2020-2021学年七年级上学期期末数学试题

合集下载

2020—2021学年第一学期七年级期末考试数学试卷

2020—2021学年第一学期七年级期末考试数学试卷

2020—2021学年第一学期七年级期末考试数学试卷(卷面分值:150分 考试时间:120分钟)注意事项:1. 本试卷共4页。

答题前,请考生在试卷密封区内规定的位置上认真填写科目、姓名、准考证号、考场号。

2. 答题时必须使用黑色或蓝色钢笔、圆珠笔。

3.答题时请对准题号,把答案写在试卷的规定位置上,另加页无效。

一、选择题(每小题5分,共50分) 1.下列4个数中,有理数是( )A .227B .381C .2D .π2.若a 与b 互为相反数,则a +b 等于( )A .0B .-2aC .2aD .-2 3.下列各对数中,互为相反数的是( ) A .12和 0.2 B .23和32 C .﹣1.75和314D .2 和﹣(﹣2)4.下列式子中,不是整式的是( ) A .358x y - B .aπ+b C .3a a-+ D .4y 5.下列是一元一次方程的是( )A .32x x -=B .2210x x ++=C .2x y +=D .25x + 6.下列运算正确的是( )A .2a 2-3a 2=-a 2B .4m -m =3C .a 2b -ab 2=0D .x -(y -x )=-y 7.下列方程变形正确的是A .由–2x =3得x =–23B .由–2(x –1)=3得–2x +2=3C .由1323x x x -++=得x +3(x –1)=2(x +3)D .由1.3 1.50.50.30.2x x --=得131510532x x--=8.用一副三角尺可以拼出大小不同的角,现将一块三角尺的一个角放到另一块三角尺的一个角上,使它们的顶点重合,且有一边也重合,如图.则图中∠α等于( ) A .15° B .20° C .25° D .30°9.今年某月的月历上圈出了相邻的三个数a 、b 、c ,并求出了它们的和为39,这三个数在月历中的排布不可能是( )A .B .C .D .10.把几个互不相同的数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7,…},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x 是集合的一个元素时,2018﹣x 也必是这个集合的元素,这样的集合我们又称为对称集合,例如{2,2016}就是一个对称集合,若一个对称集合所有元素之和为整数M ,且23117<M <23897,则该集合总共的元素个数是( ) A.22B.23C.24D.25二、填空题(每小题4分,共24分)11.若∠α=68°,则∠α的余角为_______°.12.1光年是指光在真空中走1年的路程大约是9460500000000千米,将数据9460500000000用科学记数法表示为_________________.13.由35y x +=,用含y 的代数式表示x ,则x =_________.14.对于有理数a 、b ,定义一种新运算,规定a ☆2b a b =-,则3☆(2)-=_____________15.已知点A 在数轴上表示的数是-2,则与点A 的距离等于3的点表示的数是_______,若点B 表示的数为-10,则A 、B 两点间的距离是___________16.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____题 号 一二三四五六总 分 得 分三、解答题(共76分)17.计算:(每题6分,共12分)(1)()21273655⎛⎫-⨯--⨯-÷- ⎪⎝⎭ (2)()735536124618⎡⎤-+-+⨯-⎢⎥⎣⎦18.(8分)先化简,再求值:12)1(3)(22222++---ab b a ab b a ,其中41,2==b a .19.(12分)某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人. (1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?20.如图,BD 平分ABC ∠,BE 把ABC ∠分成的两部分:2:5ABE EBC ∠∠=,21DBE ∠=, 求ABC ∠的度数21.(12分)如图,已知平面上有四个村庄,用四个点A ,B ,C ,D 表示. (1)连接AB ,作射线AD ,作直线BC 与射线AD 交于点E ;(2)若要建一供电所M ,向四个村庄供电,要使所用电线最短,则供电所M 应建在何处?请画出 点M 的位置并说明理由22.如图,在一条不完整的数轴上,从左到右的点A ,B ,C 把数轴分成①②③④四部分,点A ,B ,C 对应的数分别是a ,b ,c ,已知bc <0.(1)请说明原点在第几部分;(2)若AC =5,BC =3,b =-1,求a(3)若点B 到表示1的点的距离与点C 到表示1的点的距离相等,且3a b c --=-,求3(2)a b b c -+-- 的值23.在学习了有理数的加减法之后,老师讲解了例题123420192020-+-++-+的计算思路为:将两个加数组合在一起作为一组,其和为1,共有1010组,所以结果为+1010. 根据这个思路学生改编了下列几题: (1)计算:①123420192020-+-++- ②135720172019-+-++-(2)蚂蚁在数轴的原点O 处,第一次向右爬行1个单位,第二次向右爬行2个单位,第三次向左爬行3个单位,第四次向左爬行4个单位,第五次向右爬行5个单位,第六次向右爬行6个单位,第七次向左爬行7个单位……①按照这个规律,第1024次爬行后蚂蚁所在位置在原点左侧还是右侧?对应哪个数? ②按照这个规律,第_________次爬行后蚂蚁在数轴上表示751的位置.。

2020-2021学年江苏省镇江市七年级(上)期末数学试卷(解析版)

2020-2021学年江苏省镇江市七年级(上)期末数学试卷(解析版)

