聚合物加工原理
聚合物加工原理

聚合物加工原理聚合物是一种常见的材料,广泛用于各个领域,如塑料制品、纺织品、医用材料等。
聚合物加工是将聚合物材料通过热、力、机械等加工方式,将其改变为需要的形状和结构的过程。
本文将介绍聚合物加工的原理及常见的加工方法。
一、聚合物本质上是由大量单体分子通过共价键连接而成的高分子化合物。
聚合物加工的原理是通过加热和加压来改变聚合物分子链的排列方式,从而改变聚合物的形状和性能。
聚合物材料通常以树脂的形态存在,树脂在加工过程中会经历熔融、流动、固化等阶段。
在加工中,将聚合物树脂加热到足够的温度使其熔化,然后将熔化的聚合物注入模具中,通过机械力或其他手段使其形成所需的形状,随后冷却固化。
聚合物加工的主要原理包括:1. 熔融:将聚合物加热至其熔点以上,使其转变为可流动的液体状态。
在熔融状态下,聚合物分子链之间的相互作用力减弱,分子链可以通过流动重新排列。
2. 流动:将熔融的聚合物注入到模具中,通过施加压力或其他力量使其形成所需的形状。
在流动过程中,聚合物分子链在施加的力下发生位移和变形。
3. 固化:冷却并固化聚合物,将其固定在所需的形状和结构中。
聚合物冷却后,分子链重新排列,形成固态结构,从而保持所需的形状。
二、聚合物加工方法聚合物加工有多种方法,常见的包括注塑、挤出、吹塑、压延、成型等。
1. 注塑:注塑是将熔融状态的聚合物注入到模具中,通过压力使其填充模腔并冷却固化。
注塑广泛应用于塑料制品的生产,如塑料盒、塑料椅等。
2. 挤出:挤出是将熔融的聚合物通过挤压机挤出成连续的均匀断面形状,然后通过冷却固化。
挤出常用于生产塑料管材、薄膜等。
3. 吹塑:吹塑是将熔融的聚合物注入到模具中,在模具内吹气使其膨胀成空心形状,并冷却固化。
吹塑常用于生产塑料瓶、塑料容器等。
4. 压延:压延是将熔融的聚合物放置在两个辊子之间,通过压力使其变薄并冷却固化。
压延广泛应用于塑料薄膜的制备。
5. 成型:成型是将熔融的聚合物材料倒入开放式模具中,通过压力或其他手段使其形成所需的形状,并冷却固化。
聚合物加工原理名词解释

1.高分子材料加工:把高分子原材料经过一定的工艺手段转变成某种高分子材料制品的过程。
2.功能高分子材料:与常规高分子材料相比具有明显不同的物理化学性质,并具有某些特殊功能的高分子材料。
3.智能高分子材料:能随着外部条件的变化,而进行相应动作的高分子。
必须具备能感应外部刺激的感应器功能、能进行实际动作的动作器功能以及得到感应器的信号后而使动作器动作的过程器功能。
4.可挤压性:聚合物通过挤压作用形变时获得形状和保持形状的能力。
5.可模塑性:聚合物在一定温度和外力作用下形变并在模具中模制成型的能力。
6.可纺性:聚合物流体在拉伸作用下形成连续细长丝条的能力。
7.可延性:无定形或部分结晶固体聚合物在一个或两个方向上受到压延或拉伸时变形的能力。
8.复合材料:是将金属材料、高分子材料、无机非金属材料等具有不同结构和性能的材料,经特殊工艺复合成一体,而制得的综合性能更优异的新型材料。
9.耗散:力学的能量损耗,即机械能转化为热能的现象。
在外力作用下,大分子链的各运动单元可能沿力的方向做从优取向的运动,就要克服内部摩擦,所以要消耗能量,这些能量转化为热能。
10.离子液体:是在室温及相邻温度范围内完全由离子组成的有机液体。
离子液体具有极性强、不挥发、不易氧化、不易燃易爆、对无机和有机化合物有良好的溶解性和对绝大部分试剂稳定等优良特性,因此被称为绿色溶剂。
