12,第三条高也为整数,则第三条高所有可能值为()A. 3和4 B. 1和2 C. 2和3 D. 4和52.已知非直角三角形ABC中,∠A=45°,高BD与CE所在直线交于点H,则∠BHC的度数是()A. 45° B. 45°或135° C. 45°或125° D. 135°3.下列说法中正确的是()A.两条射线组成的图形叫做角B.小于平角的角可分为锐角和钝角两类C.射线就是直线D.两点之间的所有连线中,线段最短4.如图,把一张长方形纸条ABCD沿EF折叠,C、D 两点落到、处已知,且,则的度数为A. B. C. D.5.已知如图,△ABC中,∠ABC=50°,∠BAC=60°,BO、AO分别平分∠ABC 和∠BAC,求∠BCO的大小()A. 35° B. 40° C. 55° D. 60°6.下列命题中,属于真命题的是()A.同位角相等 B.任意三角形的外角一定大于内角C.多边形的内角和等于180° D.同角或等角的余角相等7.如图:在△ABC中,G是它的重心,AG⊥CD ,如果,则△AGC的面积的最大值是()A. B. 8 C. D. 68.如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C.试卷第1页,总4页其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④9.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是四边形ABCD内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为7、9、10,则四边形DHOG的面积为()A. 7 B. 8 C. 9 D. 1010.设△ABC的面积为1,如图①将边BC、AC分别2等份,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等份,BE1、AD1相交于点O,△AOB的面积记为S2;……,依此类推,则S5的值为()A. B. C. D.二、填空题11.对于命题“如果∠1+∠2=90°,那么∠1=∠2”,能说明它是假命题的反例是_____.12.如图,点C是线段AB上的动点,分别以AC、BC为边在AB的同侧作等边△ACD、等边△BCE,BD、AE交于点P.若AB=6,则PC的最大值为_____.13.如图,设△ABC的两边AC与BC之和为a,M是AB的中点,MC=MA=5,则a的取值范围是_____.14.如图,中,,、分别平分,,则________,若、分别平分,的外角平分线,则________.15.三角形中一个内角是另一个内角的两倍时,我们称此三角形为“特征三角形”,其中称为“特征角”,如果一个“特征三角形”的“特征角”为,那么这个“特征三角形”的最小内角的度数为______.三、解答题试卷第2页,总4页16.已知:点D是∠ABC所在平面内一点,连接AD、CD.(1)如图1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC;(2)如图2,若存在一点P,使得PB平分∠ABC,同时PD平分∠ADC,探究∠A,∠P,∠C的关系并证明;.(3)如图3,在 (2) 的条件下,将点D移至∠ABC的外部,其它条件不变,探究∠A,∠P,∠C的关系并证明(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(保留作图痕迹,不写作法);(2)若(1)中的射线CM交AB于点D,∠A=600,∠B=400,求∠BDC.18.如图①,在△ABC中,AE平分∠BAC,∠C>∠B,F是AE上一点,且FD⊥BC于D点.(1)试猜想∠EFD,∠B,∠C的关系,并说明理由;(2)如图②,当点F在AE的延长线上时,其余条件不变,(1)中的结论还成立吗?说明理由.①②19.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,试解答下列问题:问题一:在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系;问题二:在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,试求∠P的度数;试卷第3页,总4页问题三:在图3中,已知AP、CP分别平分∠BAM、∠BCD,请问∠P与∠B、∠D之间存在着怎样的数量关系?并说明理由.问题四:在图4中,已知AP的反向延长线平分∠EAB,CP平分∠DCF,请直接写出∠P与∠B、∠D之间的数量关系.20.一副三角板如图1摆放,∠C=∠DFE=90∘,∠B=30∘,∠E=45∘,点F在BC上,点A在DF上,且AF平分∠CAB,现将三角板DFE绕点F顺时针旋转(当点D落在射线FB上时停止旋转).(1)当∠AFD=_ __∘时,DF∥AC;当∠AFD=__ _∘时,DF⊥AB;(2)在旋转过程中,DF与AB的交点记为P,如图2,若AFP有两个内角相等,求∠APD的度数;(3)当边DE与边AB、BC分别交于点M、N时,如图3,若∠AFM=2∠BMN,比较∠FMN与∠FNM的大小,并说明理由。