2020-2021学年江苏省镇江市七年级第一学期期末数学试卷一、填空题(共12小题).1.的倒数是.2.我市某日的最高温度是7℃,最低温度是﹣1℃,则当天的最高温度比最低温度高℃.3.2020年10月11日至12月10日,第七次全国人口普查开展入户工作.上一次人口普查公告显示中国总人口截至当时约为1370000000人,1370000000用科学记数法表示为.4.下列三个日常现象:其中,可以用“两点之间线段最短”来解释的是(填序号).5.下列各数:﹣1,,1.01001…(每两个1之间依次多一个0),0,,3.14,其中有理数有个.6.已知∠α=63°47′,则它的余角等于.7.若x=﹣2是关于x的方程3m﹣2x+1=0的解,则m的值为.8.已知线段AB=11cm,C是直线AB上一点,若BC=5cm,则线段AC的长等于cm.9.如图,已知∠AOB=90°,射线OC在∠AOB内部,OD平分∠AOC,OE平分∠BOC,则∠DOE=°.10.用火柴棒搭成如图所示的图形,第①个图形需要3根火柴棒,第②个图形需要5根火柴棒…,用同样方式,第n个图形需根火柴棒(用含n的代数式表示).11.将四个数2,﹣3,4,﹣5进行有理数的加、减、乘、除、乘方运算,列一个算式(每个数都要用,且只能用一次,写出一个即可),使得运算结果等于24.12.已知关于x的一元一次方程x﹣3=2x+b的解为x=999,那么关于y的一元一次方程(y﹣1)﹣3=2(y﹣1)+b的解为y=.二、选择题(共有6小题,每小题3分,共计18分.)13.下列计算结果正确的是()A.2x2﹣3x2=﹣1B.2x2﹣3x2=x2C.2x2﹣3x2=﹣x2D.2x2﹣3x2=﹣5x214.如果直线l外一点P与直线l上三点的连线段长分别为6cm,8cm,10cm,则点P到直线l的距离是()A.不超过6cm B.6cm C.8cm D.10cm15.丁丁和当当用大小相同的圆形纸片分别剪成扇形(如图)做圆锥形的帽子,请你判断哪个小朋友做成的帽子更高一些()A.丁丁B.当当C.一样高D.不确定16.一个几何体如图所示,它的俯视图是()A.B.C.D.17.如图,将一副三角板叠放在一起,使直角顶点重合于点C,则∠ACE+∠BCD等于()A.120°B.145°C.175°D.180°18.七(1)班全体同学进行了一次转盘得分活动.如图,将转盘等分成8格,每人转动一次,指针指向的数字就是获得的得分,指针落在边界则重新转动一次.根据小红、小明两位同学的对话,可得七(1)班共有学生()人.A.38B.40C.42D.45三、解答题(本大题共有8小题,共计78分.解答时应写出必要的文字说明、证明过程或演算步骤.)19.计算:(1)|﹣6|﹣(+3)+1;(2)×(﹣32×﹣4).20.解方程:(1)4(x﹣2)=2﹣x;(2)1+=.21.如图,所有小正方形的边长都为1个单位,点A、B、C均在格点上.(1)过点C画线段AB的平行线CD;(2)过点A画线段AB的垂线,交线段CB的延长线于点E;(3)线段AE的长度是点到直线的距离;(4)△ABE的面积等于.22.如图,直线AB、CD相交于点O,过点O作OE⊥AB,射线OF平分∠AOC,∠AOF =25°.求:(1)∠BOD的度数;(2)∠COE的度数.23.一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是,B的对面是,C的对面是;(直接用字母表示)(2)若A=﹣2,B=|m﹣3|,C=m﹣3n﹣,E=(+n)2,且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.24.我校七年级各班组织了关于“元旦”期间的市场调查社会实践活动.甲、乙、丙三位同学组成的活动小组去A,B两大超市,调查了这两个超市近两年“元旦”期间的销售情况.请根据这三位同学的实践活动报告解决以下问题:(1)去年A、B两超市销售额共为万元;(2)分别求出这两个超市去年“元旦”期间的销售额.25.[读一读]如图1,点A在原点O的左侧,点B在原点O的右侧,点A、B分别对应实数a、b,我们能求出线段AB的长.过程如下:AB=OA+OB=|a|+|b|.因为a<0,b>0,所以|a|=﹣a,|b|=b.所以AB=﹣a+b=b﹣a.[试一试]如图2,若点A、B都在原点O的左侧,且点A距离原点更远,点A、B分别对应实数a、b.求线段AB的长.[用一用]数轴上有一条线段AB,若把线段AB上的每个点对应的数都乘以得到新的数,再把所有这些新数所对应的点都向左平移2个单位后,得到新的线段CD.(1)若点A表示的数是3,点B表示的数是﹣2,则线段CD的长等于;(2)如果线段AB上的一点P经过上述操作后得到的点P'与点P重合,线段AB上的一点Q经过上述操作后得到的点Q′表示的数是Q表示的数的,求线段PQ的长.26.[阅读]材料1:如图1,在透明纸上画一个角,把这个角对折,使角的两边重合,再展平纸片,折痕把这个角分成两个相等的角.我们称这条折痕所在直线l平分这个角.材料2:如图2中,三角板OAB绕点O顺时针旋转60°到三角板OCD的位置,这时,三角板的边OA、OB绕点O顺时针旋转60°到OC、OD的位置;如图3中,三角板OAB 绕点O逆时针旋转90°到三角板OCD的位置,这时,三角板的边OA、OB绕点O逆时针旋转90°到OC、OD的位置.[问题解决](1)将两个大小一样的含30°角的直角三角板按图3的方式摆放(顶点A、C重合).