25.2.1 用直接列举法求概率

合集下载

人教版九年级上册第25章第二节第一课时《25.2.1用列举法求概率》赛课教案

人教版九年级上册第25章第二节第一课时《25.2.1用列举法求概率》赛课教案

第二十五章概率初步25.2用列举法求概率第1课时运用直接列举或列表法求概率教学内容:人教版九年级上册第25章第二节第一课时运用直接列举或列表法求概率学习目标:1.2. 学会正确“列表”表示出所有可能出现的结果.3. 知道如何利用“列表法”求随机事件的概率.会用“直接列举法”和“列表法”列举所有可能出现的结果.教学重难点重点:知道如何利用“列表法”求随机事件的概率.难点:会正确“列表”表示出所有可能出现的结果.教学方法教法:创设情景提问法、演示法、启发式教学.学法:小组合作、讨论交流.教学过程:一、情境导入1、12.4 H国家宪法日(PPT出示志愿者图片)(设计意图:通过宪法的导入, 让学生们了解宪法,增强法律意识)2、再由我校也将开展进社区宣传宪法的活动,向每班招募一名志愿者,但是小辛玉和安琪都想去,引出抛硬币活动,正面向上小车玉去,反面向上安琪去,学生判断公平的依据。

学生说概率公式P (A)=-n(设计意图:增强学生对社会的服务意识,复习旧知)3、当小车玉抛出硬币是正面,决定小车玉去参加活动时,安琪提出一人抛一枚硬币更公平。

老师提问:同时抛两枚硬币,怎么制定规则比较公平呢?(设计意图:引出本节课的主题:用列举法求概率)4、确定本节课的学习目标。

二、探索新知(一)用直接列举法求概率问题1:同时掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面朝上,一枚硬币反面朝上。

学生抛硬币,得出结论:抛掷两枚硬币的所有可能为:正正,正反,反正,反反请学生分别回答上面三个问题。

(学生做出判断,老师评价,及时表扬)(设计意图:由学生自己动手操作,得出结论,吸引学生的兴趣)问题2:如何制定规则,让小车玉和安琪都觉得公平呢?学生回答:落地后一正一反,小车玉赢;如果落地后两面一样,安琪赢.其他学生判断公平性。

(设计意图:使学生理解公平与概率之间的关系)问题3:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?学生以小组为单位讨论,并由小组汇报讨论结果。

25.2.1 用列表法求概率课件 2024-2025学年人教版数学九年级上册

25.2.1 用列表法求概率课件 2024-2025学年人教版数学九年级上册
A.


B.


1
2
1
(1,1)
(1,2)
2
(2,1)
(2,2)
C.




D.
由列表可知,两次摸出小球的号码之积共有
4种等可能的情况,
)
知识讲解
知识点2 用列表法求概率
【例 2】一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,
2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸
1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
(3)至少有一个骰子的点数为2.
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(B )
A.


B.


C.


D.


随堂练习
2. 某次考试中,每道单项选择题一般有4个选项,某同学有两道题不
会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两
道题全对的概率是( B )
A.


B.


C.


D.


随堂练习
3. 在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机

25.2.1 运用直接列举或列表法求概率

25.2.1 运用直接列举或列表法求概率
36
=
7
18
1.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社
会调查”其中一项那么两人同时选择“参加社会调查”的概率为( A )
1
A.
4
1
B.
3
1
C.
2
3
D.
4
2.有A,B两个不透明的口袋,每个口袋里装有两个相同的球,A袋中的两个
球上分别写了“细”、“致”的字样,B袋中的两个球上分别写了“信”、
“心”的字样,从每个口袋里各摸出一个球,刚好能组成“细心”字样的概
率是( B )
1
A.
3
1
B.
4
2
C.
3
3
D.
4
3.若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概
率为( A )
1
A.
2
3
B.
4
1
C.
3
1
D.
4
4.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这
三辆车中任选一辆搭乘,小明与小红同车的概率是( C )
(1)两枚硬币全部正面向上;
(2)两枚硬币全部反面向上;
(3)一枚硬币正面向上,一枚硬币反面向上.
上述这种列举法我们称为直接列举法,即把事件可能出现的结果一一列出.
【适用范围】直接列举法比较适合用于最多涉及两个试验因素或分两步
进行的试验,且事件总结果的种数比较少的等可能性事件.
上述这种列举法我们称为直接列举法,即把事件可能出现的结果一一列出.
【点睛】当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现
11
所以P(C)=
36

