北师大版八年级(下)数学 第8周 名校周测卷及答案(word精编版)
初中八年级数学(北师大版)第二学期期末考试名校试卷 含答案

2019-2020学年下学期期末考试名校试卷八年级数学一、选择题.1.下列电视台图标是中心对称图形的为()A.B.C.D.2.不等式2x+1>﹣3的解集在数轴上表示正确的是()A.B.C.D.3.下列说法正确的是()A.如果a>b,那么ac>bc B.如果a>b,那么a+3>b﹣1 C.如果a2>ab,那么a>b D.如果a>b,那么3﹣a>3﹣b 4.如果一个n边形每个外角都是30°,那么n是()A.十一B.十二C.十三D.十四5.下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2B.x2﹣4x+4=(x﹣2)2C.(x+1)(x﹣1)=x2﹣1D.x﹣1=x(1﹣)6.下列命题中,逆命题是真命题的是()A.矩形的两条对角线相等B.正多边形每个内角都相等C.对顶角相等D.对角线互相垂直的四边形是菱形7.如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm8.若关于x的方程=有增根,则m的值为()A.1B.2C.3D.49.小东是一位密码爱好者,在他的密码手册中有这样一条信息:a﹣b、a+b、a2﹣b2、c﹣d、c+d、c2﹣d2依次对应下列六个字:科、爱、勤、我、理、学,现将(a2﹣b2)c2﹣(a2﹣b2)d2因式分解,其结果星现的密码信息可能是()A.勤学B.爱科学C.我爱理科D.我爱科学10.某市在建地铁的一段工程要限期完成,甲工程队单独做可如期完成,乙工程队单独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,求该工程规定的工期是多少天?设规定的工期为x天,根据题意,下列方程错误的是()A.4()+=1B.C.D.二、填空题.11.分解因式:3a3﹣12a2+12a=.12.平面直角坐标系内已知两点A(3,﹣2),B(1,﹣4),将线段AB平移后,点A的对应点是A1(7,6),那么点B的对应点B1的坐标为.13.已知平行四边形ABCD中,∠B=4∠A,则∠C=.14.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为.15.如图,Rt△OA0A1在平面直角坐标系内,∠OA0A1=90°,∠A0OA1=30°,以OA1为直角边向外作Rt△OA1A2,使∠OA1A2=90°,∠A1OA2=30°,以OA2为直角边向外作Rt △OA2A3,使∠OA2A3=90°,∠A2OA3=30°,按此方法进行下去,得到Rt△OA3A4,Rt △OA4A5…,Rt△OA2017A2018,若点A0(0,1),则点A2018的纵坐标为.16.在Rt△ABC中,∠C=90°,∠B=30°,AC=2,在线段AB上取一点E,在直线BC 上取一点F,连接EF,使△BEF为等腰三角形,把△BEF沿EF折叠,若点B的对应点B1恰好落在直线AC上时,BF=.三、解答题17.计算:.18.解不等式19.如图,在每个小正方形的边长都是1的正方形网格中,△ABC的三个顶点都在小正方形的格点上.(1)△ABC的面积为(面积单位)(2)将△ABC绕点C旋转180°得到△A1B1C(点A的刈应点是A1),连接AB1,BA1.①请在网格中补全图形;②直接写出四边形AB1A1B是何种特殊的四边形.20.(8分)如图,在等边△ABC中,点D,E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DF=2DC.21.为了美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵树比原计划多20%,结果提前4天完成,求原计划每天栽树多少棵?22.(10分)某校5名教师要带x(x为整数,且10≤x≤20)名学生到外地参加一次科技活动.已知每张车票价格是120元,购车票时,经主办方协商,车站给出两种优惠方案供学校选择:甲种方案是教师按车票价格付款,学生按车票价格的60%付款;乙种方案是师生都按车票价格的70%付款经过计算,发现采用甲种方案合适,设甲种方案需付款y甲(元),乙种方案需付款y乙(元),解答下列问题:(1)分别求y甲(元)、y乙(元)与x(名)的函数关系式;(2)求学生人数x的取值范围.23.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.24.如图,在平面直角坐标系中,A(0.4),B(﹣2,0),E(0,2),过点E作EF⊥AB,交x轴于点C,垂足为F,作平行四边形ABCD.(1)求证:△ABO≌△CEO;(2)如图②,连接AC,在x轴上是否存在点P,使∠CAP+∠ECO=45°?若存在,直接写出满足条件的直线AP的解析式;若不存在,请说明理由.25.已知,如图,在三角形△ABC中,AB=AC=20cm,BD⊥AC于D,且BD=16cm.点M从点A出发,沿AC方向匀速运动,速度为4cm/s;同时点P由B点出发,沿BA方向匀速运动,速度为lcm/s,过点P的动直线PQ∥AC,交BC于点Q,连结PM,设运动时间为t(s)(0<t<5),解答下列问题:(1)线段AD=cm;(2)求证:PB=PQ;(3)当t=时,△APC的面积等于△AMB的面积;(4)当t=时,以P、Q、D、M为顶点的四边形为平行四边形.参考答案一、选择题.1.C【解答】A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.【解答】不等式2x+1>﹣3,移项,得2x>﹣1﹣3,合并,得2x>﹣4,化系数为1,得x>﹣2.故选:C.3.B【解答】A、若c≤0时,不等式ac>bc不成立,故本选项错误.B、由于a>b,3>﹣1,则a+3>b﹣1,故本选项正确.C、若a<0时,不等式a>b不成立,故本选项错误.D、不等式a>b的两边同时乘以﹣1,不等号方向改变,然后同时加上3,得到:3﹣a<3﹣b,故本选项错误.故选:B.4.B【解答】多边形外角和360°,360°÷30°=12,故n的值为12,故选:B.5.B【解答】A、没把多项式转化成几个整式积的形式,故A不符合题意;B、把多项式转化成几个整式积的形式,故B符合题意;C、是整式的乘法,故C不符合题意;D、没把多项式转化成几个整式积的形式,故D不符合题意;故选:B.6.D【解答】A、逆命题是两条对角线相等的四边形是矩形,是假命题;B、逆命题是每个内角都相等的多边形是正多边形,是假命题;C、逆命题是相等的角是对顶角,是假命题;D、逆命题是菱形的对角线互相垂直,是真命题;故选:D.【解答】∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∵▱ABCD的周长为40cm,∴AB+BC=20cm,∵BC=AB,∴BC=20×=8cm,故选:D.8.C【解答】两边都乘以x﹣2,得:x+1=m,∵分式方程有增根,∴x=2,代入,得:m=3,故选:C.9.C【解答】∵(a2﹣b2)c2﹣(a2﹣b2)d2=(a2﹣b2)(c2﹣d2)=(a+b)(a﹣b)(c+d)(c﹣d),a﹣b、a+b、c﹣d、c+d四个代数式分别对应科、爱、我、理,∴结果呈现的密码信息可能是“我爱理科”;故选:C.10.A【解答】若设工作总量为1,工程期限为x天,那么甲工程队的工作效率为:,乙工程队的工作效率为:.