现在将三角板OCD固定不动,从起始位置(图4)开始,将三角板OAB绕点O顺时针匀速转动一周,转动速度为每秒5°.设三角板OAB转动的时间为t秒.①当三角板OAB转动到图5的位置时,它的一边OA平分∠COD,求t的值;②当三角板OAB的一边OB所在直线平分∠COD时,t=秒;(直接写出结果)(2)将两个大小一样的含30°角的直角三角板按图6的方式摆放(顶点A、O、C在一条直线上).在三角板OAB绕点O以每秒5°的速度顺时针匀速转动的同时,三角板OCD绕点O以每秒3°的速度逆时针匀速转动,当三角板OAB转动一周时停止转动,此时三角板OCD也停止转动.两块三角板同时从起始位置(图6)开始转动,设三角板OAB转动的时间为t秒.当三角板OAB的一边OB所在直线平分∠COD时,t=秒.(直接写出结果)参考答案一、填空题(本大题共有12小题,每小题2分,共计24分.)1.的倒数是2.【分析】根据倒数的定义,的倒数是2.解:的倒数是2,故答案为:2.2.我市某日的最高温度是7℃,最低温度是﹣1℃,则当天的最高温度比最低温度高8℃.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.解:由题意可得:7﹣(﹣1),=7+1,=8(℃).故答案为:8.3.2020年10月11日至12月10日,第七次全国人口普查开展入户工作.上一次人口普查公告显示中国总人口截至当时约为1370000000人,1370000000用科学记数法表示为1.37×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:1370000000用科学记数法表示为1.37×109,故答案为:1.37×109.4.下列三个日常现象:其中,可以用“两点之间线段最短”来解释的是②(填序号).解:图①利用垂线段最短;图②利用两点之间线段最短;图③利用两点确定一条直线;故答案为:②.5.下列各数:﹣1,,1.01001…(每两个1之间依次多一个0),0,,3.14,其中有理数有4个.解:在所列实数中,有理数有﹣1、0、、3.14,故答案为:4.6.已知∠α=63°47′,则它的余角等于26°13′.【分析】根据互余的概念:和为90度的两个角互为余角作答.解:根据定义∠a的余角度数是90°﹣63°47′=26°13′.故答案为:26°13′.7.若x=﹣2是关于x的方程3m﹣2x+1=0的解,则m的值为﹣.解:∵x=﹣2是关于x的方程3m﹣2x+1=0的解,∴3m+4+1=0,解得:m=﹣,故答案为:﹣.8.已知线段AB=11cm,C是直线AB上一点,若BC=5cm,则线段AC的长等于6或16 cm.【分析】本题由于点C是直线上的一点,所以点C有可能在线段AB之间,有可能在线段AB的延长线上,从而容易得到答案为6cm或者16cm.【解答】解,当点C在线段AB之间时,AC=AB﹣BC=11﹣5=6cm.当点C在线段AB的延长线上时,AC+BC=11+5=16cm.故答案为:6或16.9.如图,已知∠AOB=90°,射线OC在∠AOB内部,OD平分∠AOC,OE平分∠BOC,则∠DOE=45°°.【分析】根据角平分线的定义得到∠DOC=∠BOC,∠COE=∠COA,结合图形计算即可.解:∵OD平分∠BOC,∴∠DOC=∠BOC,∵OE平分∠AOC,∴∠COE=∠COA,∴∠DOE=∠DOC+∠COE=(∠BOC+∠COA)=∠AOB=45°.故答案为:45°.10.用火柴棒搭成如图所示的图形,第①个图形需要3根火柴棒,第②个图形需要5根火柴棒…,用同样方式,第n个图形需(1+2n)根火柴棒(用含n的代数式表示).【分析】根据已知图形得出火柴棒的根数为序数2倍与1的和,据此可得答案.解:∵第①个图形中火柴棒的根数3=1+2×1,第②个图形中火柴棒的根数5=1+2×2,第③个图形中火柴棒的根数7=1+2×3,……∴第n个图形中火柴棒的根数为1+2n,故答案为:(1+2n).11.将四个数2,﹣3,4,﹣5进行有理数的加、减、乘、除、乘方运算,列一个算式2×[4﹣(﹣3)﹣(﹣5)]=24(答案不唯一)(每个数都要用,且只能用一次,写出一个即可),使得运算结果等于24.【分析】根据2×12=3×8=4×6=24来构造即可.解:2×[4﹣(﹣3)﹣(﹣5)]=2×(4+3+5)=2×12=24,故答案为:2×[4﹣(﹣3)﹣(﹣5)]=24(答案不唯一).12.已知关于x的一元一次方程x﹣3=2x+b的解为x=999,那么关于y的一元一次方程(y﹣1)﹣3=2(y﹣1)+b的解为y=1000.解:∵关于x的一元一次方程x﹣3=2x+b的解为x=999,∴关于y的一元一次方程(y﹣1)﹣3=2(y﹣1)+b中y﹣1=999,解得:y=1000,故答案为:1000.二、选择题(共6小题).13.下列计算结果正确的是()A.2x2﹣3x2=﹣1B.2x2﹣3x2=x2C.2x2﹣3x2=﹣x2D.2x2﹣3x2=﹣5x2【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此判断即可.解:2x2﹣3x2=(2﹣3)x2=﹣x2;故选:C.14.如果直线l外一点P与直线l上三点的连线段长分别为6cm,8cm,10cm,则点P到直线l的距离是()A.不超过6cm B.6cm C.8cm D.10cm【分析】根据垂线段最短得出两种情况:①当4cm是垂线段的长时,②当4cm不是垂线段的长时,求出即可.