八年级数学上册试题 第13章《三角形中的边角关系、命题与证明》章节测试卷-沪科版(含解析)

第13章《三角形中的边角关系、命题与证明》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.下列实际情景运用了三角形稳定性的是()A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒2.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则AC长的可能值有()个.A.3B.4C.5D.63.下列命题是假命题的是( )A.如果∠1=∠2,∠2=∠3,那么∠1=∠3B.对顶角相等C.如果一个数能被6整除,那么它肯定也能被3整除D.内错角相等4.如图所示,∠F=90°,CE⊥AB,C是BF的中点,D是BE上的一点,下列说法正确的是( )A.CD是△ABC的中线B.AF是△ABC的高C.CE是△ABF的中位线D.AC是△ABF的角平分线5.如图,在△ABC中,AD是△ABC的角平分线,DE⊥AC,若∠B=40°,∠C=60°,则∠ADE的度数为()A.30°B.40°C.50°D.60°6.如图,在△ABC中,G是边BC上任意一点,D、E、F分别是AG、BD、CE的中点,S△ABC 的值为()=48,则SΔDEFA.2B.4C.6D.87.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值是( )A.7B.8C.9D.108.如图,△ABC中,∠ABC=3∠C,E分别在边BC,AC上,∠EDC=24°,∠ADE=3∠AED,∠ABC的平分线与∠ADE的平分线交于点F,则∠F的度数是( )A.54°B.60°C.66°D.72°9.如图,在△ABC中,AE平分∠BAC,AD⊥BC于点D.∠ABD的角平分线BF所在直线与射线AE 相交于点G,若∠ABC=3∠C,且∠G=20°,则∠DFB的度数为()A.50°B.55°C.60°D.65°10.如图,∠ABC=∠ACB,BD、CD、BE分别平分∠ABC,外角∠ACP,外角∠MBC,以下结论:①AD∥BC,②BD⊥BE,③∠BDC+∠ABC=90°,④∠BAC+2∠BEC=180°,其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.如图,有一张三角形纸片ABC,∠B=32°,∠A=100°,点D是AB边上的固定点(BD<1AB),2在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,当EF与AC边平行时,∠BDE的度数为.12.如图,AD为△ABC的中线,DE,DF分别为△ABD,△ACD的一条高,若AB=6,DE=4,则AC=.,DF=8313.已知△ABC的边长a,b,c满足(a−2)2+|b−4|=0,则a、b的值分别是,若c为偶数,则△ABC的周长为.14.如图,在△ABC中,点D是AC边上一点,CD:AD=1:2,连接BD,点E是线段BD上一点,BE:ED=1:3,连接AE,点F是线段AE的中点,连接CF交线段BD于点G,若△ABC的面积是12,则△EFG的面积是.15.如图△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=70°,点D在边OA上,将△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中当CD∥AB时,旋转时间秒.16.如果三角形中任意两个内角∠α与∠β满足2α−β=60°,那么我们称这样的三角形为“斜等边三角形”.在锐角三角形ABC中,BD⊥AC于点D,若△ABC、△ABD、△BCD都是“斜等边三角形”,则∠ABC=.三.解答题(共7小题,满分52分)17.(6分)(1)一个多边形的内角和是外角和的3倍,这个多边形是几边形?(2)小明求得一个多边形的内角和为1280°,小强很快发现小明所得的度数有误,后来小明复查时发现他重复加了一个内角,求出这个多边形的边数以及他重复加的那个角的度数.18.(6分)如图所示,D是△ABC的边AC上任意一点(不含端点),连结BD,请判断AB+BC+AC 与2BD的大小关系,并说明理由.19.