2020高考理科数学第三次模拟考试试题

合集下载

2019-2020年高三第三次模拟考试数学理试题 含答案

2019-2020年高三第三次模拟考试数学理试题 含答案

2019-2020年高三第三次模拟考试数学理试题含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。

第I卷一、选择题:本大题共12小题,每小题5分,共60分.1.若复数满足(其中是虚数单位),则的实部为()(A)6 (B)1 (C)(D)2.已知集合A={x|(a2-a)x+1=0,x∈R},B={x|ax2-x+1=0,x∈R},若A∪B=,则a的值为 ( ) A.0 B.1 C.0或1 D.0或43.直线的方向向量为且过抛物线的焦点,则直线与抛物线围成的封闭图形的面积为()A. B. C. D.4.已知一个空间几何体的三视图如右图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )A.4 cm3 B.5 cm3 C.6 cm3 D.7 cm35. 要得到函数y=cosx的图像,只需将函数y=sin(2x+)的图像上所有的点的 ( )A.横坐标缩短到原来的倍(纵坐标不变),再向左平行移动个单位长度B.横坐标缩短到原来的倍(纵坐标不变),再向右平行移动个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动个单位长度6.如图,若程序框图输出的S是126,则判断框①中应为()A.B.C.D.7.已知,则的最大值为() A. 6 B. 4 C. 3 D.8.已知正方体的棱长为2, 长为2的线段的一个端点在棱上运动, 另一端点在正方形内运动, 则的中点的轨迹的面积为()A. B. C. D.9.在中,角A,B,C的对边分别是,且则等于( ),设函数=,,则大致是()题图11.已知是定义在R上的不恒为零的函数,且对任意的都满足,若,则( )A. B. C. D.12.是定义在区间【-c,c】上的奇函数,其图象如图所示,令,则下列关于函数的叙述正确的是()A.若,则函数的图象关于原点对称B.若,,则方程必有三个实根C.若,,则方程必有两个实根D.若,,则方程必有大于2的实根第II卷二、填空题:本大题共4小题,每小题5分,共20分。

最新2020年高三第三次模拟考试卷理科数学(一)(含答案)

最新2020年高三第三次模拟考试卷理科数学(一)(含答案)

( 2)在线段 PB 上是否存在点 G ,使得直线 AG 与平面 PBC 所成的角的正弦值为 确定点 G 的位置;若不存在,请说明理由.
15 ?若存在, 5
( 1)求 P 的轨迹 E ; ( 2)过轨迹 E 上任意一点 P 作圆 O : x2 y 2 3 的切线 l1 ,l2 ,设直线 OP ,l1 ,l2 的斜率分别是 k 0 ,
8.答案: C
解: 1
1 log 2019 2019
22
0 b log 2020 2019
a log 2019 2020
1 log 2019 2020
2
1 log 2019 2019 2 1 , 2
1
1 2 log 2020 2019
1
log 2
2020
2020
1 , c 2019 2020 2
1.
20.( 12 分)已知函数 f (x)
ex

( 1)求函数 f (x) 的单调区间; ( 2)若对任意的 x ( 2,0] ,不等式 2m( x 1) f ( x) 恒成立,求实数 m 的取值范围.
产业扶贫、 保障扶贫、 安居扶贫三场攻坚战. 为响应国家政策, 老张自力更生开了一间小型杂货店. 据
贫困县全部退出.围绕这个目标,江西正着力加快增收步伐,提高救助水平,改善生活条件,打好
请考生在 22 、 23 两题中任选一题作答,如果多做,则按所做的第一题记分.
22.( 10 分)【选修 4-4 :坐标系与参数方程】
在直角坐标系 xOy 中,直线 l 的参数方程为
x 3t ( t 为参数),在以坐标原点为极点,
C. 400
D. 420
得到的回归方程为 y? b?x a?,则(

2020年全国3卷高考理科数学仿真试卷(三)答案

2020年全国3卷高考理科数学仿真试卷(三)答案

绝密★启用前2020年普通高等学校招生全国统一考试仿真卷理科数学(三)答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分一、选择题:本大题共12小题,每小题5分1.D 2.A 3.B 4.C 5.B 6.C 7.C8.C9.A10.B11.D12.D第Ⅱ卷本卷包括必考题和选考题两部分。

