基于单片机的火灾报警器设计与实现

合集下载

基于单片机的火灾报警系统设计

基于单片机的火灾报警系统设计

基于单片机的火灾报警系统设计关键词:单片机、火灾报警系统、硬件设计、软件设计、可靠性、未来研究在基于单片机的火灾报警系统设计中,单片机作为系统的核心控制单元,负责处理各种传感器采集的数据,并根据预设的报警阈值发出警报。

该系统通过温度、烟雾等传感器实时监测环境参数,一旦发现异常情况,立即启动报警装置,从而有效地提高火灾发现和预警的及时性。

在进行基于单片机的火灾报警系统设计时,需要考虑硬件和软件两个方面的因素。

在硬件方面,选择合适的单片机型号和传感器至关重要。

例如,选用具有较高处理能力和丰富外设的单片机,能够更好地满足系统要求。

在传感器选择上,需要考虑传感器的灵敏度、测量范围以及响应时间等因素。

还需要设计合适的电路板,以实现数据传输和处理等功能。

在软件设计方面,需要编写程序实现单片机对传感器数据的采集和处理。

为了提高系统的可靠性,可以采用一些算法和技巧。

例如,利用滤波算法对传感器数据进行处理,以减小干扰因素的影响;采用多传感器融合技术,提高系统的感知能力;实现故障自诊断功能,及时发现系统故障并采取相应的措施。

在进行基于单片机的火灾报警系统设计时,除了考虑系统的可靠性和实用性之外,还需要根据具体需求进行个性化定制。

例如,在某些特殊场合,需要考虑如何在不同环境下进行有效的报警;如何实现对多点分散火源的监测和报警;如何提高系统的自适应性等等。

总之基于单片机的火灾报警系统设计在现代建筑尤其是公共场所以及工业生产中具有非常重要的意义及应用价值还需要进一步研究和完善实现更多功能和提升性能例如通过加入更多传感器节点实现物联网连接以及借助技术提升报警准确性和响应速度等等未来研究可以围绕这些方向展开随着城市化进程的加快,火灾事故的频率和影响力逐渐增大。

为了有效预防和及时发现火灾,提高火灾自动报警系统的性能至关重要。

本文将基于单片机技术,探讨火灾自动报警系统的设计方法。

火灾自动报警系统主要包括探测器、信号处理装置和报警装置等组成部分。

【《基于单片机智能火灾报警系统设计与实现(论文)》9600字】

【《基于单片机智能火灾报警系统设计与实现(论文)》9600字】

基于单片机智能火灾报警系统设计与实现目录第1章绪论 (1)1.1 研究背景与意义 (1)1.2 国内外研究现状及发展趋势 (1)1.3 本文的研究内容 (2)第2章智能家居安防报警系统的总体设计 (3)2.1 系统的整体设计方案与设计 (3)2.1.1 系统总体设计要求 (3)2.1.2 整体设计方案框图 (3)2.2 设计难点及创新 (3)第3章智能火灾报警系统的设计原理与实现 (4)3.1 智能火灾报警系统下位机框图 (4)3.2 硬件电路设计 (4)3.2.1 核心控制芯片 (4)3.2.2 防火报警模块设计 (5)3.2.3 显示屏模块 (7)第4章系统软件设计 (8)4.1 软件开发工具 (8)4.2 系统程序代码设计 (8)4.3 烟雾传感器报警模块设计 (9)4.3.1 烟雾检测模块硬件设计 (9)4.3.2 MQ-2烟雾传感器软件设计 (11)第5章系统测试与误差分析 (12)5.1 系统测试 (12)5.2 误差分析 (13)总结与展望 (15)参考文献 (16)第1章绪论1.1研究背景与意义目前,智能家庭已经渗透到了生活的方方面面,如空调、电热水器、电冰箱等,不但提升了人们的生活质量,同时也为家居产品的设计思想提供了新的思路。