解:∵6<8<10,∴根据垂线段最短得出:当6cm是垂线段的长时,点P到直线l的距离是6cm;当6cm 不是垂线段的长时,点P到直线l的距离小于6cm,即点P到直线l的距离小于或等于6cm,即不超过6cm,故选:A.15.丁丁和当当用大小相同的圆形纸片分别剪成扇形(如图)做圆锥形的帽子,请你判断哪个小朋友做成的帽子更高一些()A.丁丁B.当当C.一样高D.不确定【分析】可得丁丁剪成扇形做圆锥形的帽子的底面半径大于当当剪成扇形做圆锥形的帽子的底面半径,由于母线长相等,根据勾股定理可得丁丁做成的帽子更高一些.解:由图形可知,丁丁剪成扇形做圆锥形的帽子的底面半径大于当当剪成扇形做圆锥形的帽子的底面半径,∵扇形的半径相等,即母线长相等,∴由勾股定理可得丁丁做成的圆锥形的帽子更高一些.故选:A.16.一个几何体如图所示,它的俯视图是()A.B.C.D.【分析】根据俯视图的意义,从上面看该几何体所得到的图形结合选项进行判断即可.解:从上面看该几何体,得到的是长方形,且中间有一条竖线,因此选项C中的图形,比较符合题意,故选:C.17.如图,将一副三角板叠放在一起,使直角顶点重合于点C,则∠ACE+∠BCD等于()A.120°B.145°C.175°D.180°【分析】由题意可知∠ACB=∠DCE=90°,根据补角的定义可得∠ACE+∠BCD等于180°.解:∵∠ACB=∠DCE=90°,∴∠ACE+∠BCD=∠DCE+(∠ACD+∠BCD)=∠DCE+∠ACB=180°.故选:D.18.七(1)班全体同学进行了一次转盘得分活动.如图,将转盘等分成8格,每人转动一次,指针指向的数字就是获得的得分,指针落在边界则重新转动一次.根据小红、小明两位同学的对话,可得七(1)班共有学生()人.A.38B.40C.42D.45【分析】可设得3分,4分,5分和6分的共有x人,它们平均得分为y分,分两种情况:根据(1)得分不足7分的平均得分为3分,可得xy﹣3x=13①,根据(2)得3分及以上的人平均得分为4.5分,可得4.5x﹣xy=21.5②,再把它们相加求得x,进一步可求七(1)班共有学生人数.解:设得3分,4分,5分和6分的共有x人,它们平均得分为y分,分两种情况:(1)得分不足7分的平均得分为3分,xy+3×2+5×1=3(x+5+3),xy﹣3x=13①,(2)得3分及以上的人平均得分为4.5分,xy+3×7+4×8=4.5(x+3+4),4.5x﹣xy=21.5②,①+②得1.5x=34.5,解得x=2.3,故七(1)班共有学生23+5+3+3+4=38(人).故选:A.三、解答题(本大题共有8小题,共计78分.解答时应写出必要的文字说明、证明过程或演算步骤.)19.计算:(1)|﹣6|﹣(+3)+1;(2)×(﹣32×﹣4).【分析】(1)先算绝对值,再算加减法;(2)先算乘方,再算乘法,最后算减法;如果有括号,要先做括号内的运算.解:(1)|﹣6|﹣(+3)+1=6﹣3+1=4;(2)×(﹣32×﹣4)=×(﹣9×﹣4)=×(﹣6﹣4)=×(﹣10)=﹣5.20.解方程:(1)4(x﹣2)=2﹣x;(2)1+=.【分析】(1)方程去括号、移项、合并同类项、系数化为1即可;(2)方程去分母、去括号、移项、合并同类项、系数化为1即可.解:(1)4(x﹣2)=2﹣x,去括号,得4x﹣8=2﹣x,移项,得4x+x=2+8,合并同类项,得5x=10,系数化为1,得x=2;(2)1+=,去分母,得6+3(3﹣x)=2(2x+1),去括号,得6+9﹣3x=4x+2,移项,得﹣3x﹣4x=2﹣6﹣9,合并同类项,得﹣7x=﹣13,系数化为1,得x=.21.如图,所有小正方形的边长都为1个单位,点A、B、C均在格点上.(1)过点C画线段AB的平行线CD;(2)过点A画线段AB的垂线,交线段CB的延长线于点E;(3)线段AE的长度是点E到直线AB的距离;(4)△ABE的面积等于4.【分析】(1)根据要求画出图形即可.(2)根据垂线的定义画出图形即可.(3)根据点到直线的距离的定义判断即可.(4)利用三角形的面积公式计算即可.解:(1)如图,直线CD即为所求作.(2)如图,直线AE即为所求作.(3)线段AE的长度是点E到直线AB的距离.故答案为:E,AB.(4)△ABE的面积=×4×2=4,故答案为:4.22.如图,直线AB、CD相交于点O,过点O作OE⊥AB,射线OF平分∠AOC,∠AOF =25°.求:(1)∠BOD的度数;(2)∠COE的度数.【分析】(1)根据角平分的定义和对顶角相等可得答案;(2)根据垂直的定义得∠AOE=90°,然后由角的和差关系可得答案.解:(1)∵射线OF平分∠AOC,∠AOF=25°,∴∠AOC=2∠AOF=50°,∴∠BOD=∠AOC=50°;(2)∵OE⊥AB,∴∠AOE=90°,∵∠AOC=50°,∴∠COE=90°﹣∠AOC=90°﹣50°=40°.23.一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是D,B的对面是E,C的对面是F;(直接用字母表示)(2)若A=﹣2,B=|m﹣3|,C=m﹣3n﹣,E=(+n)2,且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.【分析】(1)依据A与B、C、E、F都相邻,故A对面的字母是D;E与A、C、D、F 都相邻,故B对面的字母是E,进一步可求C的对面是F;(2)依据小正方体各对面上的两个数都互为相反数,可求m,n,进一步求出F所表示的数.