11.混合的定义:混合是一种趋向于混合物均匀性的操作,是一种在整个系统的全部体积内,各组分在其基本单元没有本质变化的情况下的细化和分布的过程。
12.均一性:均一性指混得是否均匀,即分散相浓度分布是否均匀。
13.分散度:指被分散物质的破碎程度如何。
破碎程度大,粒径小,分散度就高。
14.非分散混合:通过重复地排列少组分增加其在混合物中空间分布的均匀性而不减小粒子初始尺寸的过程。
15.分散混合:将呈现出屈服点的物料混合在一起时,要将它们分散,应使结块和液滴破裂,这种混合称为分散混合。
聚合物加工原理复习题

《聚合物加工原理》复习题1.聚合物的聚集态结构有哪些特点?(1)非晶态聚合物在冷却过程中分子链堆砌松散,密度低;(2)结晶态聚合物一般晶区、非晶区共存,存在“结晶度”概念;(3)聚合物结晶完善程度强烈依赖于成型工艺冷却条件;(4)结晶聚合物晶态多样,有伸直链晶体、串晶、柱晶、纤维晶等;(5)取向态结构是热力学不稳定结构,高温下易解取向。
2.聚合物的结晶过程。
①结晶温度范围:Tg-Tm之间②结晶过程:晶核生成和晶体生长。
3.成型加工条件对结晶过程经过的影响。
(1)模具温度:模具温度影响制品的结晶度、结晶速率、晶粒尺寸、数量级分布。
等温冷却:过冷度△T(Tm-TM)很小,晶核少,晶粒粗,力学性能降低。
同时生产周期长。
快速冷却:过冷度△T大,对于后制品,内外冷却速度不一致,结晶过程不一致,易产生不稳定结晶结构,使制品在储存、使用过程中发生后结晶,造成制品形状及尺寸不稳定。
中速冷却:过冷度△T大适宜,有利于制品内部在Tg温度以上结晶,使结晶生长、完善和平衡。
导致制品的尺寸稳定性。
(2)塑化温度及时间塑化温度低且时间短,熔体中可能存在残存较多晶核,在再次冷却时会产生异相成核,导致结晶速度快,晶粒尺寸小且均匀,制品的内应力小,耐热性提高。
反之则相反。
(3)应力作用结晶性聚合物在成型加工过程中都要受到应力的作用。
不同的成型方法和工艺条件,聚合物受到的应力类型及大小不一样,导致聚合物的晶体结构和形态发生变化。
如剪切应力是聚合物易得到伸直链晶体、片晶、串晶或柱晶;应力(拉伸应力和剪切应力)存在会增大聚合物熔体的结晶速率,降低最大结晶速度温度Tmax;剪切或拉伸应力增加,聚合物结晶度增加。
(4)材料其它组分对结晶的影响一定量和粒度小的的固态填充剂能成为聚合物的成核剂,加速聚合物结晶进程。
如炭黑、二氧化硅、氧化钛、滑石粉、稀土氧化物等。
如氧化镧对PA6明显提高PA6的结晶度和结晶速率。
聚合物的结晶速度很慢,在结晶后期或使用过程中经常发生二次结晶现象。
聚合物加工原理-3混合与混炼理论基础-新讲内容

二、聚合物共混的基本概念
B
δ L=B
L
θ
L L' L 1 2 cos B’=B B' B
L’
B cos 0 cos
L L>>B L’ B’=B B L L’ B L<<B B’=B 球体
0
1 2
椭圆体
(2R)3 / 6 L' ( B' )2 / 6
L=B=2R
Z
v x x v y y / 2 v z z / 2
v x x v y y vz 0
单轴拉伸流
A 2 e A0 max
e
平面拉伸流
A pe e A0 max
剪切流及拉伸流中的面积比
e pe
如, PP/PE/CaCO3
CaCO3填充的PP/PE二元共混物;
NR/炭黑共混体系。
b、聚合物/纤维材料 如, PP/GF体系、NBR/短纤维。
二、聚合物共混的基本概念
c、聚合物/聚合物体系