(8分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.将△ABC平移,使点C平移至点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△DEF;(2)在图中画出△ABC的AB边上的高CH;(3)若连接CD、AE,则这两条线段之间的关系是 ;(4)△DEF的面积为 .20.(8分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10 cm,∠CAB=90°.(1)求AD的长;(2)求△ACE和△ABE周长的差.21.(8分)在△ABC中,∠B,∠C均为锐角且不相等,线段AD是△ABC中BC边上的高,AE是△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,求∠DAE的度数;(2)若∠B=x°,∠DAE=10°,则∠C=______;(3)F是射线AE上一动点,C、H分别为线段A B,BC上的点(不与端点重合),将△BGH沿着GH 折叠,使点B落到点F处,如图2所示,请直接写出∠1,∠2与∠B的数量关系.22.(8分)已知,在△ABC中,∠BAC=∠ABC,点D在AB上,过点D的一条直线与直线AC、BC分别交于点E、F.(1)如图1,∠BAC=70°,则∠CFE+∠FEC=______°.(2)如图2,猜想∠BAC、∠FEC、∠CFE之间的数量关系,并加以证明;(3)如图3,直接写出∠BAC、∠FEC、∠CFE之间的数量关系______.23.(8分)将含30°角的三角板ABC(∠B=30°)和含45°角的三角板FDE及一把直尺按图方式摆放在起.使两块三角板的直角顶点A,F重合.点A,F,C,E始终落在直尺的PQ边所在直线上.将含45°角的三角板FDE沿直线PQ向右平移.(1)当点F与点C重合,请在备用图中补全图形,并求平移后DC与CB形成的夹角∠DCB的度数;(2)如图,点F在线段AC上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线FN与边BC交于点N,请证明在移动过程中,∠NFB的大小保持不变;(3)仿照(2)的探究,点F在射线CQ上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线F N'所在直线与直线BC交于点N,请写出一个与平移过程有关的合理猜想.(不用证明)答案一.选择题1.C【分析】根据三角形的稳定性进行判断即可求解.【详解】解:古建筑中的三角形屋架是利用了三角形的稳定性,故选C2.B【分析】依据ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,可得2<BC<11,再根据ΔABC的三边长均为整数,即可得到BC=4,6,8,10.【详解】解:∵ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,∴2<BC<22−BC,解得2<BC<11,又∵ΔABC的三边长均为整数,ΔABM的周长比ΔACM的周长大2,∴AC=22−BC−22=10−12BC为整数,∴BC边长为偶数,∴BC=4,6,8,10,即AC的长可能值有4个,故选:B.3.D【分析】利用对顶角的性质、实数的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A、如果∠1=∠2,∠2=∠3,那么∠1=∠3,正确,是真命题,故本选项不符合题意;B、对顶角相等,正确,是真命题,故本选项不符合题意;C、如果一个数能被6整除,那么它肯定也能被3整除,正确,是真命题,故本选项不符合题意;D、两直线平行,内错角相等,原命题是假命题,故本选项符合题意.故选:D.4.B【分析】根据三角形中位线的定义,三角形角平分线、中线和高的定义作答.【详解】解:A、AC是△ABC的中线,故本选项不符合题意.B 、由∠F =90°知,AF 是△ABC 的高,故本选项符合题意.C 、CE 是△ABC 的高,故本选项不符合题意.D 、AC 是△ABF 的中线,故本选项不符合题意.故选:B .5.C【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义可得∠BAD=∠DAC =40°,最后利用垂线的定义可得∠AED=90°,进而解答即可.【详解】解:∵∠B =40°,∠C =60°,∴∠BAC=180°−40°−60°=80°.∵AD 平分∠BAC ,∴∠BAD=∠DAC =40°.∵DE ⊥AC ,∴∠AED =90°,∴∠ADE =90°−∠DAE =50°.