①甲、乙合作4天的工作量+乙队(x﹣4)天的工作量=1,列方程为:.故选项A方程错误,选项B方程正确.②甲4天的工作总量+乙x天的工作总量=1,列方程为:,故选项C方程正确.④甲工作4天的工作量=乙工作6天的工作量.列方程为:,故选项D方程正确.故选:A.二、填空题.11.【解答】原式=3a(a2﹣4a+4)=3a(a﹣2)2,故答案为:3a(a﹣2)2.12.【解答】∵A(3,﹣2)平移后对应点A1的坐标为(7,6),∴A点的平移方法是:先向右平移4个单位,再向上平移8个单位,∴B点的平移方法与A点的平移方法是相同的,∴B(1,﹣4)平移后的坐标是:(5,4).故答案为:(5,4).13.【解答】∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故答案为36°.14.【解答】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故答案为:10.15.【解答】∵∠OA0A1=90°,OA0=1,∠A0OA1=30°,∴OA1=,同理:OA2=()2,…,OA n=()n∴OA2018的长度为()2018;∵2018×30°÷360=168…2,∴OA2018与OA2重合,∴点A2018的纵坐标为.故答案为.16.【解答】①如图1,设BF=x,则FB1=x,FC=2﹣x.当BE=BF时,∠BFB1=150°,∴∠CFB1=30°.在Rt△FB1C中,则B1C=x,∴tan30°=,即,解得x=;②如图2,当BE=EF时,∵∠ABC=30°,∴∠BEF=120°.若使△BEF沿EF折叠,若点B的对应点B1恰好落在直线AC上,∵∠BAC=60°,∴此时E点与A点重合.∴BF=2BC=4;③如图3,当FB=FE时,若使△BEF沿EF折叠,若点B的对应点B1恰好落在直线AC上,∵∠AFC=60°,∴此时E点与A点重合.设BF=x,则AF=x,FC=2﹣x.在Rt△AFC中,FC=AF=,∴,解得x=故答案为或或.三、解答题.17.【解答】原式=÷=•=a﹣118.【解答】去分母得:3(x﹣1)﹣2(2x﹣1)<2,去括号得:3x﹣3﹣4x+2<2,移项得:3x﹣4x<2﹣2+3,合并同类项得:﹣x<3,x>﹣3.19.【解答】(1)△ABC的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4;故答案为4;(2)①如图,△A1B1C为所作;②四边形AB1A1B是矩形.20.【解答】∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°,∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC,∵∠DEF=90°,∠F=30°,∴DF=2DE=2CD.21.【解答】设原计划每天栽树x棵,根据题意可得:=+4,解得:x=50,检验得:x=50是原方程的根,答:原计划每天栽树50棵.22.【解答】(1)根据题意,得y甲=120×5+120×60%x=72x+600,即y甲=72x+600(x为整数,且10≤x≤20);y乙=120×70%(x+5)=84x+420(x为整数,且10≤x≤20).(2)根据题意,得y甲≤y乙,∴72x+600≤84x+420,解得,x≥15,又∵x为整数,且10≤x≤20,∴x的取值范围为:15≤x≤20,且x为整数.23.【解答】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.24.【解答】(1)∵A(0.4),B(﹣2,0),E(0,2),∴AO=4,OE=BO=2∵EF⊥AB,AO⊥BO∴∠B+∠BCF=90°,∠B+∠BAO=90°∴∠BCF=∠BAO,且∠AOB=∠COE=90°,BO=EO ∴△ABO≌△CEO(AAS)(2)存在∵△ABO≌△CEO;∴AO=CO=4,∴∠ACO=∠CAO=45°,点C(4,0)∴∠ACF+∠ECO=45°如图,若点P在点左边,∵∠CAP+∠ECO=45°,∠ACF+∠ECO=45°∴∠ACF=∠P AC∴AP∥CF∵点E(0,2),点C(4,0)∴设CE解析式为:y=kx+2∴0=4k+2∴k=﹣∴CE解析式为:y=﹣x+2∵AP∥FC∴AP解析式为:y=﹣x+4若点P在点C右侧,∵∠CAP+∠ECO=45°,∠ACF+∠ECO=45°∴∠ACF=∠P AC∵∠P AO+∠P AC=45°,∠ACF+∠FCO=45°∴∠P AO=∠FCO,且AO=CO,∠AOC=∠COA=90°∴△AOP≌△COE(SAS)∴OP=OE=2∴点P坐标(2,0)设直线AP解析式:y=mx+4过点P(2,0)∴0=2m+4∴m=﹣2∴直线AO解析式:y=﹣2x+425.【解答】(1)∵BD⊥AC,∴∠ADB=90°,∴AD===12(cm),故答案为:12;(2)证明:∵AB=AC,∴∠ABC=∠C,即∠PBQ=∠C,∵PQ∥AC,∴∠PQB=∠C,∴∠PBQ=∠PQB,∴PB=PQ;(3)作PE⊥AC于E,如图1所示:则PE∥BD,根据题意得:BP=t,AP=20﹣t,AM=4t,∴△AMB的面积=AM×BD=×4t×16=32t(cm2),∵PE∥BD,∴△APE∽△ABD,∴=,即=,解得:PE=(20﹣t),∴△APC的面积=AC×PE=×20×(20﹣t)=160﹣8t,∵△APC的面积等于△AMB的面积,∴160﹣8t=32t,解得:t=4(s),故答案为:4s;(4)分两种情况:①当点M在点D的上方时,如图2所示:根据题意得:PQ=BP=t,AM=4t,AD=12,∴MD=AD﹣AM=12﹣4t,∵PQ∥AC,∴PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,∴t=12﹣4t,解得:t=(s);②当点M在点D的下方时,如图3所示:根据题意得:PQ=BP=t,AM=4t,AD=12,∴MD=AM﹣AD=4t﹣12,∵PQ∥AC,∴PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,∴t=4t﹣12,解得:t=4(s);综上所述,当t=s或t=4s时,以P、Q、D、M为顶点的四边形为平行四边形;故答案为:s或4s.。
北师大版八年级数学下册《名校期末测试卷》含答案

三、解答题(本大题共 7 小题,共 57 分)
22、(8 分) ( 1)因式分解: 9(m+n)2- ( m-n)2
A.x 2-1
B.x ( x-2 ) +( 2-x )
x-1 的是( C.x 2-2x+1
) D.x 2+2x+1
3、(3 分) 无论 a 取何值时,下列分式一定有意义的是(
)
A.