第(13)~(21)题为必考题,每个试题考生都必须作答。

第(22)~(23)题为选考题,考生根据要求作答。

二、填空题:本大题共4小题,每小题5分。

13.214.2015.32016.9π三、解答题:解答应写出文字说明、证明过程或演算步骤。

17.【答案】(1)2n a n =;(2)()1654209n nn S +-+=.【解析】(1)由题意得22228t t t t t -++==,所以2t =±,···········2分2t =时,12a =,公差2d =,所以2n a n =;···········4分2t =-时,16a =,公差2d =-,所以82n a n =-.···········6分(2)若数列{}n a 为递增数列,则2n a n =,所以2log 2n b n =,4n n b =,()()1214nn n a b n -=-⋅,···········8分所以()()231143454234214n nn S n n -=⋅+⋅+⋅++-⋅+-⋅ ,·········9分()()23414143454234214n n n S n n +=⋅+⋅+⋅++-⋅+-⋅ ,所以()23134242424214n n n S n +-=+⋅+⋅++⋅--⋅ ()()211414422143n n n -+-=+⨯---()1206543n n +---=,···········10分所以()1654209n nn S +-+=.···········12分18.【答案】(1)见解析;(2)4.【解析】(1)随机变量X 的可取值为0,1,2,3,4···········1分 (2) (3)分 (4) (5)分···········6分故随机变量X 的分布列为:X 01234P1708351835835170···········7分(2)随机变量X 服从超几何分布:()4428E x ⨯∴==,···········9分()1422E Y ∴=⨯=.···········11分()()224E X E Y ∴+=+=.···········12分19.【答案】(1)证明见解析;(2).【解析】(1)在半圆柱中,1BB ⊥平面11PA B ,所以1BB PA ⊥.···········2分因为11A B 是上底面对应圆的直径,所以11PA PB ⊥.···········4分因为111PB BB B = ,1PB ⊂平面1PBB ,11BB PBB ⊂,所以1PA ⊥平面1PBB .···········5分(2)以C 为坐标原点,以CA ,CB 为,y 轴,过C 作与平面ABC 垂直的直线为轴,建立空间直角坐标系C xyz -.如图所示,设1CB =,则()1,0,0B ,()0,1,0A,(1A,(1B,(P .···6分平面11PA B 的一个法向量()10,0,1=n .···········8分设平面11CA B 的一个法向量()2,,x y z =n ,则1z =···········10分···········11分由图可知二面角11P A B C --为钝角,所以所求二面角的余弦值为.···········12分20.【答案】(1)2214y x +=;(2)答案见解析.【解析】(1)取(0,F ',连结PF ',设动圆的圆心为M ,∵两圆相内切,∴122OM FP =-,又12OM PF =',∴4PF PF FF +=>='',···········3分∴点P 的轨迹是以F ,F '为焦点的椭圆,其中24a =,2c =,∴2a =,c =,∴2221b a c =-=,∴C 的轨迹方程为2214y x +=.···········5分(2)当AB x ⊥轴时,有12x x =,12y y =-,由⊥m n ,得112y x =,又221114y x +=,∴122x =,1y =,∴111121222AOB S x y ∆=⨯⨯=⨯=.···········7分当AB 与轴不垂直时,设直线AB 的方程为y kx m =+,()2224240k x kmx m +++-=,则12224kmx x k -+=+,212244m x x k -=+,···········9分由0⋅=m n ,得121240y y x x +=,∴()()121240kx m kx m x x +++=,整理得()()22121240k x x km x x m ++++=,···········10分∴2224m k =+,1221==,综上所述,AOB △的面积为定值.···········12分21.【答案】(1)见解析;(2)当1m <时,()g x 没有零点;1m =时,()g x 有一个零点;1m >时,()g x 有两个零点.【解析】(1)1m =时,()1e ln x f x x x -=-,()1'e ln 1x f x x -=--,········1分要证()f x 在()0+∞,上单调递增,只要证:()0f x '≥对0x >恒成立,令()1e x i x x -=-,则()1e 1x i x -'=-,当1x >时,()0i x '>,···········2分当1x <时,()0i x '<,故()i x 在()1-∞,上单调递减,在()1+∞,上单调递增,所以()()10i x i =≥,···········3分即1e x x -≥(当且仅当1x =时等号成立),令()()1ln 0j x x x x =-->当01x <<时,()'0j x <,当1x >时,()'0j x >,故()j x 在()0,1上单调递减,在()1+∞,上单调递增,所以()()10j x j =≥,即ln 1x x +≥(当且仅当1x =时取等号),()1e ln 1x f x x -'=--()ln 10x x -+≥≥(当且仅当1x =时等号成立),()f x 在()0+∞,上单调递增.···········5分(2)由()e ln x m g x x m -=--有,显然()g x '是增函数,令()00g x '=,00e e x m x =,00ln m x x =+,则(]00,x x ∈时,()0g x '≤,[)0,x x ∈+∞时,()0g x '≥,∴()g x 在(]00,x 上是减函数,在[)0,x +∞上是增函数,∴()g x ···········7分①当1m =时,01x =,()()=10g x g =极小值,()g x 有一个零点1;···········8分②当1m <时,001x <<02ln 0x <,001x <<,所以()0g x >0,()g x 没有零点;···········9分③当1m >时,01x >,()01010g x <--=,又()eee e e 0mmm mmg m m -----=+-=>,又对于函数e 1x y x =--,'e 10x y =-≥时0x ≥,∴当0x >时,1010y >--=,即e 1x x >+,∴()23e ln3m g m m m =-->21ln3m m m +--=1ln ln3m m +--,令()1ln ln3t m m m =+--,则()11'1m t m m m-=-=,∵1m >,∴()'0t m >,∴()()12ln30t m t >=->,∴()30g m >,又0e 1m x -<<,000333ln m x x x =+>,∴()g x 有两个零点,综上,当1m <时,()g x 没有零点;1m =时,()g x 有一个零点;1m >时,()g x 有两个零点.···········12分请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。

河南省2020 年高三第三次模拟考试理科数学试卷-含答案

河南省2020 年高三第三次模拟考试理科数学试卷-含答案


SABO
A.1
B. 2
C. 3
D. 4
10.半正多面体(semiregular solid) 亦称“阿基米德多面体”,是由边数不全相同的正多
边形为面的多面体,体现了数学的对称美.二十四等边体就是
一种半正多面体,是由正方体切截而成的,它由八个正三角形
和六个正方形为面的半正多面体.如图所示,图中网格是边长
3
上单调递增, f (log2 9) f (2 2 ) f ( 5) ,即 b a c ,故选:C.
7.【答案】B
b 在 a 上投影为 2 ,即
b
cos

a ,
b

2
b

0
cos a,b 0 又
cos

a,
b
1,
0
b 2
超标的概率均为 p(0 p 1) ,且各个时间段每套系统监测出排放超标情况相互独立. (1)当 p 1 时,求某个时间段需要检查污染源处理系统的概率;
2
(2)若每套环境监测系统运行成本为 300 元/小时(不启动则不产生运行费用),除运行费 用外,所有的环境监测系统每年的维修和保养费用需要 100 万元.现以此方案实施,问该企 业的环境监测费用是否会超过预算(全年按 9000 小时计算)?并说明理由.
BAC BAA1 60 ,A1AC 的角平分线 AD
交 CC1 于 D .
(1)求证:平面 BAD 平面 AA1C1C ;
(2)求二面角 A B1C1 A1 的余弦值.
19.已知椭圆
C:
x2 a2