解:(1)由图可得,A与B、C、E、F都相邻,故A对面的字母是D;E与A、C、D、F都相邻,故B对面的字母是E;故C的对面是F.故答案为:D,E,F;(2)∵字母A表示的数与它对面的字母D表示的数互为相反数,∴|m﹣3|+(+n)2=0,∴m﹣3=0,+n=0,解得m=3,n=﹣,∴C=m﹣3n﹣=3﹣3×(﹣)﹣=5,∴F所表示的数是﹣5.24.我校七年级各班组织了关于“元旦”期间的市场调查社会实践活动.甲、乙、丙三位同学组成的活动小组去A,B两大超市,调查了这两个超市近两年“元旦”期间的销售情况.请根据这三位同学的实践活动报告解决以下问题:(1)去年A、B两超市销售额共为200万元;(2)分别求出这两个超市去年“元旦”期间的销售额.【分析】(1)可设去年A、B两超市销售额共为x万元,根据两超市销售额今年共为242.8万元,列出方程求解即可得出答案;(2)可设A超市去年“元旦”期间的销售额为y万元,则B超市去年“元旦”期间的销售额为(200﹣y)万元,根据两超市销售额今年共为242.8万元,列出方程求解即可得出答案.解:(1)设去年A、B两超市销售额共为x万元,依题意有x+21.4%x=242.8,解得x=200.故去年A、B两超市销售额共为200万元.故答案为:200;(2)设A超市去年“元旦”期间的销售额为y万元,则B超市去年“元旦”期间的销售额为(200﹣y)万元,依题意得:(1+25%)y+(1+15%)(200﹣y)=242.8,解得:y=128,200﹣y=200﹣128=72.故A超市去年“元旦”期间的销售额为128万元,B超市去年“元旦”期间的销售额为72万元.25.[读一读]如图1,点A在原点O的左侧,点B在原点O的右侧,点A、B分别对应实数a、b,我们能求出线段AB的长.过程如下:AB=OA+OB=|a|+|b|.因为a<0,b>0,所以|a|=﹣a,|b|=b.所以AB=﹣a+b=b﹣a.[试一试]如图2,若点A、B都在原点O的左侧,且点A距离原点更远,点A、B分别对应实数a、b.求线段AB的长.[用一用]数轴上有一条线段AB,若把线段AB上的每个点对应的数都乘以得到新的数,再把所有这些新数所对应的点都向左平移2个单位后,得到新的线段CD.(1)若点A表示的数是3,点B表示的数是﹣2,则线段CD的长等于1;(2)如果线段AB上的一点P经过上述操作后得到的点P'与点P重合,线段AB上的一点Q经过上述操作后得到的点Q′表示的数是Q表示的数的,求线段PQ的长.解:[试一试]如图2,AB=OA﹣OB=|a|﹣|b|.∵a<0,b<0,∴|a|=﹣a,|b|=﹣b.∴AB=﹣a+b=b﹣a.[用一用]设点A、B分别对应实数a、b,则C表示的数为,D表示的数为;(1)∵点A表示的数是3,点B表示的数是﹣2,∴C表示的数为=,D表示的数为=,∴线段CD的长为:=1.故答案为:1.(2)设点P表示的数为p,点Q表示的数为q,则P′表示的数为:,Q′表示的数为:.根据题意可得,=p,=,解得p=,q=﹣15,∴线段PQ的长=﹣(﹣15)=.26.[阅读]材料1:如图1,在透明纸上画一个角,把这个角对折,使角的两边重合,再展平纸片,折痕把这个角分成两个相等的角.我们称这条折痕所在直线l平分这个角.材料2:如图2中,三角板OAB绕点O顺时针旋转60°到三角板OCD的位置,这时,三角板的边OA、OB绕点O顺时针旋转60°到OC、OD的位置;如图3中,三角板OAB 绕点O逆时针旋转90°到三角板OCD的位置,这时,三角板的边OA、OB绕点O逆时针旋转90°到OC、OD的位置.[问题解决](1)将两个大小一样的含30°角的直角三角板按图3的方式摆放(顶点A、C重合).现在将三角板OCD固定不动,从起始位置(图4)开始,将三角板OAB绕点O顺时针匀速转动一周,转动速度为每秒5°.设三角板OAB转动的时间为t秒.①当三角板OAB转动到图5的位置时,它的一边OA平分∠COD,求t的值;②当三角板OAB的一边OB所在直线平分∠COD时,t=60秒;(直接写出结果)(2)将两个大小一样的含30°角的直角三角板按图6的方式摆放(顶点A、O、C在一条直线上).在三角板OAB绕点O以每秒5°的速度顺时针匀速转动的同时,三角板OCD绕点O以每秒3°的速度逆时针匀速转动,当三角板OAB转动一周时停止转动,此时三角板OCD也停止转动.两块三角板同时从起始位置(图6)开始转动,设三角板OAB转动的时间为t秒.当三角板OAB的一边OB所在直线平分∠COD时,t=15或37.5秒.(直接写出结果)解:(1)①由三角板可知∠DOC=60°,∵三角板OAB绕点O顺时针匀速转动一周,转动速度为每秒5°,∴t秒后,∠AOC=5t.当OA平分∠DOC时,∠AOC=30°,∴5t=30°,解得t=6.答:t的值是6.②∵OB平分∠DOC时,∴∠BOC=30°,∠AOC=90°﹣30°=60°,∴5t=360°﹣60°=300°,解得t=60.故答案为:60.(2)设三角板OAB和三角板OCD旋转后分别为三角板OA′B′和三角板OC′D′,①线段OB平分∠DOC时,如图:∠AOA′=5t,∠COC′=3t,∵∠B′OC′=30°,∴∠A′OC′=60°,∴5t+3t+60°=180°,解得t=15;②直线OB平分∠DOC时,如图:∠AOA′=5t,∠COC′=3t,∠AOA′=90°∵∠B′OC′=30°,∴∠A′OC′=90°+30°=120°,∴5t+3t﹣120°=180°,解得t=37.5;故答案为:15或37.5.。