所以,在未来的社会发展中,智能家庭必将成为一种新的、有前途的发展趋势。

火灾是当前危害最大、危害最大、危害最大的灾害,一旦发生火灾,人们往往会束手无策,只有等待消防队的及时赶到才能将其扑灭。

在此期间,极有可能出现危及人民生命和财产安全的意外事件,其破坏程度远远超过了地震。

随着火灾的发生,人们越来越认识到防火工作的重要性和必要性。

如何及早地发现和采取有效的防范措施是非常必要的,因此,寻找一种能够有效地探测和防止火灾的方法和装置是非常必要的。

通过对周边环境的快速探测和预警,可以使人们在第一时间作出相应的应对,使其达到最大程度的减少,所以消防预警系统的设计与研制对于保障居民的日常生活非常重要。

基于单片机的火灾自动报警器研究

基于单片机的火灾自动报警器研究

基于单片机的火灾自动报警器研究【摘要】本文介绍了基于单片机的火灾自动报警器研究。

引言部分主要包括背景介绍、目的和意义以及研究内容。

在我们对单片机原理进行了分析,选择了合适的火灾检测传感器,设计并实现了自动报警器系统,并进行了测试与优化,最后对系统性能进行了评估与比较。

结论部分总结了研究成果并展望未来发展方向,同时对该火灾自动报警器的实用性进行了分析。

通过本文的研究,我们为提高火灾报警系统的智能化水平提供了有益的借鉴,并为未来的研究工作指明了方向。

【关键词】单片机、火灾自动报警器、研究、引言、背景介绍、目的和意义、研究内容、正文、单片机原理分析、火灾检测传感器选型、报警器设计与实现、系统测试与优化、性能评估与比较、结论、总结与展望、实用性分析、未来发展方向1. 引言1.1 背景介绍随着社会的不断发展,火灾成为一种常见的灾害。