y2 b2
1(a
b

0) 的离心率为

2020年普通高等学校招生第三次统一模拟考试理科数学参考答案

2020年普通高等学校招生第三次统一模拟考试理科数学参考答案
----------------- ③
2 Sn = 3 × 3 × 21 + 5 × 3 × 22 + 7 × 3 × 23 + × × × + (2n - 1) × 3 × 2n-1 + (2n + 1) × 3 × 2n
-------------------- ④ 由③-④得:
- Sn = 9+6[ 21 + 22 + 23 + × × × + 2n-1 ]-(2n + 1) × 3 × 2n ∴ Sn = (6n - 3) × 2n + 3 . -----------------------------------12 分
平均数为:
X 160 0.06 170 0.12 180 0.34 190 0.30 200 0.1 210 0.08
= 185( 个 ).
----------------------------------------6 分
( Ⅱ ) 跳 绳 个 数 在 [155 , 165) 内 的 人 数 为 100 0.06 6 个 ,
12
高三理科数学参考答案 第 5 页 (共 8 页)
20.(本小题满分 12 分)
已 知 函 数 f (x) x ln(x a) 1(a < 0) .
(Ⅰ)若 函 数 f (x) 在 定 义 域 上 为 增 函 数 , 求 a 的 取 值 范 围 ;
(Ⅱ )证 明 : f(x) < ex + sin x .
绝密★启用前
2020 年普通高等学校招生第一次统一模拟考试 理科数学参考答案及评分标准 2020.03
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。

湖南省永州市2020年高考第三次模拟考试试卷数学(理科)试题及答案解析完整版

湖南省永州市2020年高考第三次模拟考试试卷数学(理科)试题及答案解析完整版

,得
h m
c
a
a
(2)
(1),(2)两式相乘得
1 2
c c
a a
,即
c
3a
,离心率为
3.选
B.
11.解析: x 0, ,
x
3
3
,
3
,令
z
x
3
,则
z
3
,
3
由题意, sin
z
1 2

3
,
3
上只能有两解
z= 5 6

z
13 6
13 6
17 36
,(*)因为在
z
3
CE = AE = 3 ,OE 1
则D(0,
2,1) , E(0, 0,1) , A(
2, 0, 0) , C(0,
2, 0) ,
AD ( 2, 2,1) , AE ( 2, 0,1) , CA ( 2, 2, 0),
则 CA ( 2, 2, 0) 为平面 ABD的一个法向量,
设平面
ADE
即四边形 GFDE 为平行四边形,故 GE / /DF
2分
CE = AE , GE AC ,又 GE / / DF ,则 DF AC
4分
(2) 平面 BCED 平面 ABC ,平面 BCED 平面 ABC = BC , DB BC , DB 平面 ABC ,又 AC 平面 ABC , DB AC ,又 DF AC BD DF D , BD , DF 平面 ABD ∴AC⊥平面 ABD
13.解析:展开式通项 C5r (
x )5r
(
2)r x
C5r
(2)r
x

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。

2020年陕西省高考数学三模试卷(理科)(有答案解析)

2020年陕西省高考数学三模试卷(理科)(有答案解析)