福建省泉州南安市2020-2021学年七年级上学期期末考试数学试题(含答案)

福建省泉州南安市2020-2021学年七年级上学期期末考试数学试题(含答案)

初一数学试题 第1页(共6页)南安市2020—2021学年度上学期初一、二年期末教学质量监测初一年数学试题(满分:150分; 考试时间:120分钟)学校 班级 姓名 考号友情提示:所有答案必须填写到答题卡相应的位置上.一、选择题(单项选择,每小题4分,共40分). 1.有理数2020的绝对值是( ) A .2020- B . 2020C .12020D .12020-2.某省到2020年底已全部脱贫,近三年共脱贫1020000人,将1020000用科学记数法表示为( ) A .61.0210⨯ B .51.0210⨯C .510.210⨯D .410210⨯3.在2-, 2.5-,0,6这四个数中,最小的数是( ) A .2-B . 2.5-C .0D .64.已知一个单项式的系数是2,次数是3,则这个单项式可以是( ) A .22xy - B .23x C .32xy D .32x 5.已知143n xy -与3414x y 是同类项,则n 的值是( )A .2B .3C .4D .5 6.已知︒=∠5.50α,则α∠的余角等于( )A .3930︒'B .3950︒'C .4930︒'D .12930︒' 7.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则 原正方体中与数字5所在的面相对的面上标的数字为( ) A .1 B .2 C .3 D .48.如图,AB ∥CD ,AD ⊥AC ,BAD ∠=40°,则ACD ∠=( ) A .30° B .40° C .50° D .60°初一数学试题 第2页(共6页)9.如图1,A ,B 两个村庄在一条河l (不计河的宽度)的两侧,现要建一座码头,使它到A 、B 两个村庄的距离之和最小,如图2中所示的C 点即为所求的码头的位置,那么这样做的理由是( )A .两直线相交只有一个交点B .两点确定一条直线C .经过一点有无数条直线D .两点之间,线段最短10.如图所示是一个长方形,根据图中尺寸大小,用含x 的代数式表示阴影部分的面积S ,正确的为( )A .183x +B .183x -C .366x +D .366x - 二、填空题(每小题4分,共24分).11.如果数a 与2互为相反数,那么a =______.12.一个两位数的个位数字是2,十位数字是x ,用含x 的多项式表示这个两位数为 . 13.已知∠A =100°,则∠A 的补角等于 °.14.在等式的括号内填上恰当的项,2228x y y x -+=-(____________). 15.如图,直线a ∥b ,△ABC 的顶点A 和C 分别落在直线a 和b 上,若∠1=60°,且∠1+∠2=90°, 则ACB ∠的度数是 °.16.根据图中数的规律,则最后一个图形中的x +y +z = .三、解答题(共86分). 17.(8分)计算:(1)12130235⎛⎫⨯-+ ⎪⎝⎭(2)()()()2382-+-÷-初一数学试题 第3页(共6页)18.(8分)先化简,再求值:()()226332x xy xy x ++-,其中2x =-,2y =.19.(8分)如图,直线AB 、CD 相交于点O ,OE AB ⊥,OF CD ⊥.若OC 是AOE ∠的平分线,求3∠的度数.20.(8分)如图,已知AD ⊥BC ,EF ⊥BC ,垂足分别为D 、F ,∠2+∠3=180°.试说明:∠GDC =∠B .下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整. 解:∵AD ⊥BC ,EF ⊥BC (已知),∴AD ∥EF (在同一平面内,垂直于同一条直线的两条直线平行), ∴∠1+∠2= °(两直线平行,同旁内角互补), 又∵∠2+∠3=180°(已知),∴∠1=∠ (同角的补角相等),∴AB ∥DG ( ),∴∠GDC =∠B ( ).21.(8分)把棱长为1的10个相同的正方体摆成如图的形式,画出该几何体的主视图、左视图和俯视图.22.(10分)如图,某长方形广场的四个角都有一块半径为r米的四分之一圆形的草地,中间有一个半径为r米的圆形水池,长方形的长为a米,宽为b米.(1)整个长方形广场面积为;草地和水池的面积之和为;(2)若a=70,b=50,r=10,求广场空地的面积(π取3.142,计算结果精确到个位).23.(10分)如图①,在数轴上点A表示的数为2-,将点A沿数轴向左平移12个单位,得到一条线段AB.(1)在数轴上点B表示的数为;(2)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折,如图③,点B落在点A的右边点B′处,若A恰好为线段CB′的中点,求线段AC的长.初一数学试题第4页(共6页)24.(12分)某快餐店试销某种套餐,每份套餐的成本为5元,该店每天固定支出费用为...........500...元.(.不含套餐成本......)..试销售一段时间后发现,若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.(1)若每份套餐售价定为9元,则该店每天的利润为元;若每份套餐售价定为12元,则该店每天的利润为元;(2)设每份套餐售价定为x元,试求出该店每天的利润(用含x的代数式表示,只要求列式,不必化简);(3)该店的老板要求每天的利润能达到1660元,他计划将每份套餐的售价定为:10元或11元或14元.请问应选择以上哪个套餐的售价既能保证达到利润要求又让顾客省钱?请说明理由.初一数学试题第5页(共6页)25.(14分)问题情境:我市某中学班级数学活动小组遇到问题:如图1,AB∥CD,130PAB︒∠=,120PCD︒∠=,求APC∠度数.经过讨论形成的思路是:如图2,过P作PE∥AB,通过平行线性质,可求得APC∠度数.(1)按该数学活动小组的思路,请你帮忙求出APC∠度数;(2)问题迁移:如图3,AD∥BC,点P在A、B两点之间运动时,ADPα∠=,BCPβ∠=.请你判断CPD∠、α、β之间有何数量关系?并说明理由;(3)拓展应用:如图4,已知两条直线AB∥CD,点P在两平行线之间,且BEP∠的平分线与DFP∠的平分线相交于点Q,求QP∠+∠2的度数.