如, PP/PE、NBR/PVC等 (2)按材料的凝聚态分 固-液共混、液-液共混、固-固共混。 (3)按反应过程有否化学反应分
5、扩散动力学原则
两种聚合物相互接触时,会产生链段间
的相互扩散,若两种聚合物大分子具有相近 的活动性,则两种大分子的链段就以相似的 速度相互扩散,界面层较厚,共混物性能较 好。 调整工艺条件(T、驱动力)使 DAB相近。
聚合物加工原理

聚合物流体在加工过程中的受力比较复杂,因此相对应的应变也比较复杂,其实际的应变往往是二种或多种简单应变的叠加,然而以剪切应力造成的剪切应变起主要作用。
拉伸应力造成的拉伸应变也有相当重要的作用,而静压力对流体流动性质的作用主要体现在对粘度的影响上。
聚合物流体(熔融状聚合物和聚合物溶液或悬浮液)的流变性质主要表现为粘度的变化,根据粘度与应力或应变速率的关系,可将流体分为以下两类:牛顿流体和非牛顿流体。
拉伸流动:质点速度沿着流动方向发生变化;剪切流动:质点速度仅沿着与流动方向垂直的方向发生变化。
由边界的运动而产生的流动,如运转滚筒表面对流体的剪切摩擦而产生流动,即为拖曳流动。
而边界固定,由外压力作用于流体而产生的流动,称为压力流动。
聚合物熔体注射成型时,在流道内的流动属于压力梯度引起的压力流动。
聚合物在挤出机螺槽中的流动为另一种剪切流动,即拖曳流动。
对于小分子流体该粘度为常数,称为牛顿粘度。
而对于聚合物流体,由于大分子的长链结构和缠结,剪切力和剪切速率不成比例,流体的剪切粘度不是常数,依赖于剪切作用。
具有这种行为的流体称为非牛顿流体,非牛顿流体的粘度定义为非牛顿粘度或表观粘度。
切力变稀原因(假塑性流体)假塑性流体的粘度随剪切应力或剪切速率的增加而下降的原因与流体分子的结构有关。
对聚合物熔体来说,造成粘度下降的原因在于其中大分子彼此之间的缠结。
当缠结的大分子承受应力时,其缠结点就会被解开,同时还沿着流动的方向规则排列,因此就降低了粘度。
缠结点被解开和大分子规则排列的程度是随应力的增加而加大的。
对聚合物溶液来说,当它承受应力时,原来由溶剂化作用而被封闭在粒子或大分子盘绕空穴内的小分子就会被挤出,这样,粒子或盘绕大分子的有效直径即随应力的增加而相应地缩小,从而使流体粘度下降。
因为粘度大小与粒子或大分子的平均大小成正比,但不一定是线性关系。
切力变稠原因(膨胀性流体):当悬浮液处于静态时,体系中由固体粒子构成的空隙最小,其中流体只能勉强充满这些空间。
聚合物加工原理

名词解释离模膨胀;聚合物熔体挤出后的截面积远比口模面积大。
此现象称为巴拉斯效应(Barus Effect),也称为离模膨胀熔体破裂;熔体破裂是挤出物表面出现凹凸不平或外形发生畸变或断裂的总称。
熔体流动速率;熔体流动速率(MFR)是在一定的温度和压力下,聚合物在单位时间内通过规定孔径的量,单位为g/10min。
熔体流动速率是一个选择塑料加工材料和牌号的重要参考依据,能使选用的原材料更好地适应加工工艺的要求,使制品在成型的可靠性和质量方面有所提高。
高分子合金;塑料与塑料或橡胶经物理共混或化学改性后,形成的宏观上均相、微观上分相的一类材料。
螺杆压缩比;螺杆加料段第一个螺槽的容积与均化段的最后一个螺槽的容积之比,它表示塑料通过螺杆的全过程被压缩的程度。
机头压缩比;是指分流器支架出口处流道的断面积与机头出料口模和芯棒之间形成环隙面积之比。
螺杆的背压;在移动螺杆式注射机成型过程中,预塑化时,塑料随螺杆旋转经螺槽向前输送并熔融塑化,塑化后堆积在料筒的前部,螺杆端部的塑料熔体就产生一定的压力,即背压。