??2 +1 ??2
B.
??+1 ??2
C.??2 -1
??+1
D.
??-1 ??2 +1
4、(3 分 ) 若分式 ??2 口 ?? ,的运算结果为 x( x≠ 0),则在“口”中添加的运算符号为(
C.AE=BD
D.BC=2CE
10、(3 分) 如图, ? ABCD的对角线 AC与 BD相交于点 O,E、F 是对角线 BD上不同的两点,下列
条件中,不能得出四边形 AECF一定为平行四边形的是(
)
A.BE=DF
B. ∠BAE=∠DCF
C.AF∥CE
11、(3 分) 下列命题正确的个数是(
)
( 1)若 x2+kx+25 是一个完全平方式,则 k 的值等于 10
-m-2 )÷
,然后从 -2 < m≤ 2 中选一个合适的整数作为 m的值
??-2
??-2
代入求值.
25、(8 分) 先阅读下列材料,再解答下列问题: 材料:因式分解:( x+y)2+2(x+y) +1.
(最新整理)北师大版八年级下册数学第一章周测试题

北师大版八年级下册数学第一章周测试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版八年级下册数学第一章周测试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版八年级下册数学第一章周测试题的全部内容。
北师大版八年级下册数学第一章周测试题一.选择题(共10小题)1.(2016•贺州)一个等腰三角形的两边长分别为4,8,则它的周长为( )A.12B.16C.20D.16或202.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为( )A.15°B.17。
5°C.20°D.22.5°3.(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )A.50°B.51°C.51。
5°D.52.5°4.(2016•湘西州)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是( )A.13cm B.14cm C.13cm或14cm D.以上都不对5.(2016•泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )A.44°B.66°C.88°D.92°6.(2016•雅安)如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为( )A.2+2B.2+C.4D.37.(2016•孝感模拟)如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是( )A.∠1=2∠2B.3∠1﹣∠2=180°C.∠1+3∠2=180°D.2∠1+∠2=180°8.(2016•鞍山二模)如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于( )A.110°B.120°C.130°D.140°9.(2016春•乳山市期末)如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=( )A.55°B.60°C.65°D.70°10.(2016•六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n 的度数为( )A.B.C.D.二.填空题(共10小题)11.(2016•淮安)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 .12.(2016•通辽)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为 .13.(2016•厦门校级模拟)在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为 .14.(2016•哈尔滨模拟)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为 .15.(2016•红桥区二模)如图,在△ABC中,AB=AC,D为BC上一点,CD=AD,AB=BD,则∠B的大小为 .16.(2016•哈尔滨校级模拟)已知:等腰三角形ABC的面积为30m2,AB=AC=10m,则底边BC的长度为 .17.(2016•黄浦区三模)如果两个等腰三角形的腰长相等、面积也相等,那么我们把这两个等腰(用三角形称为一对合同三角形.已知一对合同三角形的底角分别为x°和y°,则y= .x的代数式表示)18.(2016•河南模拟)如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为 时,△ACP 是等腰三角形.19.(2016春•东港市期末)等腰三角形两内角度数之比为1:2,则它的顶角度数为 .20.(2016•河北模拟)如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为 .三.解答题(共10小题)21.(2016•西城区一模)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.22.(2016•徐州模拟)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.23.(2016春•太仓市期末)如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.24.(2016春•埇桥区期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC 的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.25.(2016春•鄄城县期末)如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.26.(2016春•深圳校级期中)如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:△ABC是等腰三角形.27.(2016春•吉安校级月考)如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC 引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?(2015•北京)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.28.29.(2015秋•当涂县期末)如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.30.(2015秋•顺义区期末)已知:如图,△ABC中,AB=AC=6,∠A=45°,点D在AC上,点E在BD 上,且△ABD、△CDE、△BCE均为等腰三角形.(1)求∠EBC的度数;(2)求BE的长.北师大版八年级下册数学第一章周测试题参考答案与试题解析一.选择题(共10小题)1.(2016•贺州)一个等腰三角形的两边长分别为4,8,则它的周长为( )A.12B.16C.20D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.2.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D,则∠D的度数为( )A.15°B.17。
北师大八年级数学下册第8周周末练习题含答案