火灾的发生不仅会造成财产损失,更会威胁到人们的生命安全。

火灾自动报警器成为一种十分重要的设备,能够在火灾发生时及时发出警报,以便人们及时逃生,减少伤亡事故的发生。

传统的火灾报警器多采用电气探测技术,其灵敏度和反应速度有一定的局限性。

而基于单片机的火灾自动报警器则能够借助先进的微处理器技术,实现更加精准的火灾检测和报警功能。

本研究旨在通过对单片机原理的分析,选用合适的火灾检测传感器,并设计实现一套性能优越的火灾自动报警器系统,以提高火灾安全监测和预警的效果。

通过对基于单片机的火灾自动报警器进行研究,旨在提高火灾报警器的智能化水平,提高其可靠性和灵敏度,以更好地服务于人们的生活和生产安全。

1.2 目的和意义火灾是一种常见的灾难,给人们的生命和财产造成了巨大的伤害。

为了提高火灾的预防和处理能力,研发基于单片机的火灾自动报警器具有重要的意义和价值。

火灾自动报警器可以实现火灾的早期检测和报警,及时发现火情并通知相关人员采取应急措施,减少火灾造成的伤害和损失。

基于单片机的火灾自动报警器具有灵敏度高、反应速度快、准确度高等优点,可以提高火灾检测的准确性和可靠性。

基于单片机的火灾智能报警控制系统的设计

基于单片机的火灾智能报警控制系统的设计

基于单片机的火灾智能报警控制系统的设计火灾是一种常见的灾害,造成了许多人的伤害和财产的损失。

为了及时发现火灾并采取相应的措施,火灾智能报警控制系统应运而生。

本文基于单片机的火灾智能报警控制系统的设计进行了详细的介绍。

一、系统概述火灾智能报警控制系统是一种通过传感器感知火灾信号并通过控制器进行报警的系统。

本系统采用了单片机控制技术,能够实时监测环境温度和烟雾浓度,并进行相应的报警处理。

二、硬件设计1. 传感器选择本系统采用了温度传感器和烟雾传感器进行环境监测。

温度传感器可以实时检测环境温度,当温度超过设定的阈值时,系统将报警。

烟雾传感器可以检测烟雾的浓度,当烟雾浓度超过设定的阈值时,系统将报警。

2. 控制器选择本系统采用了单片机作为控制器,具有处理数据和控制外设的能力。

单片机选择根据系统的需求和性能要求进行选择。

3. 通讯模块为了能够及时将报警信息传输给用户,本系统还加入了通讯模块。

通讯模块可以通过无线或有线方式将报警信息发送给用户,用户可以通过手机或电脑接收报警信息。

4. 报警器当系统检测到火灾时,会通过报警器发出警报声音,提醒用户火灾的发生。

三、软件设计1. 系统初始化系统启动时,需要对硬件进行初始化,包括传感器的初始化、通讯模块的初始化等。

2. 数据采集系统定时读取传感器的数据,包括温度和烟雾浓度,将数据保存在内存中。

3. 报警处理系统根据传感器采集的数据进行报警处理。

当温度和烟雾浓度超过设定的阈值时,系统将触发报警器并发送报警信息给用户。

四、系统测试为了保证系统的可靠性和稳定性,对系统进行了一系列的测试。

包括传感器的检测精度测试、系统报警的测试、通讯模块的测试等。

通过测试,系统可以实时准确地检测火灾信号,并采取相应的报警措施,提高了火灾的防范和事故发生后的应急处理。

五、结论基于单片机的火灾智能报警控制系统的设计是一种有效的火灾防范和报警系统。

系统利用传感器实时监测环境温度和烟雾浓度,并通过单片机进行报警处理。

基于单片机的火灾自动报警系统

基于单片机的火灾自动报警系统

基于单片机的火灾自动报警系统火灾是一种在室内或房间内发生的突发性灾害,往往会带来严重的人员伤亡和财产损失。

为了及时发现和报警处理火灾,基于单片机的火灾自动报警系统应运而生。

一、系统概述基于单片机的火灾自动报警系统是一种利用现代电子技术和自动控制技术设计的设备,用于监测室内环境的变化并在发生火灾时自动发出警报信号,以便及时疏散人员和扑灭火灾。