25.2.1用列举法求概率(1)二道镇中学张晓红

25.2.1用列举法求概率(1)二道镇中学张晓红

A
圆 桌
解:按逆时针共有下列六种不同 的坐法:ABCD、ABDC、ACBD、 ACDB、ADBC、ADCB
1 而A与B不相邻的有2种,所以A与 B不相邻而坐的概率为_____
1.(湖北荆州)屏幕上有四张卡片,卡片上分别 有大写的英文字母“A,Z,E,X”,现已将字 母隐藏.只要用手指触摸其中一张,上面的字 母就会显现出来.某同学任意触摸其中2张, 上面显现的英文字母都是中心对称图形的概率 是 . 2.(湖南益阳)有三张大小、形状完全相同的卡 片,卡片上分别写有数字1、2、3,从这三张 卡片中随机同时抽取两张,用抽出的卡片上的 数字组成两位数,这个两位数是偶数的概率 是 .
等可能性事件
等可能性事件
等可能性事件的两的特征: 1.出现的结果有限多个; 2.各结果发生的可能性相等;
等可能性事件的概率可以用列举法而求得。
列举法就是把要数的对象一一列举出来分析求解 的方法.
强化练习1 • 问题1.掷一枚一硬币,正面向上的概率是多少? • 问题2.抛掷一个骰子,它落地时向上的的数为 ① 2的概率是多少? ②落地时向上的数是3的倍数的概率是多少? ③点数为奇数的概率是多少? ④点数大于2且小于5的数的概率是多少?
4、小明拿出4张牌:梅花6、黑桃6、方块6和红桃6, 对小丽说:“洗牌后,从中随机取出两张,如果同色 就算甲方赢,否则就算乙方赢。”他问小丽愿当甲方 还是乙方,请你给小丽出个主意。
解:小丽应选择当乙方。 因为在4张牌中,梅花和黑桃为黑色,为同色;方块和红桃 为红色,为同色。现任意取出两张牌,则总共有6种可能性结果。 即“梅花、黑桃”,“梅花、方块”,“梅花、红桃”,“黑桃、 方块”,“黑桃、红桃”,“方块、红桃”。 6种结果中,为同色的有2种,即“梅花、黑桃”,“方块、红 桃”,异色的有4种,即“梅花、方块”,“梅花、红桃”, “黑桃、方块”,“黑桃、红桃”。 4 2 2 1 P(异色) P(同色) 6 3 6 3

人教版数学九年级上册25.2.1《用列举法求概率》教案

人教版数学九年级上册25.2.1《用列举法求概率》教案

人教版数学九年级上册25.2.1《用列举法求概率》教案一. 教材分析《用列举法求概率》是人教版数学九年级上册第25章第二节的第一课时,本节课主要内容是让学生掌握用列举法求概率的方法,并能够运用列举法解决一些简单的实际问题。

教材通过引入实际问题,引导学生用列举法列出所有可能的结果,再找出符合条件的结果,从而计算概率。

本节课的内容对于学生来说比较抽象,需要通过大量的练习来理解和掌握。

二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,如随机事件、必然事件等,并掌握了用树状图法求概率的方法。

但是,由于九年级学生的逻辑思维能力和空间想象能力还在发展阶段,对于用列举法求概率的方法可能会感到困惑。

因此,在教学过程中,教师需要耐心引导,让学生逐步理解和掌握列举法求概率的方法。

三. 教学目标1.知识与技能目标:让学生掌握用列举法求概率的方法,并能够运用列举法解决一些简单的实际问题。

2.过程与方法目标:通过学生自主探究、合作交流,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:用列举法求概率的方法。

2.难点:如何引导学生理解和掌握用列举法求概率的方法,以及如何解决实际问题。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。