八年级数学下册第8周周测试卷组卷人:家长签名:班级:_________________ 姓名:_________________ 座号:________________一. 选择题(共10小题,答案写在表格内)题号 1 2 3 4 5 6 7 8 9 10答案1.某同学读了《庄子》“子非鱼安知鱼之乐”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是( )2.下面四个共享单车的手机APP图标中,属于中心对称图形的是( )3.如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N 的坐标为( )A.(2,-1) B.(2,3) C.(0,1) D.(4,1)第3题图第4题图4.如图,△ABC沿边BC所在直线向右平移得到△DEF,则下列结论中错误的是( ) A.△ABC≌△DEF B.AC=DF C.AB=DE D.EC=FC5.如图,小聪坐在秋千上旋转了80°,其位置从P点运动到了P′点,则∠OPP′的度数为( )A.40° B.50° C.70° D.80°6.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a,b的值是( ) A.a=5,b=1 B.a=-5,b=1C.a=5,b=-1 D.a=-5,b=-17.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7),则点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)8.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB向右平移得到△DEF.若四边形ABED的面积为8,则平移的距离为( )A.2 B.4 C.8 D.16第8题图第9题图第10题图9.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为( )A.60° B.85° C.75° D.90°10.如图,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则下列结论错误的是( )A.AE∥BC B.∠ADE=∠BDCC.△BDE是等边三角形 D.△ADE的周长是9二.填空题(共5小题)11.2022年是香港回归祖国25周年,如图所示的香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转形成的,这四次旋转中旋转角最小是________度.第11题图第12题图第13题图12.将△ABC绕着点C按顺时针方向旋转50°后得到△A′B′C.若∠A=40°,∠B′=110°,则∠BCA′的度数是________.13.如图是一个以A为对称中心的中心对称图形,若∠C=90°,∠B=45°,AC=1,则BB′=________.14.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿着CB 的方向平移7cm得到线段EF,点E,F分别落在AB,BC上,则△EBF的周长为________cm.14题图第15题图15.如图,长方形ABCD的对角线AC=10,边BC=8,则图中五个小长方形的周长之和为________.三.解答题1.如图,经过△ABC平移后,顶点A移到了点D,请作出平移后的△DEF.2.如图,正方形网格中每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)画出△AB′C′向左平移4格后的△A′B″C″.3.如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF=CE.求证:FD=BE.4.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补全图形;(2)若EF∥CD,求证:∠BDC=90°.5.如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,将△ABC沿AB边所在直线向右平移3个单位,记平移后的对应三角形为△DEF.(1)求DB的长;(2)求此时梯形CAEF的面积.6.如图,4×4的网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中按下列要求涂上阴影.(1)在图①中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图②中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.7.两块等腰直角三角形纸片AOB和COD按图①所示放置,直角顶点重合在点O处,AB=25.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图②所示.(1)利用图②证明AC=BD,且AC⊥BD;(2)当BD与CD在同一直线上(如图③)时,若AC=7,求CD的长.参考答案1.D 2.C 3.A 4.D 5.B 6.D 7.C 8.A 9.B 10.B 解析:∵△ABC是等边三角形,∴∠ABC=∠C=60°.∵将△BCD绕点B逆时针旋转60°得到△BAE,∴∠EAB =∠C=∠ABC=60°,∴AE∥BC,故选项A正确;∵△ABC是等边三角形,∴AC=AB=BC=5.∵△BAE是由△BCD逆时针旋转60°得到,∴AE=CD,BD=BE,∠EBD=60°,∴△BDE是等边三角形,∴DE=BD=4,∴△AED的周长为AE+AD+DE=AD+CD+BD=AC+BD=9,故选项C与D正确;∵没有条件证明∠ADE=∠BDC,∴选项B错误,故选B.11.72 12.80°13.2 2 14.1315.28 解析:∵长方形ABCD的对角线AC=10,BC=8,∴AB=AC2-BC2=102-82=6,由平移的性质可知五个小长方形的周长之和为2×(AB+BC)=2×14=28.三、解答题1.解:如图,△DEF即为所求.(8分)2.解:(1)如图,△AB′C′即为所求.(4分)(2)如图,△A′B″C″即为所求.(8分)3.证明:∵△ABO与△CDO关于O点中心对称,∴OB=OD,OA=OC.(3分)∵AF=CE,∴OF=OE.(5分)在△DOF和△BOE中,OD=OB,∠DOF=∠BOE,OF=OE,∴△DOF ≌△BOE(SAS),(8分)∴FD=BE.(10分)4.(1)解:补全图形,如图所示.(5分)(2)证明:由旋转的性质得∠DCF =90°,DC =FC ,∴∠DCE +∠ECF =90°.(7分)∵∠ACB =90°,∴∠DCE +∠BCD =90°,∴∠ECF =∠BCD .∵EF ∥DC ,∴∠EFC +∠DCF=180°,∴∠EFC =90°.(9分)在△BDC 和△EFC 中,⎩⎨⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC (SAS),∴∠BDC =∠EFC =90°.(12分)5.解:(1)∵将△ABC 沿AB 边所在直线向右平移3个单位得到△DEF ,∴CF =AD =BE =3.∵AB =5,∴DB =AB -AD =2.(4分)(2)作CG ⊥AB 于G .在△ACB 中,∵∠ACB =90°,AC =3,AB =5,∴由勾股定理得BC =AB 2-AC 2=4.(7分)由三角形的面积公式得12CG ·AB =12AC ·BC ,∴3×4=5·CG ,解得CG =125.(9分)∴S 梯形CAEF =12(CF +AE )·CG =12×(3+5+3)×125=665.(12分)6.解:(1)答案如图所示(答案不唯一).(7分)(2)答案如图所示(答案不唯一).(14分)7.(1)证明:延长BD 交OA 于点G ,交AC 于点E .(1分)∵△AOB 和△COD 是等腰直角三角形,∴OA =OB ,OC =OD ,∠AOB =∠COD =90°,∴∠AOC +∠AOD =∠DOB +∠DOA ,∴∠AOC =∠DOB .(4分)在△AOC 和△BOD 中,⎩⎨⎧OA =OB ,∠AOC =∠BOD ,OC =OD ,∴△AOC ≌△BOD ,∴AC=BD ,∠CAO =∠DBO .(7分)又∵∠DBO +∠OGB =90°,∠OGB =∠AGE ,∴∠CAO +∠AGE =90°,∴∠AEG =90°,∴AC ⊥BD .(9分) (2)解:由(1)可知AC =BD ,AC ⊥BD .∵BD ,CD 在同一直线上,∴△ABC 是直角三角形.(12分)由勾股定理得BC =AB 2-AC 2=252-72=24.(14分)∴CD =BC -BD =BC -AC =17.。
北师大版八年级下学期数学期末试卷含答案(共5套)