故选C .6.C【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【详解】解:连接CD ,如图所示:∵点D 是AG 的中点,∴S △ABD =12S △ABG ,S △ACD =12S △AGC ,∴S △ABD +S △ACD =12S △ABC =24,∴S △BCD =12S △ABC =24,∵点E 是BD 的中点,∴S△CDE =12S△BCD=12,∵点F是CE的中点,∴S△DEF =12S△CDE=6.故选:C.7.C【分析】若两螺丝的距离最大,则此时这个木框的形状为三角形,根据三角形任意两边之和大于第三边,进行求解即可.【详解】解:①当3、4在一条直线上时,三边长为:5、7、7,此时最大距离为7;②∵4+5<3+7,∴3、7不可能在一条直线上;③当4、5在一条直线上时,三边长为:3、7、9,此时最大距离为9;④∵4+3<5+7,∴5、7不可能在一条直线上;综上所述:最大距离为9.故选:C.8.B【分析】根据题意可知∠FBC=32∠C,设∠C=x,表示出∠ADE,根据角平分线的定义,可得∠EDF的度数,根据∠FDC=∠F+∠FBC列方程,即可求出∠F的度数.【详解】解:∵BF平分∠ABC,∴∠FBC=12∠ABC,∵∠ABC=3∠C,∴∠FBC=32∠C,设∠C=x,则∠FBC=32x,∵∠EDC=24°,∴∠AED=x+24°,∵∠ADE=3∠AED,∴∠ADE=3x+72°,∵DF平分∠ADE,∴∠EDF=32x+36°,∵∠FDC=∠F+∠FBC,∴32x+36°+24°=∠F+32x,∴∠F=60°.故选:B.9.C【分析】由角平分线的定义可以得到∠CAE=∠BAE,∠ABF=∠DBF,设∠CAE=∠BAE=x,假设∠C=y,∠ABC=3y,通过角的等量代换可得到∠DFB=3∠G,代入∠G的值即可.【详解】∵AE平分∠BAC,BF平分∠ABD∴∠CAE=∠BAE,∠ABF=∠DBF设∠CAE=∠BAE=x∵∠ABC=3∠C∴可以假设∠C=y,∠ABC=3y∴∠ABF=∠DBF=∠CBG=12(180°−3y)=90°−32y∵AD⊥CD∴∠D=90°∴∠DFB=90°−∠DBF=32y设∠ABF=∠DBF=∠CBG=z,则{z=x+∠Gz+∠G=x+y∴∠G=12y∴∠DFB=3∠G∵∠G=20°∴∠DFB=60°故答案选:C10.D【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角性质、平行线的判定一一判定即可.【详解】解:①设点A、B在直线MF上,∵BD、CD分别平分△ABC的内角∠ABC,外角∠ACP,∴AD平分△ABC的外角∠FAC,∴∠FAD=∠DAC,∵∠FAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠FAD=∠ABC,∴AD∥BC,故①正确.②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥BD,故②正确.③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确.④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确.故选:D.二.填空题11.124°【分析】根据已知、折叠和平行线,得∠BEF=∠C,再计算∠BED的度数,最后根据三角形内角和为180°计算∠BDE的度数即可.【详解】∵EF∥AC,∠B=32°,∠A=100°,∴∠BEF=∠C=180°−∠A−∠B=180°−100°−32°=48°(两直线平行,同位角相等),∵纸片沿DE折叠(DE为折痕),点B落在点F处,∴∠BED=12∠BEF=12×48°=24°,∴∠BDE=180°−∠B−∠BED=180°−32°−24°=124°(三角形内角和为180°),故答案为:124°.12.9【分析】由AD为△ABC的中线得S△ABD =S△ACD,从而得到12⋅AB⋅DE=12⋅AC⋅DF,代入进行计算即可得到答案.【详解】解:∵AD为△ABC的中线,∴BD=CD,∴S△ABD =S△ACD,∵DE,DF分别为△ABD,△ACD的一条高,∴12⋅AB⋅DE=12⋅AC⋅DF,∵AB=6,DE=4,DF=83,∴AC=9,故答案为:9.13. 2、4 10【分析】由(a −2)2+|b −4|=0,可得a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,由c 为偶数,可得c =4,然后求周长即可.