该系统由传感器、控制模块和报警器三部分组成,能够实现对室内温度、烟雾等参数的监测和分析。

二、系统原理1. 传感器模块:传感器模块主要包括温度传感器和烟雾传感器。

温度传感器负责监测室内温度的变化,并将数据传输给控制模块;烟雾传感器则用于检测空气中的烟雾浓度,一旦浓度超过设定阈值即认定为火灾可能已发生。

2. 控制模块:控制模块采用单片机作为核心控制器,根据传感器模块传来的数据进行分析和判断。

当监测到温度异常升高或烟雾浓度异常增加时,控制模块会立即触发报警器并发送警报信号。

3. 报警器:报警器通常采用声光报警器的形式,一旦系统检测到火灾,报警器会同时发出声音和灯光警报信号,提醒周围人员及时疏散。

三、系统特点1. 可靠性高:基于单片机的火灾自动报警系统采用数字化传感器和智能控制模块,具有高度的稳定性和可靠性,减少了误报和漏报的概率。

2. 响应速度快:系统响应速度快,当火灾发生时能够立即做出反应,保证了火灾报警的及时性。

3. 易于维护:整个系统结构简单,维护方便,安装和调试均较为方便,适用于各类室内环境。

四、系统应用基于单片机的火灾自动报警系统广泛应用于各种室内场所,如家庭、商场、学校、医院等,为人们的生命和财产安全提供了重要保障。

随着科技的不断发展,该系统将逐渐得到完善和普及,进一步提高火灾防范和救援的效率。

总的来看,基于单片机的火灾自动报警系统在防范火灾、保护人员安全方面发挥着至关重要的作用,其技术应用前景十分广阔,必将在未来得到更广泛的推广和应用。

基于单片机的火灾报警系统设计

基于单片机的火灾报警系统设计

基于单片机的火灾报警系统设计基于单片机的火灾报警系统设计一、引言随着现代建筑越来越高,火灾的预防和报警系统的重要性日益凸显。

基于单片机的火灾报警系统设计具有成本低、体积小、可靠性强等优点,适用于各种场所,如家庭、办公楼、商场等。

本文将详细介绍基于单片机的火灾报警系统的设计方法、工作原理和实际应用。

二、系统架构基于单片机的火灾报警系统主要包括以下组成部分:传感器模块、单片机主控模块、报警模块和电源模块。

传感器模块负责采集环境中的烟雾和热量信息,单片机主控模块对采集到的数据进行处理和判断,报警模块在检测到火灾时触发警报,电源模块则为整个系统提供能量。

三、工作原理传感器模块通过烟雾和热量传感器来检测环境中的火灾信息。

当检测到火灾时,传感器将信号传输给单片机主控模块。

单片机主控模块对接收到的信号进行处理,判断是否发生火灾。

若判断结果为火灾,则触发报警模块进行警报,同时将警报信息传输给消防部门或监控中心。

四、硬件设计1、传感器模块:采用烟雾传感器和热量传感器来检测环境中的火灾信息。

烟雾传感器能检测空气中的烟雾粒子,热量传感器则能检测环境中的温度变化。

2、单片机主控模块:选用具有较强数据处理能力的单片机作为主控芯片,负责处理传感器采集的数据,并根据预设的火灾判断算法判断是否发生火灾。

3、报警模块:当单片机判断为火灾时,触发报警模块进行警报。

报警模块包括声音报警、灯光报警和手机APP报警等方式,可根据实际需求进行选择。

4、电源模块:为整个系统提供稳定的电源,采用市电经电源适配器转换为系统所需的电压和电流。

五、软件设计软件部分主要包括数据采集、数据处理和报警触发三个部分。

数据采集部分负责从传感器模块获取数据;数据处理部分对采集到的数据进行处理和判断,判断是否发生火灾;报警触发部分在判断为火灾时触发报警模块进行警报。

此外,软件部分还需进行系统初始化、数据存储和通信等功能。

六、测试与验证在系统设计完成后,需要进行严格的测试和验证,以确保系统的稳定性和可靠性。

基于STM32F103C8T6单片机的火灾报警系统的设计与实现

基于STM32F103C8T6单片机的火灾报警系统的设计与实现

基于STM32F103C8T6单片机的火灾报警系统的设计与实现基于STM32F103C8T6单片机的火灾报警系统的设计与实现电子与信息工程技术的快速发展为日常生活带来了许多便捷,同时也引发了一系列安全隐患。

其中最为危险的一类安全问题就是火灾。

为了及时检测和报警火灾,设计并实现一个可靠而高效的火灾报警系统是至关重要且迫切需要的。

本文将从系统设计和实现的角度,介绍基于STM32F103C8T6单片机的火灾报警系统。

一、系统设计1. 硬件设计火灾报警系统主要由传感器模块、控制模块、报警模块和显示模块四部分组成。

传感器模块:火灾报警系统的传感器模块使用烟雾传感器和温度传感器。

烟雾传感器可以检测烟雾浓度,一旦超过设定阈值,即发出火灾报警信号。

温度传感器可以检测环境温度,一旦超过安全范围,也会触发火灾报警信号。

控制模块:火灾报警系统的控制模块采用STM32F103C8T6单片机作为核心处理器。

通过该单片机,可以实现对传感器模块的数据采集、处理和控制。

在接收到传感器模块发出的火灾报警信号后,控制模块将触发报警模块发出警报。

报警模块:火灾报警系统的报警模块通常采用声光报警器。

当系统检测到火灾时,报警模块会发出巨大声响并同时亮起红灯,提醒人们火灾发生。

显示模块:火灾报警系统的显示模块通常采用液晶显示屏。

通过显示模块,可以实时显示环境温度和烟雾浓度等信息,方便人们了解火灾情况。

2. 软件设计火灾报警系统的软件设计包括嵌入式控制程序和人机界面程序两部分。

嵌入式控制程序:嵌入式控制程序主要运行在STM32F103C8T6单片机上,负责对传感器模块采集到的数据进行处理和控制。

一旦检测到火灾报警信号,嵌入式控制程序将触发报警模块发出警报。

人机界面程序:人机界面程序运行在上位机上,通过串口与STM32F103C8T6单片机进行通信。

人机界面程序可以实时接收并显示传感器模块采集到的数据,同时提供手动控制功能,例如手动触发报警模块。

基于单片机的火灾报警系统设计

基于单片机的火灾报警系统设计

• 128•随着城市化的快速发展,高楼火灾逐渐成为了城市中最为危险的因素,火灾安全成为了一个重要问题,火宅报警系统能有效的减少火宅的发生。

由此设计一款基于STC89C52单片机的火灾报警系统。

系统由LCD 显示模块,按键模块,温度检测模块,烟雾检测模块和报警模块组成。

系统由DS18B20温度传感器和MQ2烟雾浓度传感器对温度、烟雾进行实时监控,经过AD 模数转换变为数字信号,并将温度值和烟雾值显示在LCD1602液晶显示屏上,当温度值或烟雾浓度值超过报警阈值时实现报警功能。