提高背压,物料受到剪切作用增强,熔体温度升高,塑化均匀性好,但塑化量降低。
热固性塑料收缩率;冷压烧结成型:是将一定量的成型物料(如聚四氟乙烯悬浮树脂粉料)入常温的模具中,在高压下压制成密实的型坯(又称锭料、冷坯或毛坯),然后送至高温炉中进行烧结一定时间,从烧结炉中取出经冷却后即成为制品的塑料成型技术。
第四章1、举例说明高聚物熔体粘弹性行为的表现。
聚合物流动过程最常见的弹性行为是端末效应和不稳定流动。
端末效应包括入口效应和模口膨化效应(离模膨胀)即巴拉斯效应。
不稳定流动即可由于熔体弹性回复的差异产生熔体破碎现象。
2、简述高聚物熔体流动的特点。
由于高聚物大分子的长链结构和缠绕,聚合物熔体、溶液和悬浮体的流动行为远比伤分子液体复杂。
在宽广的剪切速率范围内,这类液体流动时剪切力和剪切速率不再成比例关系,液体的粘度也不是一个常此因而聚合物液体的流变行为不服从牛顿流动定律。
聚合物成型加工原理

聚合物成型加工原理聚合物成型加工是一种通过加工工艺将原料转化为所需形状的方法。
在这个过程中,聚合物材料会经历一系列的物理和化学变化,最终形成我们所需要的成型产品。
本文将介绍聚合物成型加工的原理,包括热塑性聚合物和热固性聚合物的成型原理,以及常见的成型方法。
热塑性聚合物是一类在一定温度范围内可软化、可塑性较好的聚合物材料。
在成型加工过程中,热塑性聚合物首先需要加热至其软化温度,然后通过模具或挤出机等设备将其加工成所需形状。
热塑性聚合物的成型原理主要是利用温度的变化来改变材料的物理状态,从而实现加工成型。
常见的热塑性聚合物成型方法包括注塑、挤出、吹塑等。
而热固性聚合物则是一类在加工过程中通过化学反应形成三维网络结构的聚合物材料。
在成型加工过程中,热固性聚合物首先需要在一定温度下发生固化反应,形成不可逆的化学键,然后再进行成型加工。
热固性聚合物的成型原理主要是利用化学反应来实现材料的固化和成型。
常见的热固性聚合物成型方法包括压缩成型、注塑成型等。
除了热塑性和热固性聚合物的成型原理外,还有一些其他的成型方法,如挤压成型、发泡成型、旋转成型等。
这些成型方法都是根据聚合物材料的特性和加工要求来选择的,每种方法都有其独特的成型原理和适用范围。
总的来说,聚合物成型加工的原理是通过控制温度、压力、化学反应等因素,将聚合物材料加工成所需形状的过程。
不同类型的聚合物材料和不同的成型方法都有其特定的成型原理,只有深入理解这些原理,才能更好地掌握聚合物成型加工技术,实现高质量的成型产品。
在实际应用中,我们需要根据具体的产品要求和材料特性来选择合适的成型方法,并且合理控制加工参数,以确保成型产品的质量和性能。
同时,还需要不断探索和创新,不断改进成型工艺,以适应不断变化的市场需求和技术发展。
通过深入研究聚合物成型加工的原理,不断提高我们的技术水平和创新能力,为聚合物成型加工行业的发展做出贡献。
聚合物成型原理

聚合物成型原理在塑料加工行业中,聚合物成型是一种常见的工艺方法,通过这种方法可以制造出各种形状和尺寸的塑料制品。
聚合物成型的原理基于热塑性聚合物的熔融和冷却过程,从而使塑料原料变成所需形状的制品。
本文将介绍聚合物成型的基本原理及其在实际生产中的应用。
聚合物成型的基本原理聚合物成型的基本原理可以分为以下几个关键步骤:1. 原料预处理首先,将所选用的塑料颗粒或粉末放入注塑机、挤出机或其他成型设备的料斗中。