【详解】解:∵(a −2)2+|b −4|=0,∴a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,∵c 为偶数,∴c =4,∴△ABC 的周长为2+4+4=10,故答案为:2、4,10.14.94【分析】连接DF ,CE .由题意中的线段的比和S △ABC =12,可推出S △ABD =23S △ABC =8,S △CBD=13S △ABC =4,从而可求出S △ABE =14S △ABD =2,S △ADE =34S △ABD =6.结合中点的性质即得出S △ADF =S △EDF =12S △ADE =3,从而可求出S △CDF =12S △ADF =32,进而得出S △ECF =S △ACF=S △ADF +S △CDF =92,最后即得出DGEG =S △CDF S △ECF=13,最后即可求出S △EFG =34S △EDF =94.【详解】解:如图,连接DF ,CE .∵CD:AD=1:2,S △ABC =12,∴S △ABD =23S △ABC =8,S △CBD =13S △ABC =4.又∵BE:ED =1:3,∴S△ABE =14S△ABD=2,S△ADE=34S△ABD=6.∵点F是线段AE的中点,∴S△ADF =S△EDF=12S△ADE=3.∵CD:AD=1:2,∴S△CDF =12S△ADF=32,∴S△ACF =S△ADF+S△CDF=92,∴S△ECF =S△ACF=92,∴S△CDFS△ECF =3292=13,即S△DEF+S△DGCS△EFG+S△EGC=13,∴DGEG =13,∴S△EFG =34S△EDF=94.故答案为:94.15.11或29【分析】根据题意,画出图形,进行分类讨论,①当点C在△AOB内时,根据三角形的内角和定理可得∠D=20°,根据平行线的性质得出∠1=∠B=40°,再根据三角形的外角定理求出∠2,进而得出∠AOD=∠AOB+∠2,即可求解;②当点C在△AOB外时,延长BO交CD 于一点,根据平行线的性质得出∠3=∠B=40°,再根据三角形的外角定理求出∠4=20°,即可得出∠AOD,即可求解.【详解】解:①当点C在△AOB内时,如图,在Rt△OCD中,∠C=70°,∴∠D=180°−90°−70°=20°,∵CD∥AB,∠B=40°,∴∠1=∠B=40°,∵∠D+∠2=∠1,∴∠2=40°−20°=20°,∴∠AOD=∠AOB+∠2=90°+20°=110°,∴旋转时间=110÷10=11(秒),②当点C在△AOB外时,延长BO交CD于一点,如图,∵CD∥AB,∠B=40°,∴∠3=∠B=40°,由①可得,∠D=20°,∴∠4=∠3−∠D=40°−20°=20°,∴∠AOD=90°−∠4=70°,∴△COD绕点O沿顺时针方向旋转了360°−70°=290°,∴旋转时间=290÷10=29(秒),故答案为:11或29.16.55°【分析】根据新定义的“斜等边三角形”的特点分情况分析,然后利用三角形内角和定理求解即可.【详解】解:△ABD是“斜等边三角形”,BD⊥AC,∴∠ADB=90°(1)2∠A−∠ABD=60°,∵∠A+∠ABD=90°,∴解得:∠A=50°,∠ABD=40°;(2)2∠A−∠ADB=60°,∴解得:∠A=75°,∠ABD=15°;(3)2∠ABD−∠A=60°,∵∠A+∠ABD=90°,∴解得:∠A=40°,∠ABD=50°;(4)2∠ABD−∠ADB=60°,∴解得:∠ABD=75°,∠A=15°;△BCD是“斜等边三角形”,①2∠C−∠CBD=60°,∵∠C+∠CBD=90°,∴解得:∠C=50°,∠CBD=40°;②2∠C−∠CDB=60°,∴解得:∠C=75°,∠CBD=15°;③2∠CBD−∠C=60°,∵∠C+∠CBD=90°,∴解得:∠C=40°,∠CBD=50°;④2∠CBD−∠CDB=60°,∴解得:∠CBD=75°,∠C=15°;当(1)①成立时,∠A=50°,∠ABD=40°,∠C=50°,∠CBD=40°,∴∠CBA=40°+40°=80°,∴三个角中不满足“斜等边三角形”的定义,不符合题意;当(1)②成立时,∠A=50°,∠ABD=40°,∠C=75°,∠CBD=15°,∴∠CBA=40°+15°=55°,∵2∠CBA−∠A=60°,∴△ABC是“斜等边三角形”,符合题意;同理得:符合题意的只有∠ABC=55°,故答案为:55°三.解答题17.解:(1)设这个多边形的边数是n,由题意得:(n−2)×180=360×3,∴n=8,∴这个多边形是八边形;(2)设这个多边形的边数是m,由题意得:(m−2)×180<1280<(m−2)×180+180,解得:819<m<919,∵m为整数∴m=9,∴重复加的那个角的度数是:1280°−(9−2)×180°=20°答:这个多边形的边数是9,重复加的那个角的度数是20°.18.