1 系统整体方案设计该火灾报警系统以单片机作为核心处理器,通过烟雾传感器检测当前环境,单片机通过模数转换芯片实时读取烟雾传感器转换过来的数字信号,并且对该信号进行处理分析。

通过数字温度传感器,对环境温度进行实时监测,与单片机交互相应的监测数据。

当检测到的烟雾浓度或环境温度值大于设定的安全值时,系统通过报警模块进行报警。

该系统架构图如图1所示:图1 系统整体设计方案2 系统的硬件电路设计该设计的硬件系统由单片机及最小系统,温度传感器电路、烟雾传感器电路、信号采样芯片电路、按键控制电路、LCD 显示模块电路以及报警电路构成。

以下对主要电路进行分析说明。

2.1 烟雾采集电路烟雾采集,采用MQ-2烟雾传感器。

其工作原理是利用其内部自带的电阻丝与采集到的烟雾气体进行加热和化学反应从而引起电阻丝两侧电极电流的变化,根据其电流的变化量可以测算出当前浓度,为了检测方便将电流信号转换成对应的电压信号并利用adc0832将模拟量转换成数字量,从而得到真实准确的气体浓度值烟雾采集电路如图2所示。

图2 烟雾采集电路2.2 环境温度传感器电路采用DS18B20数字温度传感器进行温度采集。

引脚1为GND 接地,引脚2为信号线,与单片机相连,实现传感器与微处理器之间的双向通信,引脚3和VCC 相连。

整体工作电压为3.0V-5.5V ,在寄生电源方式下可以由数据线进行供电单总线情况下使用10K 电阻对数据线进行上拉,当总线空闲时,电平状态为高,可确保稳定,提高其抗干扰能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号:设计说明书题目:基于单片机的火灾报警器设计与实现学院:桂林电子科技大学职业技术学院专业:电子信息工程技术学生姓名:学号:指导教师:***职称:讲师2015 年 6 月日摘要火灾自动报警系统(Fire Alarm System,简称FAS系统)是人们为了早期发现通报火灾,并及时采取有效措施,控制和扑灭火灾,而设置在建筑物中或其它场所的一种自动消防设施,是人们同火灾作斗争的有力工具。

本次设计以AT89C51单片机,MQ-2烟雾传感器和DS18B20温度传感器为核心设计的火灾报警器可实现报警故障自诊断、报警设置、实时温度显示及与温度报警值设定等功能。

是一种结构简单、电路简单、而且易懂、性能稳定、使用方便、价格低廉、智能化的烟雾报警器,具有非常高的实用价值。

关键词:AT89C51;温度传感器;烟雾传感器;火灾报警器;四位共阴数码管;目录引言 (1)1 系统概述 (2)1.1选题背景 (2)1.2 设计要求 (2)2 设计原理 (2)2.1 硬件部分 (2)2.2 软件部分 (3)3 硬件电路设计与分析 (3)3.1 硬件框架图 (3)3.2 单片机最小系统 (4)3.2.1 STC89C52芯片介绍 (4)3.2.2 时钟电路 (4)3.2.3 复位电路 (5)3.3 四位数码管 (6)3.3.1 数码管的介绍 (6)3.3.2 四位数码管共阳和共阴的区分 (7)3.3.3数码管的驱动方式 (8)3.4 74HC573芯片介绍 (8)3.5 温度传感器DS18B20模块 (9)3.6 烟雾传感器MQ-2模块 (9)4 软件设计与分析 (10)4.1 程序主流程图: (10)4.2 初始化定时器程序 (11)4.3 四位共阴数码管的动态显示程序 (11)5 系统调试 (12)5.1 硬件调试 (12)5.1.1 最小系统调试 (12)5.1.2 四位数码管调试 (12)5.2 软件调试 (12)5.3 脱机运行调试 (12)6 总结 (13)谢辞 (14)附录1:火灾报警器原理图: (15)附录2:火灾报警器PCB图: (15)附录3:火灾报警器程序 (16)参考文献 (20)引言随着社会的发展、科技的进步以及人们生活水平的逐步提高,各种方便于生活的电子产品开始进入人们的生活。