在加工过程中,通常还会添加一定比例的添加剂,如增塑剂、稳定剂等,以提高塑料的性能和加工性。
2. 加热和熔融原料在成型设备中经过加热、高温熔融,使其变成粘稠状态的熔融料。
不同的聚合物材料需要的加热温度和熔化温度也不同,需要根据实际情况进行调整。
3. 成型熔融的塑料通过喷射、挤压或压缩等方式,被注入到模具中。
在模具内部,熔融的塑料会根据模具的形状逐渐冷却固化,最终形成所需的制品形状。
4. 冷却和固化当塑料填充模具后,通过冷却系统或自然冷却的方式,让塑料逐渐固化。
固化的速度取决于塑料的种类、厚度等因素。
5. 脱模一旦塑料完全固化,模具打开,新成型的塑料制品从模具中取出,经过一些表面处理工艺后,就可以成为最终产品了。
聚合物成型的应用聚合物成型技术在各个行业中都有广泛的应用,其中最常见的包括注塑成型、挤压成型、吹塑成型等。
这些成型方法可以生产各种形状和尺寸的制品,如瓶子、盒子、管材、零件等。
注塑成型主要用于生产小型至中型尺寸的零件,具有成型速度快、生产效率高的优点,适用于大规模生产。
挤压成型适用于生产管材、型材等长形制品,产品质量稳定,成本较低。
吹塑成型则常用于生产塑料瓶、容器等中空制品。
除了上述成型方法,还有各种特殊的成型技术,如压缩成型、注液成型、旋转成型等,可以根据不同的需求选择最适合的成型方法。
总的来说,聚合物成型是一种经济高效、灵活多样的塑料加工方法,广泛应用于工业制造、日用品制造等领域,为人们的生活和工作提供了便利与可能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
熔融潜热:单位质量物质在熔点温度下,从固态变为液态所需 的热量。
34
四、高分子材料的热物理特性 压缩性与热胀性
绪 论Biblioteka 导热系数:当温度梯度为1时,该物质在单位时间内,从单位面
积所传递的热量。
qn /
dT dn
导温系数:物质通过导热传递热量的能力与储存热量的能力 的比值。
一、塑料
塑料的分类
常用的高分子材料
弯曲弹性模(MPa)
淬火 1130 980 740 470 400 218 未淬火 2390 2330 1810 850 510 380
拉伸强度(MPa)
淬火 50 44 33 25 24 20 19 未淬火 30 325 30 20 18 135 115
断裂伸长率(%)
淬火 100 160 190 400 500 500 480 未淬火 70 100 150 470 650 600 540
三、高分子材料的力学状态
线型晶态高分子材料的力学状态
绪 论
分为一般分子量和很大分子量两种情况。 一般分子量的高聚物在 低温时,链段不能活动, 变形小,在 Tm 以下与非 晶态的玻璃相似,高于Tm 则进入粘流态。 分子量很大的高聚物存 在高弹态。
线型晶态高聚物的 温度-变形曲线
四、高分子材料的流动特性 剪切变稀现象
C P
35
第二章 常用的高分子材料
高分子工程材料 包括塑料、合成纤 维、橡胶和胶粘剂
等。
一、塑料
常用的高分子材料
塑料是在玻璃态下使用的高分子材料。在一定温度、 压力下可塑制成型,在常温下能保持其形状不变。
塑料是以树脂为主要成分, 加入各种添加剂。 树脂是塑料的主要成分, 对塑料性能起决定性作用。 塑
高弹态和粘流态,而结晶型聚合物只有固态和粘流态。
二、高分子材料的结构 高分子的聚集态结构——晶态与非晶态
部分结晶型高分子材料 一个大分子链可以穿过 几个晶区和非晶区。 晶区熔点、密度、强度、 硬度、刚性、耐热性、