2020年陕西省高考数学三模试卷(理科)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.已知复数z满足(1-i)z=1+i,则复数z=()A. 1+iB. 1-iC. iD. -i2.设集合A={x|-1≤x≤2,x∈N},集合B={2,3},则A∪B等于()A. {-1,0,1,2,3}B. {0,1,2,3}C. {1,2,3}D. {2}3.若向量=(1,1),=(-1,3),=(2,x)满足(3+)•=10,则x=()A. 1B. 2C. 3D. 44.已知tan(α+)=-2,则tan()=()A. B. C. -3 D. 35.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n行的所有数字之和为2n-1,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…则此数列的前15项和为()A. 110B. 114C. 124D. 1256.若正数m,n满足2m+n=1,则+的最小值为()A. 3+2B. 3+C. 2+2D. 37.执行如图所示的程序框图,则输出S的值为ln5,则在判断框内应填()A. i≤5?B. i≤4?C. i<6?D. i>5?8.已知在三棱锥P-ABC中,PA=PB=BC=1,AB=,AB⊥BC,平面PAB⊥平面ABC,若三棱锥的顶点在同一球面上,则该球的表面积为()A. B. C. D.9.一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A处出发,经正方体的表面,按最短路线爬行到达顶点C1位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是()A. B. C. D.10.函数y=-2sin x的图象大致是()A. B.C. D.11.已知双曲线与抛物线y2=8x有一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线的离心率为()A. 2B. 2C.D.12.已知函数f(x)=ln x-ax2,若f(x)恰有两个不同的零点,则a的取值范围为()A. (,+∞)B. [.+∞)C. (0,)D. (0,]二、填空题(本大题共4小题,共20.0分)13.设x,y满足约束条件,则z=x-2y的最小值是______.14.设S n为等比数列{a n}的前n项和,8a2-a5=0,则=______.15.(1+)(1-x)6展开式中x3的系数为______.16.曲线y=2ln x在点(e2,4)处的切线与坐标轴所围三角形的面积为______.三、解答题(本大题共7小题,共82.0分)17.在△ABC中,a,b,c分别是角A,B,C的对边,且(a+b+c)(a+b-c)=3ab.(Ⅰ)求角C的值;(Ⅱ)若c=2,且△ABC为锐角三角形,求a+b的取值范围.18.已知某种细菌的适宜生长温度为10℃-25℃,为了研究该种细菌的繁殖数量y(单位:个)随温度x(单位:℃)变化的规律,收集数据如下:温度x/℃12141618202224繁殖数量y/个2025332751112194对数据进行初步处理后,得到了一些统计量的值,如表所示:1866 3.8112 4.3142820.5其中k i=ln y i,=(Ⅰ)请绘出y关于x的散点图,并根据散点图判断y=bx+a与y=ce dx哪一个更适合作为该种细菌的繁殖数量y关于温度x的回归方程类型(给出判断即可,不必说明理由);(Ⅱ)根据(1)的判断结果及表格数据,建立y关于x的回归方程(结果精确到0.1);(Ⅲ)当温度为25℃时,该种细菌的繁殖数量的预报值为多少?参考公式:对于一组数据(u i,v i)(i=1,2,3,…,n),其回归宜线v=βu+a的斜率和截距的最小二成估计分别为β=,,参考数据:e5.5≈245.19.如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点(Ⅰ)求证:EF⊥BC;(Ⅱ)求二面角E-BF-C的余弦值20.已知椭圆(a>b>0)的右焦点为F2(3,0),离心率为e.(Ⅰ)若,求椭圆的方程;(Ⅱ)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF2,BF2的中点.若坐标原点O在以MN为直径的圆上,且,求k的取值范围.21.已知函数f(x)=e x-x2-1.(1)若函数g(x)=,x∈(0,+∞),求函数g(x)的极值;(2)若k∈Z,且f(x)+(3x2+x-3k)≥0对任意x∈R恒成立,求k的最大值.22.在平面直角坐标系xOy中,曲线C1过点P(a,1),其参数方程为(t为参数,a∈R).以O为极点,x轴非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos2θ+4cosθ-ρ=0.(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;(Ⅱ)已知曲线C1与曲线C2交于A,B两点,且||=2||,求实数a的值.23.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.(Ⅰ)解关于x的不等式g(x)≥f(x)-|x-1|;(Ⅱ)如果对∀x∈R,不等式g(x)+c≤f(x)-|x-1|恒成立,求实数c的取值范围.-------- 答案与解析 --------1.答案:C解析:解:由题设(1-i)z=1+i得z==故选:C.由复数的除法进行变行即可求出复数的除法与乘法是复数的基本运算2.答案:B解析:解:∵A={0,1,2},B={2,3},∴A∪B={0,1,2,3}.故选:B.可以求出集合A,然后进行并集的运算即可.考查描述法、列举法的定义,以及并集的运算.3.答案:A解析:解:向量=(1,1),=(-1,3),=(2,x)满足(3+)•=10,可得(2,6)•(2,x)=10,可得4+6x=10,解得x=1.故选:A.利用向量的坐标运算以及数量积的运算法则化简求解即可.本题考查向量的坐标运算,向量的数量积的应用,考查计算能力.4.答案:A解析:【分析】本题主要考查两角差的和的正切公式的应用,属于基础题.由题意利用两角差的和的正切公式,求得tan()=tan[(α+)+]的值.【解答】解:∵tan(α+)=-2,∴tan()=tan[(α+)+]===-,故选:A.5.答案:B解析:解:数列的前15项为2,3,3,4,6,4,5,10,10,5,6,15,20,15,6,可得此数列的前15项和为2+3+3+4+6+4+5+10+10+5+6+15+20+15+6=4-2+8-2+16-2+32-2+64-2=(4+8+16+32+64)-10=114.故选:B.由题意写出数列的前15项计算可得所求和.本题考查数列在实际问题中的运用,考查数列的求和,以及运算能力,属于基础题.6.答案:A解析:解:∵2m+n=1,则+=(+)(2m+n)=3+,当且仅当时取等号,即最小值3+2,故选:A.由题意可得,+=(+)(2m+n),展开后利用基本不等式可求.本题主要考查了利用基本不等式求解最值,解题的关键是对应用条件的配凑.7.答案:B解析:解:∵ln(1+)=ln=ln(i+1)-ln i,∴i=1时,S=ln2-ln1=ln2,i=2时,S=ln2+ln3-ln2=ln3,i=3时,S=ln3+ln4-ln3=ln4,i=4,S=ln4+ln5-ln4=ln5,此时i=5不满足条件,输出S=ln5,即条件为i≤4?,故选:B.根据程序框图进行模拟运算即可.本题主要考查程序框图的识别和判断,利用条件进行模拟运算是解决本题的关键.8.答案:B解析:【分析】求出P到平面ABC的距离,AC为截面圆的直径,由勾股定理可得R2=()2+d2=()2+(-d)2,求出R,即可求出球的表面积.本题考查球的表面积,考查学生的计算能力,求出球的半径是关键.属于中档题.【解答】解:由题意,AC为截面圆的直径,AC==,设球心到平面ABC的距离为d,球的半径为R,∵PA=PB=1,AB=,∴PA⊥PB,∵平面PAB⊥平面ABC,∴P到平面ABC的距离为.由勾股定理可得R2=()2+d2=()2+(-d)2,∴d=0,R2=,∴球的表面积为4πR2=3π.故选:B.9.答案:D解析:解:①中线段为虚线,②正确,③中线段为实线,④正确,故选:D.根据空间几何体的三视图的画法结合正方体判断分析.