2.互动教学法:通过学生之间的合作交流,培养学生解决问题的能力。

3.引导发现法:教师引导学生发现列举法求概率的步骤和方法,培养学生自主学习的能力。

六. 教学准备1.教学课件:制作课件,展示相关例题和练习题。

2.练习题:准备一些实际问题,让学生课后练习。

七. 教学过程1.导入(5分钟)教师通过引入一些实际问题,如抛硬币、抽奖等,引导学生思考如何求解这些问题。

让学生意识到用列举法求概率的重要性。

2.呈现(10分钟)教师展示一些简单的例题,如抛硬币两次,求正正、正反、反正、反反的概率。

25.2.1 用列举法求概率

25.2.1   用列举法求概率

在一副去掉二王的扑克牌中任抽一张 求: 13 (1)“抽到红桃”的概率 P(抽到红桃)= =
52 =
1
4
(2)“抽到2”的概率
P(抽到2) =
4 52
1
(3)“抽到2红桃”的概 P(抽到红桃2)= 52 率 (4)“抽到牌的点数是4的倍数”的概 3 4×3 率 P(抽到牌的点数是4的倍数) = =
(06南平)某电视台综艺节目从接到的5000个热线
电话中,抽取Biblioteka 0名“幸运观众”,小颖打通了一次热线电话,她成为“幸运观众”的概率

1 500

√ √
(06泰州)投掷一枚普通的正方体骰子,四位同学 各自发表了以下见解: ①出现“点数为奇数”的概率等于出现“点数为 偶 数”的概率. ②只要连掷6次,一定会“出现一点”. ③投掷前默念几次“出现6点”,投掷结果“出现 6点”的可能性就会加大. ④连续投掷3次,出现的点数之和不可能等于19. 其中正确的见解有 A.1个 B.2个 C.3个 D.4个
同学们,通过这节课的 学习,你有哪些收获?
田忌赛马是一个为人熟知的故事.传说战国时期,齐 王与田忌各有上、中、下三匹马,同等级的马中,齐王的 马比田忌的马强.有一天,齐王要与田忌赛马,双方约定: 比赛三局,每局各出一匹,每匹马赛一次,赢得两局者为 胜.看样子田忌似乎没有什么胜的希望,但是田忌的谋士 了解到主人的上、中等马分别比齐王的中、下等马要 强…… ( 1 )如果齐王将马按上中下的顺序出阵比赛,那么 田忌的马如何出阵,田忌才能取胜? ( 2 )如果齐王将马按上中下的顺序出阵,而田忌 的马随机出阵比赛,田忌获胜的概率是多少? (要求写出双方对阵的所有情况)
52
13
13 1