初一数学试题第6页(共6页)初一数学试题 第7页(共6页)南安市2020—2021学年度上学期初一、二年期末教学质量监测初一数学参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一步没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. (四)评分最小单位是1分,得分或扣分都不出现小数. 一、选择题(每小题4分,共40分)1.B ; 2.A ; 3.B ; 4.D ; 5.C ; 6.A ; 7.B ; 8.C ; 9.D ; 10.A . 二、填空题(每小题4分,共24分)11.2-; 12.102x +; 13.80; 14.y y 82-; 15.30; 16.139. 三、解答题(共86分) 17.(本题8分)(1)12130235⎛⎫⨯-+⎪⎝⎭ 解:原式=15206-+ ……………………………………………………3分=1 …………………………………………………………4分(2)()()()2382-+-÷-解:原式=94+ ………………………………………………………………7分= 13 …………………………………………………………8分18.(本题8分)先化简,再求值:()()226332x xy xy x++-解:原式=226696x xy xy x ++- ……………………………………………………4分=15xy ……………………………………………………………6分当2x =-,2y =时,原式= ()1522⨯-⨯ ……………………………………7分=60- …………………………………………………8分初一数学试题 第8页(共6页)19.(本题8分)∵OE AB ⊥∴90AOE ︒∠=………………………………………………………………………2分 ∵OC 平分AOE ∠∴∠1=∠2=45︒……………………………………………………………………………4分 又∵OF CD ⊥∴90COF ︒∠= …………………………………………………………………………6分 ∴∠2+∠3=90︒ …………………………………………………………………………7分 ∴345︒∠=…………………………………………………………………………………8分20.(本题8分)解:∵AD ⊥BC ,EF ⊥BC (已知),∴AD ∥ EF (在同一平面内,垂直于同一条直线的两条直线平行),∴∠1+∠2= 180 °(两直线平行,同旁内角互补), ………………………………2分 又∵∠2+∠3=180°(已知),∴∠1=∠ 3 (同角的补角相等),……………………………………………………4分 ∴AB ∥DG ( 内错角相等,两直线平行 ), ………………………………………6分 ∴∠GDC =∠B ( 两直线平行,同位角相等 ). …………………………………8分 21.(本题8分)画对一个得3分,对两个得6分3个全对得8分初一数学试题 第9页(共6页)22.(本题10分)(1)整个长方形广场面积为ab 平方米;草地和水池的面积之和为22r π平方米,…4分 (2)依题意得:空地的面积为 22ab r π- ……………………6分当10,50,70===r b a 时,∴ 22270502 3.14210ab r π-=⨯-⨯⨯ ……… ………………………………8分2871.62872=≈ ……………………………………………9分答:广场空地的面积约为2872平方米.………………………………………………10分23.(本题10分)(1) -14 , ……………………………………………………………3分 (2)∵A 为CB ′的中点∴2CB AC = ………………………………………………………………………5分 由对折得 2BC CB AC '== …………………………………………………………7分 ∴2312AB BC AC AC AC AC =+=+==………………………………………9分 ∴4AC = …………………………………………………………10分 24.(本题12分)解:………………………………………………………4分(2)当10≤x 时,利润为()5004005-⨯-x ; ……………………6分 当10>x 时,利润为()()54001040500x x =---⨯-⎡⎤⎣⎦ ………………8分 (3)当x =10时,()500400510-⨯-1500=(元), ……………………………9分当x =11时,()()[]1660500401011400511=-⨯---(元); …………10分 当x =14时,()()[]1660500401014400514=-⨯---(元); …………11分 当x =11或14时,利润均为1660元.因为11<14,选择11元,能保证达到利润要求又让顾客省钱. ……………12分初一数学试题 第10页(共6页)25.(本题14分)(1)如图2,过点P 作PE ∥AB ,∵AB ∥CD ,∴PE ∥AB ∥CD . ………………………………………1分 ∴∠A +∠APE =180°,∠C +∠CPE =180° ………………2分 ∵∠P AB =130°,∠PCD =120°,∴∠APE =50°,∠CPE =60°,………………………………3分∴∠APC =∠APE +∠CPE =110°.…………………………………………………4分 (2)∠CPD =α+β,……………………………………………………………5分 理由如下:如图,过P 作PE ∥AD 交CD 于E .……………6分 ∵AD ∥BC ,∴AD ∥PE ∥BC , ……………7分 ∴∠DPE =α,∠CPE =β, …………………8分 ∴∠CPD =∠DPE +∠CPE =α+β.……………9分(3)由(1)可得, 360=∠+∠+∠DFP BEP P …………………………10分由(2)可得DFQ BEQ Q ∠+∠=∠ ………………………………11分 又QE 平分BEP ∠,QF 平分DFP ∠∴DFQ DFP BEQ BEP ∠=∠∠=∠2,2 ………12分∴()DFQ BEQ P Q P ∠+∠+∠=∠+∠22DFQ BEQ P ∠+∠+∠=22︒=∠+∠+∠=360DFP BEP P ……………………………14分。