北师大版八年级下学期期末调研测试题一、选择题(本大题共12小题,每小题4分,共48分)1.“抛一枚均匀的硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件2.下列条件中不能判断四边形是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC3.方程x(x+3)=0的根是()A.x=0B.x=-3C.x1=0,x2=3D.x1=0,x2=-34.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方形C.球D.圆锥5.如图,在口ABCD中,过点C的直线CE⊥AB,垂足为E,∠EAD=53°,则∠BCE的度数为()A.37°B.47°C.53°D.127°EDAB C6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠07.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米8.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为()A.3∶1B.4∶1C.5∶1D.6∶19.下列各组图形可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形10.如图,P 为口ABCD 的边AD 上的一点,E 、F 分别是PB 、PC 的中点,△PEF 、△PDC 、△P AB 的面积分别为S 、S 1、S 2,若S =3,则S 1+S 2的值是( ) A .3 B .6 C .12 D .2411.如图,正方形ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知BE =1,则EF 的长为( )A .32B .52C .94D .312.如图,已知在Rt △ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ,再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为( )A .23×(12)n -1B .223×(12)n -1C .23×(12)nD .223×(12)n二、填空题(本大题共6小题,每小题4分,共24分)13.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm 变成了2cm ,那么它的面积会由原来的6cm 2变为___________.14.有一个正多边形的每一个外角都是60°,则这个多边形的边数是_______________.15.如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BF⊥a于点F、DE⊥a于点E,若DE=4,BF=3,则EF的长为____________.16.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长为____________.17.设a,b是方程x2+x-2017=0的两个不相等的实数根,则a2+2a+b的值为_________________.18.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是___________________.三、解答题(本大题共9小题,共78分)19.解方程:(1)x2-2x-3=0; (2)x2-4x+1=020.如图,在口ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.求证:BF=DE.21.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平面上放一面平面镜,镜子与教学楼的距离EA=12米,当她与镜子的距离CE=2米时,她刚好能从镜子中看到教学楼的顶端B.已知她的眼睛距地面的高度DC=1.5米.请你帮助小玲计算出教学楼的高度AB是多少米(根据光的反射定律:反射角等于入射角.)22.某市为改善生态环境,积极开展向雾霾宣战,还碧水蓝天专项整治活动.已知2014年共投资1000万元,2016年共投资1210万元.(1)求2014年到2016年的平均增长率;(2)该市预计2017年的投资增长率与前两年相同,则2017年的投资预算是多少万元?23.小明和小丽用形状大小相同,面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封,游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值之和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.24.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.25. 如图,在萎形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.26. 如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t(0<t≤15).过点D作DE⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.27. 如图1,四边形ABHC与四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G,交AC于点M,求证:BD⊥CF;(3)在(2)的条件下,当AB=4,AD=2时,求线段CM的长.参考答案八年级第二学期期末考试数学试卷(北师大版)考试时间90分钟 满分100分一、选择题(每小题3分,共24分) 1.下列关于的方程:①;②;③;④();⑤1x =-1,其中一元二次方程的个数是( ) A .1 B .2 C .3 D .42.已知α为锐角,且sin(α-10°)=22,则α等于( )A .45°B .55°C .60°D .65°3.如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A 向右平移2个单位,向后平移1个单位后,所得几何体的视图( ) A.主视图改变,俯视图改变 B.主视图不变,俯视图不变 C.主视图不变,俯视图改变 D.主视图改变,俯视图不变4.二次函数y=ax 2+bx 的图象如图所示,若一元二次方程ax 2+bx+m=0有两个不相等的实数根,则整数m 的最小值为( )A .﹣3B .﹣2C .﹣1D .2(第4题图) (第5题图) (第6题图)5.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2) 6.如图,将一个长为,宽为 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ) A. B. C. D.DCBA7.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为( )A.2 B.﹣2 C.3 D.﹣38.观察二次函数y=ax2+bx+c(a≠0)的图象,下列四个结论:①4ac﹣b2>0;②4a+c<2b;③b+c<0;④n(an+b)﹣b<a(n≠1).正确结论的个数是()A. 4个 B. 3个 C. 2个 D. 1个(第7题图) (第8题图) (第12题图) (第13题图)二、填空题(每小题3分,共21分)9.计算:﹣14+﹣4cos30°= .10.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可).11.若关于x的一元二次方程..(m-2)x²+2x-1=0有实数根,求m的取值范围。
2023-2024学年八年级下学期数学开学摸底考试卷(北师大版)及答案

2023-2024学年八年级数学下学期开学摸底考(考试时间:100分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:北师大版八上全部。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.A .8B .8-C.D. 2.人数相同的八年级一、二两班同学在同一次数学单元测试,班级平均分和方差如下:1280x x ==,221224,18s s ==,则成绩较为稳定的班级是( )A .一班B .二班C .两班成绩一样稳定D .无法确定3.以下列长度为边的三角形,能判断为直角三角形的是( )A .1,2B .2,3,4CD34.在14,-1, )A .14B .-1CD. 5.我国古代《孙子算经》中有道题,原文是:“今有三人共车,二车空;二人共车,九人步.问人与车各几何?”意思是:现有一些人坐车,如果每车坐三个人,则还剩余二辆车没有人坐;如果每车坐二人,则有9人需要步行,问共有多少人?几辆车?设共有x 人,y 辆车,则下列符合题意的方程组是( )A .()192123y x x y ⎧=-⎪⎪⎨⎪=-⎪⎩B .()1231922x y y x ⎧=+⎪⎪⎨⎪=+-⎪⎩C .()123192x x y y x ⎧=+-⎪⎪⎨⎪=+⎪⎩D .