25.2 第1课时 用直接列举法和列表法求概率

25.2 第1课时 用直接列举法和列表法求概率

25.2 第1课时用直接列举法和列表法求概率25.2用列举法求概率第1课时用直接列举法和列表法求概率一、基本目标【知识与技能】1.掌握用直接列举法和列表法求简单事件的概率的方法.2.运用概率知识解决计算涉及两个因素的一个事件概率的实际问题.【过程与方法】经历试验操作、观察、记录的过程,探究如何画出适当的表格,列举出事件的所有等可能结果,并总结出用列表法求事件概率的方法.【情感态度与价值观】合作探究如何画出适当的表格列举事件的所有等可能的结果,养成合作意识,形成缜密的思维习惯.二、重难点目标【教学重点】反正__、__反反__,故这两种试验的所有可能结果__一样__.环节2合作探究,解决问题【活动1】小组讨论(师生互学)【例1】先后两次抛掷一枚质地均匀的硬币.(1)求硬币两次都正面向上的概率;(2)求硬币两次向上的面相反的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列举先后两次抛掷一枚质地均匀的硬币的全部结果,它们是:正正、正反、反正、反反.所有的结果有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足硬币两次都正面向上的结果只有1种,即“正正”,所以P(硬币两次都正面向上)=14.(2)硬币两次向上的面相反的结果共有2种,即“正反”“反正”,所以P(硬币两次向上的面相反)=24=12.【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较少,且各种结果出现的可能性大小相等,那么我们可以直接列举出试验结果,从而求出随机事件发生的概率.【例2】有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取1张,记下数字后放回洗匀,再从中随机抽取1张.(1)求两次抽到的数都是偶数的概率;(2)求第一次抽到的数比第二次抽到的数大的概率;(3)求两次抽到的数相等的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列表如下:第一次第二次1234 51(1,1)(2,1)(3,1)(4,1)(5,1)2(1,2)(2,2)(3,2)(4,2)(5,2)3(1,3)(2,3)(3,3)(4,3)(5,3)4(1,4)(2,4)(3,4)(4,4)(5,4)5(1,5)(2,5)(3,5)(4,5)(5,5)由表可以看出,可能出现的结果一共有25种,并且它们出现的可能性相等.(1)两次抽到的数都是偶数的结果有4种,即(2,2),(2,4),(4,2),(4,4),所以P(两次抽到的数都是偶数)=4 25.(2)第一次抽到的数比第二次抽到的数大的结果有10种,即(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),所以P(第一次抽到的数比第二次抽到的数大)=1025=25. (3)两次抽到的数相等的结果有5种,即(1,1),(2,2),(3,3),(4,4),(5,5),所以P (两次抽到的数相等)=525=15. 【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性大小相等,那么我们可以列表列举出试验结果,从而求出随机事件发生的概率.【活动2】 巩固练习(学生独学)1.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是( B )A.12B .13 C.14 D .152.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是( C )A.18B .16C .14D .123.李玲有红色、黄色、白色的三件运动短袖上衣和白色、黄色两条运动短裤.若任意组合穿着,则李玲穿着“衣裤同色”的概率是__13__. 4.同时掷两枚质地均匀的六面体骰子,计算下列事件的概率:(1)两枚骰子点数的和是6;(2)两枚骰子点数都大于4;(3)其中一枚骰子的点数是3.解:列表如下: 第一枚第二1 2 3 4 5 6枚1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1) 2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2) 3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3) 4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4) 5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5) 6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6) 由表可以看出,同时掷两枚质地均匀的六面体骰子,可能出现的结果有36种,并且它们出现的可能性相等.(1)两枚骰子点数的和是6的结果有5种,即(1,5),(2,4),(3,3),(4,2),(5,1),所以P(两枚骰子点数的和是6)=5 36.(2)两枚骰子点数都大于4的结果有4种,即(5,5),(5,6),(6,5),(6,6),所以P(两枚骰子点数都大于4)=436=19.(3)其中一枚骰子的点数是3的结果有11种,即(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(3,1),(3,2),(3,4),(3,5),(3,6),所以P(其中一枚骰子的点数是3)=1136.【活动3】拓展延伸(学生对学)【例3】如图所示,小明和小亮用转盘做“配紫色”游戏(红色和蓝色在一起能配成紫色).小明转动的A盘被等分成4个扇形,小亮转动的B 盘被等分成3个扇形,两人分别转动转盘一次.两人转动转盘得到的两种颜色若能配成紫色则小明获胜,否则小亮获胜,这个游戏对双方公平吗?【互动探索】(引发学生思考)结合概率的相关知识,要使游戏对双方公平,则两人获胜的概率之间有什么关系?【解答】列表如下:红蓝黄蓝(红,(蓝,(黄,蓝)蓝)蓝)红(红,红)(蓝,红)(黄,红)黄(红,黄)(蓝,黄)(黄,黄)红(红,红)(蓝,红)(黄,红)由表可知,两人分别转动转盘一次,可能出现的结果共有12种,并且它们出现的可能性相同.其中能配成紫色的结果有3种,所以P(小明获胜)=312=14,P(小亮获胜)=1-14=34.因为14≠34,所以这个游戏对双方不公平.【互动总结】(学生总结,老师点评)判断一个游戏对双方是否公平,就看双方获胜的概率是否相等.若相等,则公平.否则,不公平.环节3课堂小结,当堂达标(学生总结,老师点评) 请完成本课时对应练习!。

25.2.1用列举法求概率(1)