绪 论
化学稳定性高,而弹性、
塑性、冲击强度下降。
二、高分子材料的结构 高分子的聚集态结构——晶态与非晶态
数均分子量: 重均分子量:
M n M 0 X n M 0 XYX
X 1
M W M 0 X W M 0 XWX
X 1
二、高分子材料的结构 均聚物和共聚物
绪 论
聚合物可以由一种或多种单体聚合而成,一种单体 构成的聚合物为均聚物,两种或两种以上单体构成的聚 合物为共聚物。
三、高分子材料的力学状态 线型非晶态高分子材料的力学状态
绪 论
玻璃态:低温下,链段不能运动。在外力作用下, 只发生大分子原子的微量位移,产生少量弹性变形。
高聚物呈玻璃态的 最高温度称玻璃化 温度,用Tg表示。
线型非晶态高聚物的温度-变形曲线
处于该状态的材料
有塑料和纤维。
三、高分子材料的力学状态
75
0.93 120 18 300 27 230
85
0.94 125 25 100 21 380
95
0.96 130 40 20 16 700
二、高分子材料的结构 高分子的聚集态结构——晶态与非晶态
结晶度对高聚物性能的影响
绪 论
聚四氟乙烯力学性能与结晶度的关系
温度 (℃)
-40 -20 0 20 40 80 100
共聚物:丙烯腈-丁二烯-苯乙烯共聚物ABS(Acrylonitrile-ButadieneStyrene),其中丙烯腈表面硬度高,丁二烯韧性好,苯乙烯加工性好, 染色性好。 共混物: PP+尼龙、PE+EVA、PVC+EVA等等。 无规共聚:A-A - B - A - B - B - B - A - B - B - A - A - B - A 接枝共聚:A - A - A - A - A - A - A - A - A - A - A - A
绪 论
柔顺性与单键内旋转的难易程度有关
二、高分子材料的结构 大分子链的结构
大分子链的形状
绪 论
线型结构:弹性、塑性好,硬度低,是热塑性材料。 支链型结构:近于线型结构 。 体型结构:硬度高,脆性大,无弹性和塑性,是热 固性材料。
二、高分子材料的结构 大分子链的结构
支化模型
绪 论
二、高分子材料的结构 大分子链的结构
1 V V T P
1 L L T P
33
四、高分子材料的热物理特性 压缩性与热胀性
绪 论
热容:每千克物质温度升高1º C所需的热量。不仅取决于材料
本身,而且还与热力学过程有关。热容分为定容比热CV和定压
比热CP,分别定义为:
Q CV T V
二、高分子材料的结构 高分子的聚集态结构——晶态与非晶态
结晶度对高聚物性能的影响
绪 论
力学性能:模量↑;硬度↑;伸长率↓;冲击强度↓ 拉伸强度——高弹态↑;玻璃态↓ 力学性能也与结晶形态有关 球晶尺度↑:伸长率↑;冲击强度↓;模量↓;强度-
其它性能:热性能↑ ;耐溶剂性↑ ;溶解性能↓ ; 透气性↓ ;密度↑ ;光学透明性↓
螺旋形等畸变,最终导致完全无
规则的挤出物断裂。
四、高分子材料的热物理特性 压缩性与热胀性
绪 论
材料的压缩性和热胀性,是宏观物体在一定压力或温度
作用下体积变化或几何尺寸变化的性质。
压缩系数:材料的压缩性用体积压缩系数k来表征。
K 1 V V P T
热膨胀系数:材料的热胀性可用体膨胀系数和线膨胀系 数表示。
当聚合物熔体从小孔、毛细管或窄
缝中挤出时,挤出物的直径或厚度会 明显大于孔道的实际尺寸。
绪 论
四、高分子材料的流动特性 不稳定流动与熔体破裂现象
聚合物挤出时,当挤出速率过
绪 论
高,超过某一临界剪切速率时,