本题考查了空间几何体的三视图的画法,属于中档题,空间想象能力.10.答案:C解析:解:当x=0时,y=0-2sin0=0故函数图象过原点,可排除A又∵y'=故函数的单调区间呈周期性变化分析四个答案,只有C满足要求故选:C.根据函数的解析式,我们根据定义在R上的奇函数图象必要原点可以排除A,再求出其导函数,根据函数的单调区间呈周期性变化,分析四个答案,即可找到满足条件的结论.本题考查的知识点是函数的图象,在分析非基本函数图象的形状时,特殊点、单调性、奇偶性是我们经常用的方法.11.答案:A解析:【分析】根据抛物线和双曲线有相同的焦点求得p和c的关系,根据抛物线的定义可以求出P的坐标,代入双曲线方程与p=2c,b2=c2-a2,联立求得a和c的关系式,然后求得离心率e.本题主要考查了双曲线,抛物线的简单性质.考查了学生综合分析问题和基本的运算能力.解答关键是利用性质列出方程组.【解答】解:∵抛物线y2=8x的焦点坐标F(2,0),p=4,∵抛物线的焦点和双曲线的焦点相同,∴p=2c,c=2,∵设P(m,n),由抛物线定义知:|PF|=m+=m+2=5,∴m=3.∴P点的坐标为(3,),∴,解得:,c=2,则双曲线的离心率为2,故选:A.12.答案:C解析:解:f(x)=ln x-ax2,可得f′(x)=-2ax,①a≤0时,f′(x)>0函数是增函数,不可能有两个零点,②0<a时,令f′(x)=-2ax=0,解得x=,当0时,f′(x)>0函数是增函数,当x>时,f′(x)<0函数是减函数,f(x)的最大值为:f()=ln-a()2=-,f(x)恰有两个不同的零点,当x→0+时,f(x)→-∞,当x→+∞时,f(x)→-∞,所以->0,解得a∈(0,).故选:C.利用函数的导数,求解函数的最大值大于0,结合函数的单调性,判断零点的个数即可.本题考查函数的零点问题,渗透了转化思想,分类讨论思想的应用,是一道难题.13.答案:-2解析:解:由x,y满足约束条件作出可行域如图,化目标函数z=x-2y为y=x-.联立,解得:C(0,1).由图可知,当直线y=x-过C(0,1)时直线在y轴上的截距最大,z有最小值,等于0-2×1=-2.故答案为:-2.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.14.答案:解析:解:∵8a2-a5=0,∴q3==8,∴q=2,则==,故答案为:.由已知结合等比数列的性质可求q3=,进而可求q,然后结合等比数列的求和公式,代入即可求解.本题主要考查了等比数列的性质及求和公式的简单应用,属于基础试题.15.答案:-26解析:解:由(1-x)6的展开式的通项得:T r+1=(-x)r,则(1+)(1-x)6展开式中x3的系数为(-1)3+(-1)5=-26,故答案为:-26.由二项式定理及二项式展开式的通项公式得:(1+)(1-x)6展开式中x3的系数为(-1)3+(-1)5=-26,得解.本题考查了二项式定理、二项式展开式的通项公式及分类讨论思想,属中档题.16.答案:e2解析:解:根据题意,曲线y=2ln x,其导数y′=,则x=e2处的切线的斜率k=y′=,则切线的方程为y-4=(x-e2),即y=x+2,x=0,y=2,切线与y轴的交点坐标为(0,2),y=0,x=-e2,切线与y轴的交点坐标为(-e2,0),则切线与坐标轴所围三角形的面积S=×2×|-e2|=e2;故答案为:e2根据题意,求出y=2ln x的导数,由导数的几何意义可得切线的斜率k=y′=,进而可得切线的方程,求出切线与x轴、y轴交点的坐标,由三角形面积公式计算可得答案.本题考查利用导数计算曲线的切线方程,关键是掌握导数的几何意义.17.答案:解:(Ⅰ)△ABC中,(a+b+c)(a+b-c)=3ab,∴a2+b2-c2=ab,由余弦定理得,cos C==;又∵C∈(0,π),∴C=;(Ⅱ)由c=2,C=,根据正弦定理得,====,∴a+b=(sin A+sin B)=[sin A+sin(-A)]=2sin A+2cos A=4sin(A+);又∵△ABC为锐角三角形,∴,解得<A<;∴<A+<,∴2<4sin(A+)≤4,综上,a+b的取值范围是(2,4].解析:(Ⅰ)化简(a+b+c)(a+b-c)=3ab,利用余弦定理求得C的值;(Ⅱ)由正弦定理求出a+b的解析式,利用三角恒等变换化简,根据题意求出A的取值范围,从而求出a+b的取值范围.本题考查了三角恒等变换与正弦、余弦定理的应用问题,是中档题.18.答案:解:(Ⅰ)绘出y关于x的散点图,如图所示;由散点图可知,y=ce dx更适合作为该种细菌的繁殖数量y关于x的回归方程类型;(Ⅱ)把y=ce dx两边取自然对数,得ln y=dx+ln c,即k=dx+ln c,由d==≈0.183≈0.2,ln c=3.8-0.183×18≈0.5.∴ln y=0.2x+0.5,则y关于x的回归方程为y=e0.5•e0.2x;(Ⅲ)当x=25时,计算可得y=e0.5•e5=e5.5≈245;即温度为25℃时,该种细菌的繁殖数量的预报值为245.解析:(Ⅰ)绘出y关于x的散点图,由散点图判断y=ce dx更适合作为回归方程类型;(Ⅱ)把y=ce dx两边取自然对数,得ln y=dx+ln c,求出回归系数,写出回归方程;(Ⅲ)利用回归方程计算x=25时y的值即可.本题考查了线性回归方程的应用问题,也考查了数学转化思想与计算能力,是中档题.19.答案:证明:(Ⅰ)证法一:过E作EO⊥BC,垂足为O,连OF.由△ABC≌△DBC可证出△EOC≌△FOC.所以∠EOC=∠FOC=,即FO⊥BC.又EO⊥BC,∴BC⊥平面EFO,又EF⊂平面EFO,∴EF⊥BC.证法二:由题意,以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y 轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示空间直角坐标系.则B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0).E(0,,),F(,,0),∴=(,0,-),=(0,2,0),∴•=0.∴EF⊥BC.(2)解:解法一:过O作OG⊥BF,垂足为G,连EG.由平面ABC⊥平面BDC,从而EO⊥平面BDC,又OG⊥BF,由三垂线定理知EG⊥BF.∴∠EGO为二面角E-BF-C的平面角.在△EOC中,EO=EC=BC•cos30°=,由△BGO∽△BFC知,OG=•FC=,∴tan∠EGO==2,∴cos∠EGO=,即二面角E-BF-C的余弦值为.解法二:在图中,平面BFC的一个法向量为=(0,0,1).设平面BEF的法向量为=(x,y,z),又=(,,0),=(0,,).,取x=1,得=(1,-,1).设二面角E-BF-C的大小为θ,且由题意知θ为锐角,则cos θ=|cos<>=||==,故.二面角E-BF-C的余弦值为.解析:(Ⅰ)法一:过E作EO⊥BC,垂足为O,连OF.证出△EOC≌△FOC.从而FO⊥BC.又EO⊥BC,进而BC⊥平面EFO,由此能证明EF⊥BC.法二:以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立空间直角坐标系.利用向量法能证明EF⊥BC.(2)法一:过O作OG⊥BF,垂足为G,连EG.由三垂线定理知EG⊥BF.∠EGO为二面角E-BF-C 的平面角.由此能求出二面角E-BF-C的余弦值.法二:求出平面BFC的一个法向量和平面BEF的法向量,利用向量法能求出二面角E-BF-C的余弦值.本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.答案:解:(Ⅰ)由题意得,得.(2分)结合a2=b2+c2,解得a2=12,b2=3.(3分)所以,椭圆的方程为.(4分)(Ⅱ)由得(b2+a2k2)x2-a2b2=0.设A(x1,y1),B(x2,y2).所以,(6分)依题意,OM⊥ON,易知,四边形OMF2N为平行四边形,所以AF2⊥BF2,(7分)因为,,所以.(8分)即,(9分)将其整理为k2=-=-1-(10分)因为,所以,12≤a2<18.(11分)所以,即.(13分)解析:(Ⅰ)由题意得,得,由此能求出椭圆的方程.(Ⅱ)由得(b2+a2k2)x2-a2b2=0.设A(x1,y1),B(x2,y2).所以,依题意OM⊥ON知,四边形OMF2N为矩形,所以AF2⊥BF2,因为,,所以.由此能求出k的取值范围.