解:AB+BC+AC>2BD.理由如下:在△ABD中,AB+AD>BD,在△BCD中,BC+CD>BD,∴AB+AD+BC+CD>2BD,即AB+BC+AC>2BD.19.(1)如图所示,△DEF即为所求;(2)如图所示,CH即为所求;(3)如图所示,∵△ABC平移后得到的△DEF∴若连接CD、AE,CD∥AE,CD=AE∴这两条线段之间的关系是平行且相等;(4)如图所示,△DEF的面积=4×6−12×4×3−12×1×3−12×3×6=152.20.(1)解:∵∠BAC=90°,AD是边BC上的高,∴12AB⋅AC=12BC⋅AD,∴AD=AB⋅ACBC =6×810= 4.8(cm),即AD的长度为4.8cm;(2)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长−△ABE的周长=(AC+AE+CE)−(AB+BE+AE)=AC−AB=8−6=2(cm),即△ACE和△ABE的周长的差是2cm.21.(1)解:在△ABC中,∠B=70°,∠C=30°,∴∠BAC=180°−∠B−∠C=180°−70°−30°=80°,∵AE是△ABC的角平分线.∴∠BAE=12∠BAC=12×80°=40°,∵线段AD是△ABC中BC边上的高,∴∠ADB=90°,∴∠BAD=180°−∠B−∠ADB=180°−70°−90°=20°,∴∠DAE=∠BAE−∠BAD=40°−20°=20°,(2)解:∵∠B=x°,线段AD是△ABC中BC边上的高,∴∠BAD=90°−∠B=90°−x°,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=90°−x°+10°=100°−x°,∵AE是△ABC的角平分线,∴∠BAC=2∠BAE=200°−2x°,∴∠C=180°−∠B−∠BAC=180°−x°−(200°−2x°)=(x−20°),故答案为:(x−20)°;(3)解:连接BF,∵∠1=∠GBF+∠GFB,∠2=∠HBF+∠HFB,∴∠1+∠2=∠GBF+∠GFB+∠HBF+∠HFB=∠B+∠GFH,∵△GFH由△GBH折叠所得,∴∠B=∠GFH,∴∠1+∠2=2∠B.22.(1)解:∵∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴∠ACB=180°−2∠BAC,∵∠CFE+∠FEC=180°−∠ACB,∴∠CFE+∠FEC=180°−(180°−2∠BAC)=2∠BAC,∵∠BAC=70°,∴∠CFE+∠FEC=140°;(2)∠FEC+∠CFE=2∠BAC,证明:在△CEF中∵∠C+∠CEF+∠CFE=180°,∴∠CEF+∠CFE=180°−∠C,在△ABC中,∵∠C+∠BAC+∠ABC=180°,∴∠BAC+∠ABC=180°−∠C,∴∠CEF+∠CFE=∠BAC+∠ABC,∵∠BAC=∠ABC,∴∠CEF+∠CFE=2∠BAC;(3)解:∵∠ACB=∠FEC+∠CFE,∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴180°−2∠BAC=∠FEC+∠CFE,∴∠FEC+∠CFE=180°−2∠BAC.23.(1)解:如图所示,∵DC∥AB∴∠DCB=∠B=30°,(2)证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵FN平分∠EFM∴∠EFN=∠MFN=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠NFB=∠NFM−∠BFM=45°+α−α=45°,即∠NFB的大小保持不变;(3)解:在移动过程中,∠NFB的大小保持不变;如图所示,证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵F N'平分∠EFM∴∠EF N'=∠MF N'=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠N'FB=∠N'FM−∠BFM=45°+α−α=45°,∴∠NFB=135°,即∠NFB的大小保持不变;。
第13章 三角形中的边角关系、命题与证明(总复习)

证明三角形内角和定理的方法
添加辅助线思路:1、构造平角
A D E 1 2 F E A
A E 1
2
D
B 图2 C
1
2 D
B
图1
C
B
C
图3
添加辅助线思路:2、构造同旁内角
E A
E
A
F 4 C
1 2
B 图1 C
3
B
D
图2
9.三角形的外角
三角形的外角的定义: 三角形一边与另一边的延长线 组成的角,叫做三角形的外角.