()()122193x y y x ⎧=-⎪⎪⎨⎪=-⎪⎩6.点()3,5-关于y 轴对称的点的坐标是( )A .()3,5-B .()5,3-C .()3,5--D .()3,5 7.下列命题属于真命题的是()A .两个角对应相等的两个三角形全等B .两条边相等的两个直角三角形全等C .腰相等的两个等腰三角形全等D .斜边相等的两个等腰直角三角形全等8.两个一次函数332y x =-+和24y x =-的交点坐标为(,)a b ,那么下列方程组中,解为x ay b=⎧⎨=⎩的是( )A .3624y x x y -=⎧⎨+=-⎩B .360240x y x y ++=⎧⎨--=⎩C .326240x y x y -=-⎧⎨--=⎩D .32624x y x y +=⎧⎨-=⎩ 9.如图,长方体的长宽高分别是3、4、2,一只蚂蚁要沿着长方体的外表面从A 点爬到B 点,最短路径长为( )A .5BC.D10.已知甲,乙两地相距480km ,一辆出租车从甲地出发往返于甲乙两地,一辆货车沿同一条公路从乙地前往甲地,两车同时出发,货车途经服务区时,停下来装完货物后,发现此时与出租车相距120km ,货车改变速度继续出发2h 3后与出租车相遇.出租车到达乙地后立即按原路返回,结果比货车早15分钟到达甲地.如图是两车距各自出发地的距离()km y 与货车行驶时间()h x 之间的函数图象,则下列说法错误的是()A .120a =B .点F 的坐标为()8,0C .出租车从乙地返回甲地的速度为128km/h D .出租车返回的过程中,货车出发125h 17或123h 15都与出租车相距12km 第Ⅱ卷二.填空题(共8小题,满分24分,每小题3分)11. “两直线平行,同旁内角互补”是 命题(真、假)12.将直线y =﹣2x +3向下平移4个单位长度,所得直线的解析式为 .13.计算:=14.学校“校园之声”广播站要选拔一名英语主持人.小聪参加选拔的各项成绩如下:读:94分,听:80分,写92分,若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小聪的个人总分为分.15.平面直角坐标系中,已知点()1,1A -、()5,4B -,在y 轴上确定点P ,使得PAB 的周长最小,则点P 的坐标是.16.定义新运算:对于任意实数a 、b 约定关于⊗的一种运算如下:2a b a b ⊗=+.例如:()()3223-⊗=⨯-24+=-.若()5x y ⊗-=,且27y x ⊗=,则x y +的值是.17.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.把正方形ABCD 放到数轴上,如图2,使点A 与-2重合,那么点D 在数轴上表示的数为.18.已知Rt ABC △中,9068C AC BC ∠=︒==,,,将它其中一个锐角沿着某条直线翻折,使该锐角顶点落在其对边的中点D ,折痕交另一直角边于E ,交斜边于F ,则DE 的长为 .三.解答题(共7小题,满分66分)19.(8分) 20.(8分)解方程(组)3731x y x y -=⎧⎨+=-⎩. 21.(8分)按要求完成下列证明:已知:如图,在ABC 中,CD AB ⊥于点D ,E 是AC 上一点,且1290∠+∠=︒.试说明:DE BC ∥.解:CD AB ⊥ (已知),1∴∠+________90=︒(已知)1290∠+∠=︒ (已知),∴________2=∠(________).DE BC ∴∥(________).22.(8分)为了响应市政府“绿色环保,节能减排”的号召,某商场用3600元购进甲、乙两种节能灯共计100只,甲种节能灯进价30元/只,乙种节能灯进价40元/只,求该商场甲、乙两种节能灯各购进了多少只?23.(10分)某校举办弘扬中华传统知识演讲比赛,八(1)班计划从甲、乙两位同学中选出一位参加学校的决赛,已知这两位同学在预赛中各项成绩如表图:(1)表中a 的值为_________;b 的值为_________.(2)把图中的统计图补充完整;(3)若演讲内容、语言表达、形象风度、现场效果四项得分按30%、50%、10%、10%的权重比例计算两人的最终得分,并选择最终得分较高的同学作为代表参赛,那么谁将代表八(1)班参赛?请说明理由.项目甲的成绩(分)乙的成绩(分)演讲内容9590语言表达9085形象风度85b 现场效果9095平均分a9024.(12分)为了迎接十四运的召开,绿色西安也将呈现在全国观众面前.市政想绿化某主干道中间的隔离带,准备在隔离带内种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y (元)与种植面积2(m )x 之间的函数关系如图所示,乙种花卉的种植费用为每平方米80元.(1)请求出当甲种花卉种植面积不少于2300m 时,y 与x 之间的函数关系式;(2)隔离带内甲、乙两种花卉的种植面积共260000m ,若甲种花卉的种植面积不少于230000m ,且不超过乙种花卉种植面积的2倍,设种植总费用为W 元,求出W 与x 之间的函数关系式,并求出隔离带内种植花卉总费用最少为多少元?25.(12分)如图①,BE 、DF 分别平分四边形ABCD 的外角MBC ∠和NDC ∠,设BAD ∠=α,BCD β∠=.(1)若110αβ+=︒,则MBC NDC ∠+∠= ︒;(2)若BE 与DF 相交于点G ,且25BGD ∠=︒,求α、β所满足的等量关系式,并说明理由;(3)如图②,若αβ=,试判断BE 、DF 的位置关系,并说明理由.2023-2024学年八年级数学下学期开学摸底考全解全析注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2022-2023学年北师大版八年级数学下学期期末试卷附答案解析

2022-2023学年北师大版八年级数学下学期期末试卷(本试题满分150分)一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如图,在四边形ABCD中,//AB CD,添加下列一个条件后,能判定四边形ABCD是平行四边形的是()A.AB=BC B.AD=BC C.∠A=∠C D.∠B+∠C=180°3.如图,AB⊥BD,CD⊥BD.若依据“HL”判定△ABD≌△CDB,则应添加的条件是()A.AB=CD B.∠A=∠C C.∠ADB=∠CBD D.AD=BC4.如果m>n,那么下列结论错误的是()A.m+4>n+4B.m-5>n-5C.6m>6n D.-2m>-2n 5.下列各式中,从左到右的变形是因式分解的是()A.(x+1)(x-1)=x2-1B.x2-4x+4=x(x -4)+4C.(x+3)(x-4)=x2-x-12D.x2-4=(x+2)(x-2)6.如图所示,直线32y x=+与y=kx-1相交于点P,点P的纵坐标为12,则关于x的不等式312x kx+>-的解集在数轴上表示正确的是()A.B.C D.7.关于x 的分式方程222x mx x -=--有增根,则m 的值为()A .1B .2C .3D .48.《九章算术》中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间.设规定时间为x 天,则可列方程为()A .900900213x x ⨯=+-B .900900213x x =⨯+-C .900900213x x ⨯=-+D .900900213x x =⨯++9.如图,DE 是△ABC 的中位线,∠ABC 的平分线交DE 于点F ,AB =8,BC =12,则EF 的长为()A .1B .1.5C .2D .2.510.如图,∠AOB =150°,OP 平分∠AOB ,PD ⊥OB 于点D ,PE ⊥OA 于点E ,//PC OB 交OA 于点C ,若PD =3,则OC 的长为()A .6B .5C .4D .3二、填空题(每小题4分,共32分)11.若实数m ,n 满足20m -+=,且m ,n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是______.12.若分式211x x--的值为0,则x 的值为______.13.如图,△ABC 沿着BC 方向平移得到A B C '''△,点P 是直线AA '上另一点,若△ABC ,PB C ''△的面积分别为12,S S ,则两三角形面积大小关系是1S ______2S (选填“<”,“=”或“>”).14.在平面直角坐标系中,点P (m -1,m +2)位于第一象限,则m 的取值范围为______.15.正五边形是旋转对称图形,绕旋转中心至少旋转______度,可以和原图形重合.16.