本题考查椭圆方程的求法和直线与椭圆位置关系的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.21.答案:解:(1)函数f(x)=e x-x2-1,则f′(x)=e x-2x,又g(x)=,x∈(0,+∞),则g′(x)==;设y=e x-x-1,则y′=e x-1>0在x∈(0,+∞)上恒成立,即y=e x-x-1在x>0时单调递增;所以y=e x-x-1>0;令g′(x)>0,可得x>1,令g′(x)<0,可得0<x<1;所以g(x)的单调增区间为(1,+∞),减区间为(0,1);所以函数g(x)的极小值为g(1)=e-2,无最大值;(2)不等式f(x)+(3x2+x-3k)≥0对任意x∈R恒成立,即为e x+x2+x--1≥0对任意x恒成立,即k≤e x+x2+x-对任意x∈R恒成立;设h(x)=e x+x2+x-,则h′(x)=e x+x+,易知h′(x)在R上单调递增,h′(-1)=-<0,h′(0)=>0,则存在唯一的x0∈(-1,0),使h′(x0)=0,即+x0+=0;当x<x0时,h′(x)<0,h(x)单调递减,当x>x0时,h′(x)>0,h(x)单调递增,所以h(x)min=h(x0)=++x0-;又h′(x0)=0,则h(x0)=(--x0)++x0-=(-x0-3),又x0∈(-1,0),则h(x0)∈(-1,-),即k≤e x+x2+x-对任意x∈R恒成立,所以k≤h(x0),由k max=-1,得出k的最大值为-1.解析:(1)根据题意,对函数g(x)=求导数,利用导数判断g(x)的单调性,并求g(x)的极值;(2)根据题意化为k≤e x+x2+x-对任意x∈R恒成立,构造函数,利用导数求该函数的最小值即可.本题考查了利用导数研究函数的单调性与极值问题,也考查了不等式恒成立问题,也考查了构造法与转化思想,是难题.22.答案:解:(I)∵曲线C1过点P(a,1),其参数方程为(t为参数,a∈R),∴曲线C1的普通方程为x-y-a+1=0,∵曲线C2的极坐标方程为ρcos2θ+4cosθ-ρ=0.∴曲线C2的极坐标方程为ρ2cos2θ+4ρcosθ-ρ2=0,∴x2+4x-x2-y2=0,即曲线C2的直角坐标方程为y2=4x.(说明:化简不对,但准确写出互化公式得1分)(2)设A、B两点所对应参数分别为t1,t2,联解,得,要有两个不同的交点,则,即a>0,由韦达定理有,∵||=2||,∴,或=-2,当时.根据直线参数方程的几何意义可知t1=2t2,,解得a=,a=,符合题意,∴实数a的值为.当时.根据直线参数方程的几何意义可知t1=-2t2,,解得a=,a=>0,符合题意,∴实数a的值为.综上,a的值为或.解析:(I)由曲线C1参数方程能求出曲线C1的普通方程;曲线C2的极坐标方程化为ρ2cos2θ+4ρcosθ-ρ2=0,由此能求出曲线C2的直角坐标方程.(2)设A、B两点所对应参数分别为t1,t2,联解,得,由此能求出实数a的值.本题考查极坐标方程化普通方程,韦达定理,直线参数方程的几何意义,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.23.答案:(本小题满分10分)选修4-5:不等式选讲解:(Ⅰ)∵函数f(x)和g(x)的图象关于原点对称,∴g(x)=-f(-x)=-(x2-2x),∴g(x)=-x2+2x,x∈R.∴原不等式可化为2x2-|x-1|≤0.上面不等价于下列二个不等式组:…①,或…②,由①得,而②无解.∴原不等式的解集为.…(5分)(Ⅱ)不等式g(x)+c≤f(x)-|x-1|可化为:c≤2x2-|x-1|.作出函数F(x)=2x2-|x-1|的图象(这里略).由此可得函数F(x)的最小值为,∴实数c的取值范围是.…(10分)解析:先将M,N化简,再计算交集或并集,得出正确选项本题考查二次函数图象与性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xx 届高考理科数学第三次模拟考试试题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1 计算21ii- = A .3i -+B .1i -+C .1i -D .22i -+2 过点()3,2-的直线l 经过圆2220x y y +-=的圆心,则直线l 的倾斜角大小为A .30︒B .60︒C .150︒D .120︒3 设函数f(x)的图象关于点(1,23)对称,且存在反函数1-f ( x ),若f(3) = 0,则1-f(3)等于A .-1B .1C .-2D .24 设m ,n 是两条不同的直线,α、β、γ是三个不同的平面 给出下列四个命题:①若m ⊥α,n ∥α,则m ⊥n ; ②若α⊥γ,β⊥γ,则α∥β; ③若m ∥α,n ∥α,则m ∥n ; ④若α∥β,β∥γ,m ⊥α,,则m ⊥γ其中正确命题的序号是:A .①和②B .②和③C .③和④D .①和④5.已知一个正四棱锥的各棱长均相等,则其相邻两侧面所成的二面角的大小为A .arcos 31B .arcsin-322.C .arctan 22-.D .arccot 42-.6 {}{}211,,log 1,A x x x R B x x x R =-≥∈=>∈,则“x A ∈”是“x B ∈”的A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分也非必要条件7 若点(3,1)p -在双曲线22221(0,0)y x ab a b =>>-的左准线上,过点p 且方向向量为(2,5)a =r的光线,经直线2y =-反射后通过双曲线的左焦点,则这个双曲线的离心率A .153B .33C .53D .438.已知四面体A BCD -中,2,1,AB CD AB ==与CD 间的距离与夹角分别为3与30o,则四面体A BCD -的体积为A .12B .1C .2D9.从1,2,3,4,5 中取三个不同数字作直线0=++c by ax 中c b a ,,的值,使直线与圆122=+y x 的位置关系满足相离,这样的直线最多有A .30条B .20条C .18条D .12条10.已知等差数列{a n }与等差数列{b n }的前n 项和分别为S n 和T n ,若3213+-=n n T S n n ,则=1010b a A .23B .1314C .2329D .4156 11.若3a >,则方程3210x ax -+=在0,2.上恰有 个实根.A .0B .1C .2D .312.已知M 点为椭圆上一点,椭圆两焦点为F 1,F 2,且210,26a c ==,点I 为12MF F V 的内心,延长MI 交线段F 1F 2于一点N ,则MI IN的值为A .54B .53C .43D .34二、填空题:(本大题共4小题,每小题4分,共16分)13 已知,x y 满足11y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为14 12nx x ⎛⎫- ⎪⎝⎭的展开式的二项式系数之和为64,则展开式中常数项为15 已知定义在正实数集上的连续函数()212(01)11(1)x f x x x x ax ⎧+<<⎪=--⎨⎪+≥⎩,则实数a 的值为16.若函数f x .=)3(log 1ax a a -+-在0,3.上单调递增,则a ∈三、解答题:(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17 (本小题12分)已知函数()()22sin cos 2cos 2f x x x x =++-(1).求函数()f x 的最小正周期; (2).当3,44x ππ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值,最小值18 (本小题12分)一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行不放回抽检以决定是否接收 抽检规则是这样的:一次取一件产品检查,若前三次没有抽查到次品,则用户接收这箱产品,而前三次中只要抽查到次品就停止抽检,并且用户拒绝接收这箱产品(1).求这箱产品被用户拒绝接收的概率;(2).记ξ表示抽检的产品件数,求ξ的概率分布列及期望19 (本小题满分12分)如图,已知正三棱柱ABC - 111C B A ,D 是AC 的中点,∠1C DC = 60°(1).求证:A 1B ∥平面B 1C D ; (2).求二面角D -B 1C -C 的大小。