4.三角形的分类:
1:按边分类
不等边三角形 三角形 腰与底不相等的等腰三角形 等腰三角形 腰与底相等的等边三角形
2:按角分类
直角三角形 三角形 锐角三角形 斜三角形 钝角三角形
5. 对“定义”的理解:
能明确界定某个对象含义的语句叫做定义 。 注意:明确界定某个对象有两种形式:
7.有关“公理、定理、证明、推论、演绎推理、 辅助线”等概念 (1)公理:从长期实践中总结出来的,不需要再作 证明的真命题。
(2)定理:从公理或其他真命题出发,用推理方法证明 为正确的,并被选作判断命题真假的依据的真命题 (3)推论:由公理、定理直接得出的真命题。 (4)演绎推理:从已知条件出发,依据定义、公理、 定理,并按照逻辑规则,推导出结论的方法。
(2)三角形中线:连结一个顶点和它对边中点的线段. 表示法: ① AD是△ABC的BC上的中线. ② BD=DC=½BC.
B A
注意: ①三角形的中线是线段;
D
C
②三角形三条中线全在三角形的内部;
③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.
沪科版八年级数学上册第13章三角形中的边角关系、命题与证明章末小结与提升课件

解:设这个三角形的两边长分别为x,y,且x≥y,
则第三边长为24-x-y,根据题意得
+ = 3(24--),
= 10.5,
解得
1
= 7.5,
- = (24--),
2
∴24-x-y=6.
答:这个三角形的三边长分别为10.5 cm,7.5 cm,6 cm.
∠C=120°,则∠AED的度数是 80° .
-11-
章末小结与提升
知识网络
重难点突破
10.已知△ABC中,∠B=∠C,D为边BC上一点(不与点B,C重合),
E为边AC上一点,∠ADE=∠AED,∠BAC=44°.
(1)求∠C的度数;
(2)若∠ADE=75°,求∠CDE的度数.
解:(1)∵∠BAC=44°,
C.同位角相等
D.如果x与y互为相反数,那么x与y的和等于0吗
-16-
章末小结与提升
知识网络
重难点突破
15.命题:若a>b,则a2>b2.请判断这个命题的真假.若是真命题,
请证明;若是假命题,请举一个反例并适当修改命题的题设使
其成为一个真命题.
解:是假命题.
反例:当a=1,b=-2时,满足a>b,但a2=1,b2=4,a2<b2,
∵CD⊥AB,∴∠CDB=90°,
∴∠GFB=90°,即FG⊥AB.
(2)∵FG⊥AB,CD⊥AB,
∴FG∥DC,∴∠2=∠3,
又∵∠1=∠3,∴∠1=∠2,∴DE∥BC.
-18-
第13章 三角形中的边角关系、命题与证明
章末小结与提升
知识网络
章末小结与提升
重难点突破
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
知识结构:
三角形中元素
边、角及其关系
命题
主要线段:角平分线、中线、高
真命题 假命题
公理 定理
13章《三角形边角关系》复习
推 论
2
知识填空:
1.三角形三边关系定理: 综合为:三角形中,任意一边总是
大于
,而小于
。
2.三角形内角和定理:
推论1:
。
推论2:
。
推论3:
。
3.叫命题,正确的命题叫
5
达标检测:
1.三角形中,最多有
个钝角,最多有
个锐角;
最大角不小于 度,最小角不大于
度。
2.在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的角平分线, DE是△ADC的高,求∠BDE。
13章《三角形边角关系》复习分∠ABC,CP平分∠ACB,若∠A=500,求 ∠BPC; 若∠A=α,求∠BPC。 (2)若BP和CP分别是外角的平分线,∠A=α,求∠BPC;
(3)若 BP平分∠ABC,CP是外角的平分线,∠A=α,求∠BPC。
A
P
B
C
(1)
A
A
P
B
C
C
B
P
(2)
C
(3)
13章《三角形边角关系》复习
叫
;
将一个命题的
与
的
;推理的过程叫
是
。
,错误的命题
叫定理
,
互换,就得到它
,证明的基本要求
4.什么是三角形的外角?三角形外角有哪些性质?
13章《三角形边角关系》复习
3
知识整合提升:
1.已知等腰三角形的周长为20cm。 (1)若一边长为8cm,求另两边长; (2)若一边长为4cm,求另两边长。
13章《三角形边角关系》复习