现代家庭用火、用电量的增加,许多人因不懂家庭安全常识引起火灾事故,家庭火灾发生的频率越来越高,使好端端的幸福家庭转眼间毁于一旦,有的导致家破人亡。

居民家庭火灾一旦发生,处置不当、报警迟缓,,很容易出现扑救不及时、灭火器材缺乏及在场人惊慌失措、逃生迟缓等不利因素,最终导致重大生命财产损失。

探讨家庭火灾的特点及防火对策,对于预防家庭火灾,减少火灾损失具有现实意义。

所以说,人们应该积极了解家庭火灾的主要起因,掌握防止发生火灾的知识和万一发生火灾时保护自己的方法,及时消除。

本系统使用AT89S51单片机,选用集成温度传感器DS18B20和气体传感器MQ-2作为敏感元件,利用多传感器信息融合技术,开发了可用于小型单位火灾报警的报警器。

具有灵敏度高、响应快、抗干扰能力强等优点,而且价格低廉,使用寿命长等特点1 系统概述1.1 选题背景全世界几乎每天都有火灾发生。

城里的高层建筑,地下商场以及大型的建筑群日益增多。

火灾的隐患也伴随着社会的发展而逐年升高。

自动火灾报警系统就是为了保障人民生命财产安全而发明的,并且随着现代技术水平的不断提高。

在方式,功能,和结构上不断的完善。

家庭火灾的主要原因是麻痹大意,没有及时采取预防措施,本次设计的火灾报警器,是防止火灾最重要的手段之一,它的作用是使用18B20温度传感器,实时检测房间的温度,使用MQ-2实时检测房间。

一切正常时,绿灯亮,但温度超过预定值或有大量烟雾是,说明可能发生火灾时,蜂鸣器便会发出报警信号,且红灯亮。

1.2 设计要求要求:(1)用单片机实现;(2)用C语言编程;(3)硬件电路板布局合理;(4)使用18B20温度传感器,实时检测房间的温度,且使用数码管显示温度;(5)使用烟雾传感器,实时检测房间;(6)如果空气中有烟雾,则蜂鸣器报警,并点亮红灯;若气体没有烟雾,则绿点亮表示正常;(7)如果空气温度超过限定值,则认为发生火灾,并蜂鸣器报警,点亮红灯。

2 设计原理2.1 硬件部分火灾报警器分为三个部分:温度传感器检测温度模块,烟雾传感器检测烟雾模块,数码管显示模块。

主控芯片采用AT89C52;显示部分采用四位共阴数码管;时钟电路采用12MHZ的石英晶体振荡器,将其和单片机对应的引脚正确连接,将晶振产生的时钟信号作为定时信号;复位电路采用传统RC复位电路。

单片机的I/O口分配:P1.0接温度传感器输出脚,P1.1接烟雾传感器模块的TTL信号;P1.5接绿灯,P1.6接红灯,P1.7接蜂鸣器,P0口和P2口分别接数码管的段选和位选。

2.2 软件部分程序采用C 语言进行编程,编程后利用KeiluVision4来进行编译,再生成的HEX 文件通过下载口导入芯片中。

然后根据按键功能查看是否实现功能。

3 硬件电路设计与分析3.1 硬件框架图图13.2 单片机最小系统3.2.1 STC89C52芯片介绍STC89C52是STC公司生产的一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash存储器。

STC89C52使用经典的MCS-51内核,但做了很多的改进使得芯片具有传统51单片机不具备的功能。

在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,指令代码完全兼容传统8051使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。

工作电压: 3.3V~5.5V;工作频率范围:0~40MHz;用户应用程序空间为8K字节;片上集成512 字节RAM;通用I/O 口(32 个),上电复位后为:P0/P1/P2/P3 是准双向口/弱上拉,P0作为I/O 口用时,需加上拉电阻;外部中断2个,下降沿中断或低电平触发电路;共2个16 位定时器/计数器。

即定时器T0、T1;可通过可直接使用串口下载,串口(RxD/P3.0,TxD/P3.1)直接下载用户程序;具有EEPROM(掉电储存)功能,内带4K字节EEPROM存储空间。