20 (本小题12分)已知函数21()()axf x x x e a=--(0a >)(1)当2a =时,求函数()f x 的单调区间; (2)若不等式3()0f x a+≥对x R ∈恒成立,求a 的取值范围21 本小题12分.如图,在直角坐标系中,O 为坐标原点,直线AB ⊥x 轴于点C , ||4OC =u u u r,3CD DO =u u u r u u u r ,动点M 到直线AB 的距离是它到点D 的距离的2倍(1)求点M 的轨迹方程;(2)设点K 为点M 的轨迹与x 轴正半轴的交点,直线l 交点M 的轨迹于,E F 两点,E F 与点K 均不重合.,且满足KE KF ⊥u u u r u u u r求直线EF 在X 轴上的截距;(3)在(2)的条件下,动点P 满足2OP OE OF =+u u u r u u u r u u u r,求直线KP 的斜率的取值范围22.(本小题14分)已知数列{}n a 中的相邻两项212k k a a -,是关于x 的方程2(32)320kkx k x k -++=g的两个根,且212(123)k k a a k -=L ≤,,,. (1)求1a ,3a ,5a ,7a ;(2)求数列{}n a 的前2n 项的和2n S ;(3)记sin 1()32sin n f n n ⎛⎫=+ ⎪⎝⎭,(2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤.一、选择题:题号1 2 3 4 5 6 7 8 9 10 11 12答案二、填空题:13、14、15、16、三、解答题:17、18、19、20、21、22、(注:解答题答题卷的空间自留)一、选择题 1.B 2.D 3 .A4.D5.D6.B7.A8.A9.C10.D11.B12.B二、填空题13、3 14、-160 15、32- 16、31,2⎛⎤⎥⎝⎦三、解答题17、(1)()sin 2cos 224f x x x x π⎛⎫=+=+ ⎪⎝⎭ …… 3分∴()f x 的最小正周期为π ………………… 5分(2)337,,244444x x πππππ⎡⎤∈∴≤+≤⎢⎥⎣⎦Q , ………………… 7分1sin 242x π⎛⎫∴-≤+≤⎪⎝⎭………………… 10分∴()1f x ≤≤ ………………… 11分∴当3,44x ππ⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最大值为1,最小值………… 12分18、(1)设这箱产品被用户拒绝接收事件为A,被接收为A ,则由对立事件概率公式()1()P A P A =-,得:8768()1109815P A ⨯⨯=-=⨯⨯158………… 6分(2)1,2,3.ξ的可能取值为218288728(1),(2),(3)1051094510945P ξP P ξξ⨯⨯=========⨯⨯ ξ的分布列为 ………… 10分P51 458 4528 …………11分∴ E ξ=10945…………12分 19、解法一:(1)连结B 1C 交BC 1于O ,则O 是B 1C 的中点,连结DO 。