如图,在△ABC 中,AB =5,AC =7,BC =10,EF 垂直平分BC ,点P 为直线EF 上的任一点,则△ABP周长的最小值是______.17.若关于x 的一元一次不等式组1020x x a ->⎧⎨->⎩的解集是x >1,则a 的取值范围是______.18.如图,平行四边形ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M ,连接CM .如果△CDM 的周长为12,那么平行四边形ABCD 的周长是______.三、解答题一(共38分)19.(本题8分)(1)解不等式:3+2x >-x -6;(2)解不等式组213211x x x +≤+⎧⎨+>⎩①②20.(本题8分)因式分解.(1)y +(y -4)(y -1);(2)()()2294ax y b y x -+-.21.(本题8分)解分式方程.(1)2321x x =-;(2)33122x x x-+=--.22.(本题6分)先化简2224221211x x xx x x x ++÷---++,然后在-2,-1,0,1中选择一个适当的数代入求值.23.(本题8分)如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB 的顶点均在格点(小正方形的顶点)上,点O 为原点,点A ,B 的坐标分别是A (3,2),B (1,3).(1)将△AOB 向下平移3个单位长度后得到111AO B △,则点1B 的坐标为______;(2)将△AOB 绕点O 逆时针旋转90°后得到22A OB △,请在图中作出22A OB △,这时点2A 的坐标为______四、解答题二(共50分)24.(本题9分)已知一个正多边形的每个内角比它的每个外角多60°,求这个多边形的边数.25.(本题10分)某地发生了地震,需550顶帐篷来解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐篷甲工厂比乙工厂少用4天.(1)求甲、乙两个工厂每天分别可加工生产多少顶帐篷?(2)若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐篷的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?26.(本题9分)阅读与思考请仔细阅读并完成相应任务.生活中我们经常用到密码,例如用支付宝或微信支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:3222x x x +--可以因式分解为(x -1)(x +1)(x +2),当x =29时,x -1=28,x +1=30,x +2=31,此时可以得到数字密码283031.任务:(1)根据上述方法,当x =15,y =5时,对于多项式32x xy -分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x ,y ,求出一个由多项式33x y xy +分解因式后得到的密码(只需一个即可).27.(本题10分)如图,已知四边形ABCD 为平行四边形,AE ,CF 分别平分∠BAD 和∠BCD ,交BD 于点E ,F ,连接AF ,CE .(1)若∠BCF =65°,求∠ABC 的度数;(2)求证:四边形AECF 是平行四边形.28.(本题12分)综合与实践【问题情境】数学活动课上,老师带领同学们一起探索旋转的奥秘.老师出示了一个问题:如图①,在△ABC 中,AB =AC ,∠BAC =90°,点D 是边BC 上一点1(0)2BD BC <<,连接AD ,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,得到△ACE .【操作探究】(1)连接DE ,试判断△ADE 的形状,并说明理由;【深入探究】(2)希望小组受此启发,如图②,在线段CD 上取一点F ,使得∠DAF =45°,连接EF ,发现EF 和DF 有一定的数量关系,猜想两者的数量关系,并说明理由;(3)智慧小组在图②的基础上继续探究,发现CF ,FD ,DB 三条线段也有一定的数量关系,请你直接写出当CF =3,BD =2时,DF 的长.2023年春季学期八年级质量监测数学(北师大版)参考答案一、选择题(每小题3分,共30分)1—5CCDDD 6—10ABACA 二、填空题(每小题4分,共32分)11.1012.-113.=14.m >115.7216.1217.a ≤218.24三、解答题一(共38分)19.解:(1)3+2x >-x -6,移项,2x +x >-6-3,合并同类项,3x >-9,系数化为1,x >-3,原不等式的解集为:x >-3(2)解不等式①,得x ≤2.解不等式②,得x >1.∴原不等式组的解集为1<x ≤2.20.解:(1)y +(y -4)(y -1)=y +y 2-5y +4=y 2-4y +4=(y -2)2(2)原式()()2294ax y b x y =---()()2294x y a b =--=(x -y )(3a -2b )(3a +2b )21.解:(1)方程两边都乘以x (2x -1),得:2(2x -1)=3x ,解得:x =2,检验:当x =2时,x (2x -1)≠0,∴原分式方程的解是x =2.(2)方程两边都乘以(x -2),得:x -3+(x -2)=-3,解这个方程,得x =1.检验:x =1时,x -2≠0,∴原分式方程的解是x =1.22.解:原式()()()()222121121x x xx x x x +-=⨯-+-++()21222221111x x x x x x x x ---=-==-++++.选取x =0,则原式222101x =-=-=-++.23.解:(1)(1,0);(2)如图所示:22A OB △是所求作的图形.(-2,3)四、解答题二(共50分)24.解:设这个多边形的每个内角为x °,则每个外角为(x -60)°.由题意得:x +x -60=180,解得:x =120,则外角为120°-60°=60°,多边形的边数:360°÷60°=6.答:这个多边形的边数为6.25.解:(1)设乙工厂每天可加工生产x 顶帐篷,则甲工厂每天可加工生产1.5x 顶帐篷.根据题意,得24024041.5x x-=,解得x =20,经检验x =20是原分式方程的解,则1.5x =1.5×20=30.答:甲工厂每天可加工生产30顶帐篷,乙工厂每天可加工生产20顶帐篷.(2)设应安排甲工厂加工生产y 天.根据题意,得550303 2.46020yy -+⨯≤,解得y ≥10.答:至少应安排甲工厂加工生产10天.26.解:(1)()()32x xy x x y x y -=-+,当x =15,y =5时,x -y =10,x +y =20,可得数字密码是151020;也可以是152010;101520;102015,201510,201015.(2)由题意得:2213121x y x y +=⎧⎨+=⎩,解得xy =24,而()3322x y xy xy x y +=+,所以可得数字密码为24121(或12124).27.(1)解:∵CF 平分∠BCD ,∠BCF =65°,∴∠BCD =2∠BCF =130°,∵四边形ABCD 为平行四边形,∴//AB CD ,∴∠ABC =180°-∠BCD =180°-130°=50°;(2)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,//AB CD ,∠BAD =∠DCB ,∴∠ABE =∠CDF ,∵12BAE BAD ∠=∠,12DGF DCB ∠=∠,∴∠BAE =∠DCF ,∴△ABE ≌△CDF (ASA ),∴∠AEB =∠CFD ,AE =CF ,∴∠AEF =∠CFE ,∴//AE CF ,∴四边形AECF 是平行四边形.28.解:(1)△ADE 为等腰直角三角形,理由如下:由旋转得AD =AE ,∠CAE =∠BAD ,∴∠CAE +∠DAC =∠BAD +∠DAC ,即∠DAE =∠BA C .∵∠BAC =90°,∴∠DAE =90°,∴△ADE 为等腰直角三角形.(2)EF =DF ,理由如下:∵∠DAE =90°,∠DAF =45°,∴∠EAF =∠DAE -∠DAF =45°.∴∠EAF =∠DAF ,又AF =AF ,AD =AE ,∴△AFE ≌△AFD (SAS ),∴EF =DF .(3)DF =.。
2022-2023学年北师大版八年级数学下册期末试题卷附答案解析