图23.2.2 时钟电路STC89C52内部有一个用于构成振荡器的高增益反相放大器,引脚RXD和TXD分别是此放大器的输入端和输出端。

时钟可以由内部方式产生或外部方式产生在RXD和TXD引脚上外接定时元件,内部振荡器就产生自激振荡。

定时元件通常采用石英晶体和电容组成的并联谐振回路。

晶体振荡频率可以在1.2~12MHz之间选择,电容值的大小可对频率起微调的作用。

单片机最小系统起振电容C1、C2一般采用15~33pF,晶振一般采用12MHZ,并且电容离晶振越近越好,晶振离单片机越近越好。

图33.2.3 复位电路一般情况下,电容的大小是10uF,电阻的大小是10k,复位电路的原理是单片机RST引脚接收到2US以上的电平信号,只要保证电容的充放电时间大于2US,即可实现复位。

在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。

所以可以通过按键的断开和闭合在运行的系统中控制其复位,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。

图43.3 四位数码管3.3.1 数码管的介绍四位数码管是一种半导体发光器件,其基本单元是发光二极管。

数码管实际上是由七个发光管组成8字形构成的,加上小数点就是8个,引线已在内部连接完成,只需引出它们的各个笔划,公共电极分别由字母a,b,c,d,e,f,g,dp来表示,能显示4个数码管叫四位数码管。

图5四位数码管的引脚图:图63.3.2 四位数码管共阳和共阴的区分市面上的四位一体的数码管一般都没有数据表,所以掌握他们管脚的分布是很重要的一个环节。

共阳数码管是指,将所有发光二极管的阳极接到一起形成公共阳极(COM)的数码管。

共阳数码管在应用时应将公共极COM接到+5V,当某一字段发光二极管的阴极为低电平时,相应字段就点亮。

当某一字段的阴极为高电平时,相应字段就不亮。

共阴数码管是指,将所有发光二极管的阴极接到一起形成公共阴极(COM)的数码管。

共阴数码管在应用时应将公共极COM接到地线GND上,当某一字段发光二极管的阳极为高电平时,相应字段就点亮。

当某一字段的阳极为低电平时,相应字段就不亮。

区别他们的方法是:若公共端接地,其他端接电源,若各段测试能亮,说明是共阴的,反之共阳的;若公共端接电源,其他端分别接的,测得各端亮,则说明是共阳的,反之为共阴的。

此次设计的火灾报警器的四位数码管采用共阴数码管。

3.3.3数码管的驱动方式(1)静态显示:静态显示也称直流驱动。

静态驱动是指每个数码管的每一个段码都由一个单片机的I/O端口进行驱动,或者使用如BCD码二-十进制译码器译码进行驱动。

静态驱动的优点是编程简单,显示亮度高,缺点是占用I/O 端口多,如驱动5个数码管静态显示则需要5×8=40根I/O端口来驱动,但一个STC89S51单片机可用的I/O端口才32个,实际应用时必须增加译码驱动器进行驱动,增加了硬件电路的复杂性。

(2)动态显示:数码管动态显示接口是单片机中应用最为广泛的一种显示方式之一,动态驱动是将所有数码管的8个显示笔划"a,b,c,d,e,f,g,dp"的同名端连在一起,另外为每个数码管的公共极COM增加位选通控制电路,位选通由各自独立的I/O线控制,当单片机输出字形码时,所有数码管都接收到相同的字形码,但究竟是那个数码管会显示出字形,取决于单片机对位选通COM端电路的控制,所以我们只要将需要显示的数码管的选通控制打开,该位就显示出字形,没有选通的数码管就不会亮。

通过分时轮流控制各个数码管的的COM 端,就使各个数码管轮流受控显示,这就是动态驱动。

在轮流显示过程中,每位数码管的点亮时间为1~2ms,由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感,动态显示的效果和静态显示是一样的,却能够节省大量的I/O端口,而且功耗更低。

3.4 74HC573芯片介绍此次篮球计分牌的设计利用74HC573来驱动两个四位共阴数码管。

74HC573 的八个锁存器都是透明的D 型锁存器,当使能(G)为高时,Q 输出将随数据(D)输入而变。

当使能为低时,输出将锁存在已建立的数据电平上。

输出控制不影响锁.器的内部工作,即老数据可以保持,甚至当输出被关闭时,新的数据也可以置入。

这种电路可以驱动大电容或低阻抗负载,可以直接与系统总线接口并驱动总线,而不需要外接口。

相关文档
最新文档