25.2.1用列举法求概率(1)
5种等可能的结果
随机事件
随机事件
随机事件的两个特征:
1.出现的结果有有限多个;
2.各结果发生的可能性相等; .
那么随机事件的概率 可以用列举法来求得。
例1:同时掷两枚质地均匀的硬币, 求下列事件的概率:
(1)两枚硬币全部正面朝上。
(2)两枚硬币全部反面朝上。
(3)一枚硬币正面朝上、一枚硬币反 面朝上。
没有变化
小试牛刀:
小明和小亮做扑克游戏,桌面上放有两堆牌,分 别是红桃和黑桃的1,2,3,4,5,6,小明建议:我从 红桃中抽取一张牌,你从黑桃中取一张,当两张 牌数字之积为奇数时,你得1分,为偶数我得1 分,先得到10分的获胜”。如果你是小亮,你愿 意接受这个游戏的规则吗?
这个游戏对小亮和小明公 平吗?
(1)摸出两个黑球(记为事件A)的结果有3种,即(黑1,黑2) (黑1,黑3)(黑2,黑3),所以
P(A)= 3 = 1 62
(2)摸出一个红球、一个黑球(记为事件B)的结果有3种,即 (红,黑1)(红,黑2)(红,黑3),所以
P(B)= 3 = 1 62
(3)摸出两个红球(记为事件C)的结果有0种,所以
分析:当一次试验可能出现的结果数目较少时,为不重不
漏地列出所有可能结果,通常采用 直接列举法.
解:列举出所有可能出现的结果:正正,正反,反正,反 反,共4种,并且它们出现的可能性相等.
(1)两枚硬币全部正面朝上(记为事件A)的结果只有 1种,即“正正”,所以P(A)=1/4.
(2)两枚硬币全部反面朝上(记为事件B)的结果只有 1种,即“反反”,所以P(B)=1/4.
13
2
游戏规则是: 如果所摸球上的数字与转盘转出的数字之和为2, 那么游戏者获胜.求游戏者获胜的概率.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

城关中学九年级数学学练稿
班级姓名________
第周星期设计者执教者
课题25.2.1 用直接列举法求概率审核数学组
学习目标:初步掌握直接列举法计算一些简单事件的概率.
重点:熟练掌握直接列举法计算简单事件的概率.
难点:如何实现问题向概率计算的转化,进而用概率解决问题.
学习过程:
一、自学导航
(一)、自学指导:(学习P133-P134内容)
用列举法求概率:在一次实验中,如果可能出现的结果只有有限个,且各种结果出现的可能性______________,我们可以通过列举_____________的方法,分析出随机事件发生的概率.
(二)、自学检测:
袋中有3个白球,1个红球,这两种球除了颜色以外其余都相同.
(1)从中摸出一个球,这个球是白球的概率是多少?
(2)从中摸出两个球,这两个球都是白球的概率是多少?
(3)两次游戏,规则:随机取出两个球,若是1红1白则甲方胜,否则乙方胜,你乐意充当甲方还是乙方?
二、互动冲浪:把所有可能的结果全都列举出来,求概率.
活动1、小王将一黑一白的两双相同号码的袜子一只一只地扔进抽屉里,当他随意地从抽屉里拿出两只袜子时,恰好成双的概率是多大?
活动2、游戏者同时转动图中的两个转盘进行“配紫色”游戏(即转成红、蓝两种颜色),求游戏者获胜的概率.
活动3、准备两组相同的牌,每组两张,两张牌的牌面数字分别是1和2,从每组牌中各摸出一张,称为一次实验.
(1)一次实验中两张牌的牌面数字和可能有哪些值?
(2)两张牌的牌面数字和等于3的概率是什么?
(3)你认为哪种情况的概率最大?
三、学练感悟:
1、本节课都学习了什么内容?
2、还有哪些不懂?
3、用直接列举法求概率应注意什么?
4、做错的题目有:原因:.
四、课时巩固
1、将分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌子上,求下列事件的概率. (1)随机抽取一张,抽到的是奇数.
(2)随机抽取两张,抽到的两张上的数字是连续整数.
2、将正面分别标有数字6、7、8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P(偶数);(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?。

相关文档
最新文档