2022-2023学年北师大版八年级数学下册期末试题卷试卷满分120分,考试时间120分钟。
一、选择题(本大题共16个小题,共42分。
1~10小题各3分,11~16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个多边形的内角和为540︒,则这个多边形可能是()A .B .C .D .2.将不等式62x ->的两边同时除以6-,得()A .13x <-B .13x >-C .3x >-D .3x <-3.如图,将ABC △沿射线AC 平移得到DEF △,下列线段的长度中表示平移距离的是()A .ACB .ADC .DCD .AF4.将多项式2233ax ay -因式分解的结果为()A .()223a x y -B .3()()a x y x y -+C .23()a x y -D .23()a x y +5.如图,ABC △与DEF △关于某点成中心对称,则其对称中心是()A .点PB .点QC .点MD .点N6.两个同样大小的直角三角板按如图所示摆放,其中两条一样长的直角边交于点M ,另一直角边BE ,CD 分别落在PAQ ∠的边AP 和AQ 上,且AB AC =,连接AM ,则在说明AM 为PAQ ∠的平分线的过程中,理由正确的是()A .SASB .SSAC .HLD .SSS7.下列式子的化简结果为mn的是()A .22m nB .22m n ++C .2nm n D .11m n --8.在一个三角形地块中分出一块(阴影部分)种植花草,尺寸如图,则PQ 的长度是()A .1mB .2mC .3mD .4m9.如图,点D 是ABC △的AC 边上一点,且AD CD BD ==,则ABC ∠=()A .45︒B .60︒C .75︒D .90︒10.若点(1,2)A a a -+在第二象限,则a 的取值范围在数轴上表示正确的是()A .B .C .D .11.若2241(21)x mx x ++=-成立,有下列说法:①从左到右的变形是因式分解;②从左到右的变形是整式乘法;③4m =.其中正确的说法是()A .①B .②C .③D .①③12.如图,ABC △的各顶点都在正方形网格的格点上,其中点A 的坐标为(3,2)-,将ABC △绕点(0,5)C 逆时针旋转90︒后,得到11A B C △,则点1A 的坐标为()A .(2,2)-B .(3,2)C .(2,3)D .(2,2)13.下面是佳佳将分式A 做出的正确的变形运算过程:212232233211111a a a A a a a a a +-+-===+=+-----则下列说法正确的是()A .当2a =-时,5A =B .当2A =时,1a =C .当1a >时,2A >D .A 为整数值时,2a =±14.如图,ABC △和ACD △是两个完全相同的三角形,AB CD BC AD ==,,将ACD △沿直线l 向右平移到EFG △的位置,点A 对应点E ,且点E ,C 不重合,连接BE ,CG ,有下列结论:结论1:以点B ,E ,C ,G 为顶点的四边形总是平行四边形;结论2:当BE 最短时,BC CG ⊥.下列判断正确的是()A .只有结论1正确B .只有结论2正确C .结论1、结论2都正确D .结论1、结论2都不正确15.小明参加10千米跑步比赛,开始他先以200米/分的平均速度跑了x 分钟,当他发现小亮在他前方200米后,二人便同时开始以250米/分和300米/分的速度跑完剩余的路程,若最后小明获胜,则根据题意可列不等式为()A .1000020020010000200250300x x--->B .1000020020010000200250300x x---≥C .1000020020010000200250300x x -+-≥D .1000020020010000200250300x x -+->16.如图,在ABC △中,90ACB ∠=︒,ACD △和BCE △均为等腰直角三角形,且面积之和为252,则AB =()A .52B .25C .252D .10二、填空题(本大题共3个小题,共9分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级(下)数学 第8周 名校周测卷及答案(word 精编版)
A 卷(100分)
一、选择题( 每题3分,共30分)
1.下列图形中,既是中心对称图形又是轴对称图形的是( )
A .等边三角形
B .等腰直角三角形
C .正方形
D .等腰梯形
2. 下列各式是分式的是( ) A.32a B.2y x + C.y
x +2 D.πa 3.下列各式从左到右的变形是分解因式的是( )
A.222))((2a b a b a b a +-+=-
B.ac ab c b a 22)(2+=+
C. 223)1(2-=+-x x x x x
D.1)1)(1(+--=--y x xy y x
4.对于一次函数y=3x+1,当x≥1时,y 的取值范围是( )
A . y≥1
B . y≥4
C . y≤4
D . y≤1
5.若分式2
42+-x x 的值为0,则x 的值为( ) A . ±2 B . 2 C . ﹣2 D . 0
6.在平面直角坐标系中,若点P (x ﹣2,x )在第二象限,则x 的取值范围为( )
A . 0<x <2
B . x <2
C . x >0
D . x >2
7.不等式组⎩⎨
⎧≤≥-92023x x 的整数解的个数为( ) A . 1 B . 2
C . 3
D . 4 8.若多项式)2(6)2(2y x x y x +-+有一个因式为y x 2+,则另一个因式为( )
A .2x-5y
B .-5x-2y
C .-5x+2y
D .5x+2y
9. 已知△ABC 的三边分别为a 、b 、c ,且022=--+b ac bc a ,则△ABC 的形状为( )
A .等边三角形
B .等腰三角形
C .等腰直角三角形
D .不能判断
10.已知y y x y x 4,222+-=+则的值为( )
A . 2
B . 3
C . 4
D . 6 温馨提示:请将选择题答案填在下表
二、填空题:(每空3分)
11.用不等式表示“a 与b 的和不小于1”为 .
12.多项式y x y x 2
43123+的公因式是
14.分解因式:=++412
x
x . 15. 如图,将等腰直角△ABC 沿BC 方向平移得到△A 1B 1C 1,若BC=32,C PB S 1∆=2,则BB 1=
三、解答题:(16题4分,17、18每小题4分,19题9分,20题10分)
16.如图,已知△ABC 绕一点旋转一定的角度得到△A ′B ′C ′,请通过作图求出它们的旋转中心O .
17.(1)解不等式1)1(3)3(2<--+x x (2)用简便方法计算329999299+⨯+
(3)求不等式组⎪⎩⎪⎨⎧+<-≤+--)
1(3151215312x x x x 的整数解. (4)化简12)1(22+++a a a
18.分解因式 (1)2
)()(69b a b a ++++ (2))()(x y y y x x ---
(3)2234b ab a ++ (4)2224)1(a a -+
19.已知y 与x+2成正比例,且x=1时,y=-6.
(1)求y 与x 之间的函数关系式,并建立平面直角坐标系,画出函数图象;
(2)结合图象求,当-1<y ≤0时x 的取值范围.
20. 如图,把一个直角三角形ACB (∠ACB=90°)绕着顶点B 顺时针旋转60°,使得点C 旋转到AB 边上的一点D ,点A 旋转到点E 的位置.F ,G 分别是BD ,BE 上的点,BF=BG ,延长CF 与DG 交于点H .
(1)求证:CF=DG ;
(2)求出∠FHG 的度数.
B 卷(20分)
一.填空题(每题4分,共12分)
21.因式分解=++--xy y x x y x )7()2(822
22.化简)(2b ab -÷ab
b a -的结果是 23. 如图,平行四边形 ABCD 中,对角线AC 与BD 相交于点E ,∠AEB=45°,BD=2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B ′,则DB ′的长为
二.解答题(8分)
24. 如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.
(1)当点D′恰好落在EF边上时,求旋转角a的值;(2分)
(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(2分)
(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.(4分)
参考答案。