∵在△A 1B C 中,O 、D 均为中点, ∴A 1B ∥DO …………………………2分 ∵A 1B ⊄平面B 1C D ,DO ⊂平面B 1C D , ∴A 1B ∥平面B 1C D 。

…………………4分 (2)设正三棱柱底面边长为2,则DC = 1,∵∠1C DC = 60°,∴C 1C =3,作DE ⊥BC 于E∵平面BC 1C ⊥平面ABC ,∴DE ⊥平面BC 1C 1B 作EF ⊥B 1C 于F ,连结DF ,则 DF ⊥B 1C ,∴∠DFE 是二面角D -B 1C -C 的平面角……………………………………8分在Rt △DEC 中,DE =21,23=EC 在Rt △BFE 中,EF = BE ·sin 723373231=⨯=BC C ∴在Rt △DEF 中,tan ∠DFE =37337223=⋅=EF DE ∴二面角D -B 1C -C 的大小为arctan37………………1分 解法二:以AC 的中D 为原点建立坐标系,如图,设| AD | = 1∵∠1C DC =60°∴| C 1C | =3,则A 1,0,0.,B 0,3,0.,C -1,0,0,1A 1,03.,()3,3,01B ,()3,0,11-C(1)连结1B C 交B 1C 于O是1B C的中点,连结DO ,则O ⎪⎪⎭⎫⎝⎛-23,23,21,1AB =2∵A 1B ⊄平面B 1C D ,∴A 1B ∥平面B 1C D . ………4分(2)1DC =-1,0,3.,()3,3,11=C设平面B 1C D 的法向量为n =(x , y , z ),则1100n DC n C B ⋅=⋅=u u u u v u u u u v 且即⎪⎩⎪⎨⎧=-+=+-03303z y x z x 则有y 3= 0令z = 1,则n =(3,0,1)………8分设平面BC 1C 1B 的法向量为m =( x ′ ,y ′,z ′)1CC u u u u r =0,0,3.,, ⎪⎩⎪⎨⎧=⋅=⋅011B C m CC m 即=-+=00∴z′= 0令y = -1,解得m =3,-1,0.二面角D —B 1C —C 的余弦值为cos <n , m >=∴二面角D —B 1C —C 的大小为arccos43…………12分 20、对函数()f x 求导得:()(2)(1)axf x e ax x '=+- ……………2分(1)0当2a =时, 2()(22)(1)xf x e x x '=+-令()0f x '>解得 1x >或1x <-()0f x '<解得11x -<<所以, ()f x 单调增区间为(,1)-∞-,(1,)+∞,()f x 单调减区间为-1,1. ………5分34n m n m ⋅=⋅(1C B =u u u u r(2)令()0f x '=,即(2)(1)0ax x +-=,解得2x a=-或1x = …… 6分 由0a >时,列表得:……………8分对于2x a <-时,因为220,,0x x a a >->>,所以210x x a-->, ∴()f x >0… 10 分对于2x a ≥-时,由表可知函数在1x =时取得最小值1(1)0af e a=-< 所以,当x R ∈时,min 1()(1)af x f e a==-由题意,不等式3()0f x a+≥对x R ∈恒成立,所以得130a e a a-+≥,解得0ln3a <≤ …12分21、(1)依题意知,点M 的轨迹是以点D 为焦点、直线AB 为其相应准线,离心率为12的椭圆,设椭圆的长轴长为2a ,短轴长为2b ,焦距为2c ,又||4OC =u u u r ,3CD DO =u u u r u u u r ,∴点D 在x 轴上,且3CD =u u u r ,则2a c c -=3,12c a =解之得:2,1a c ==,b =O 为椭圆的对称中心∴动点M 的轨迹方程为:22143x y += …… 4分 (2)设()()1122,,,E x y F x y ,设直线EF 的方程为x my n =+(-2〈n 〈2〉,代入22143x y +=得()2223463120m y mny n +++-= …… 5分()()22223612344m n m n ∆=-+-,21212226312,3434mn n y y y y m m -+=-=++ ()221212122284122,3434n n m x x m y y n x x m m -+=++==++…… 6分 Q KE KF ⊥u u u r u u u r ,K2,0.,1212(2)(2)0x x y y ∴--+=,22222412161216312034n m n m n m --+++-∴=+,271640n n ∴-+= 解得:2,7n =2n =舍, ∴ 直线EF 在X 轴上的截距为 27 …………8分 (3)设00(,)P x y ,由2OP OE OF =+u u u r u u u r u u u r 知,121200,22x x y y x y ++== 直线KP 的斜率为020278y m k x m ==-+ ………… 10分 当0m =时,0k =;当0m ≠时,187k m m =+,87m m m +≥=Q “=”)或87m m m+≤-= “=”), k ⎡⎫⎛∴∈⋃⎪ ⎢⎣⎭⎝,综上所述:k ⎡∈⎢⎣⎦….12分 22、(1)方程2(32)320k k x k x k -++=g的两个根为13x k =,22k x =, 当1k =时,1232x x ==,,所以12a =;当2k =时,16x =,24x =,所以34a =;当3k =时,19x =,28x =,所以58a =时;当4k =时,112x =,216x =,所以712a =. ………… 4分(2)2122n n S a a a =+++L 2(363)(222)nn =+++++++L L 2133222n n n ++=+-. ………… 8分(3)证明:(1)123456212111(1)f n n n nT a a a a a a a a +--=+-++L ,所以112116T a a ==, 2123411524T a a a a =+=. ………… 9分 当3n ≥时,(1)3456212111(1)6f n n n nT a a a a a a +--=+-++L , 345621211116n n a a a a a a -⎛⎫+-++ ⎪⎝⎭L ≥2311111662622n ⎛⎫+-++ ⎪⎝⎭L g ≥ 1116626n =+>g …… 11分 同时,(1)5678212511(1)24f n n n nT a a a a a a +--=--++L 5678212511124n n a a a a a a -⎛⎫-+++ ⎪⎝⎭L ≤31511112492922n ⎛⎫-+++ ⎪⎝⎭L g ≤ 515249224n =-<g ………… 13分 综上,当n ∈N*时,15624n T ≤≤ ………… 14分。

相关文档
最新文档