会出现弹性湍流,导致流动不稳 定,挤出物的表面变粗糙。随着 挤出速率的进一步增加,先后将 出现波浪形、鲨鱼皮形、竹节形、
聚合物加工原理
橡塑机械工程研究中心
谢林生
第一章 绪 论
一、何谓聚合物材料(高分子材料): 是指那些由 众多原子或原子 团主要以共价键 结合而成的相对 分子量在一万以 上的化合物。
一、何谓高分子材料:
绪 论
定义:
高分子材料是以高分子化合物为主要组分 的材料。常称聚合物或高聚物。 高分子化合物的分子量一般>104 。 高分子化合物有天然的,也有人工合成的。 工业用高分子材料主要是人工合成的。
结晶度的定义
定义:聚合物中结晶部分所占百分数 重量百分结晶度
f cW Wc Wc Wa
绪 论
体积百分结晶度
f cV
Vc Vc Va
晶区与非晶区不存在明显的界面 结晶度的数值与测定方法 、测试条件有关
二、高分子材料的结构 高分子的聚集态结构——晶态与非晶态
结晶度对高聚物性能的影响 结晶结构
绪 论
按主链上的化学组成分为碳链聚合 物、杂链聚合物和元素有机聚合物。
二、高分子材料的结构 大分子链的结构
大分子链的柔顺性 由于主链共价键有一定键长和 键角,保持键长和键角不变时单 键可任意旋转,称单键的内旋转。 内旋转使大分子链卷曲成各种不 同形状,对外力有很大的适应性, 这种特性称为大分子链的柔顺性。
共聚物是两种或多种单体同时聚合的结果,不是两 种或多种均聚物的机械共混物,共聚物分子结构的形状, 可以是无规的、接枝的和交替的、嵌段的。共聚物可得 到合乎需要的每种均聚物的理想性质的某种精细混合, 而机械共混物却不能得到合乎需要的每种均聚物性质的 精细混合。
二、高分子材料的结构 均聚物和共聚物
绪 论
一、何谓高分子材料: 高分子化合物的组成
由简单的结构单元重复连接而成。 如由乙烯合成聚乙烯:
绪 论
CH2=CH2+CH2=CH2+→-CH2-CH2-CH2-CH2- ,
简写成 n CH2=CH2→ [ CH2–CH2 ]n 。
一、何谓高分子材料: 高分子化合物的组成
绪 论
一、何谓高分子材料:
料 制 品
一、塑料
添加剂的作用
填料主要起增强作用;
常用的高分子材料
改善塑料某些性能。
增塑剂用于提高树脂的可塑性和柔软性;
固化剂用于使热固性树脂由线型结构转变为体型结构; 稳定剂用于防止塑料老化,延长其使用寿命; 润滑剂用于防止塑料加工时粘在模具上, 使制品光亮; 着色剂用于塑料制品着色。 其他的还有发泡剂、催化剂、阻燃剂、抗静电剂等。
↓
绪 论
高分子链排列规则、整齐、紧密
↓ ↓
分子链间的作用增大
↓
链段的运动困难
↓
影响各种宏观性能
二、高分子材料的结构 高分子的聚集态结构——晶态与非晶态
结晶度对高聚物性能的影响 不同结晶度聚乙烯的性能
绪 论
结晶度%
相对密度 熔点(℃) 拉伸强度Mpa 伸长率(%) 冲击强度(KJ/m2) 硬度
65
0.91 105 1.4 500 54 130
化学结构
举例
线型高分子
PE、PP、PVC、ABS、PMMA、 PA、PC、POM、PET、PBT等
由线型分子变为体型分子
PF、UF、MF、ER、UP等。
二、高分子材料的结构 大分子链的结构
绪 论
二、高分子材料的结构 分子量
绪 论
聚合物的分子量、支化度、交联密度是随聚合反 应条件的变化而变化的,加之聚合过程中还要受到大 量偶然因素的影响,使得在一种聚合物样品中很难找 出同样长度、同样支化度的链状大分子,这一现象称 为高分子化合物的多分散性。