2020-2021学年七年级上学期期末考试数学试题含参考答案

2020-2021学年七年级上学期期末考试数学试题含参考答案

2020年秋学期期末测试七年级数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.﹣3的相反数是()A.1 3B.13-C.3 D.﹣3 2.下列几何体,都是由平面围成的是()A.圆柱B.三棱柱C.圆锥D.球3.下列各式中,正确的是()A.22a b ab+=B.224235x x x+=C.()3434x x--=--D.2222a b a b a b-+= 4.已知关于x的一元一次方程3240x a--=的解是2x=,则a的值为()A.﹣5 B.﹣1 C.1 D.55.如图,是一个正方体的表面展开图.若该正方体相对面上的两个数和为0,则a b c+-的值为()A.﹣6 B.﹣2 C.2 D.46.如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16 B.30 C.32 D.34二、填空题(本大题共有10小题,每小题3分,共30分)7.2021的绝对值是.8.双十一购物狂欢节,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,2020年双十一购物狂欢节全网销售额高达267 400 000 000元,将267 400 000 000用科学记数法表示为_____________.9.若∠A=34°,则∠A的补角等于____________°.10.请写出一个系数是﹣3、次数是4的单项式:_______________.11.如图是某个几何体的三视图,则该几何体的名称是_______________.12.已知2320x y-+=,则22(3)5x y-+的值为_______________.13.若一个等腰三角形的两边长分别为4cm 和9cm,则这个等腰三角形的周长是_______cm.14.若多项式23352x kxy--与2123xy y-+的和中不含xy项,则k的值是_________.15.如图,在ΔABC中,BD平分∠ABC交AC于点D,EF∥BC交BD于点G,若∠BEG=130°,则∠DGF=________°.16.如图,是一个长、宽、高分别为a、b、c(a>b>c)长方体纸盒,将此长方体纸盒沿不同的棱剪(第5题图)(第6题图)(第11题图)(第15题图)(第16题图)开,展成的一个平面图形是各不相同的.则在这些不同的平面图形中,周长最大的值是_______________.(用含a 、b 、c 的代数式表示)三、解答题(本大题共有8小题,共102分.解答时应写出必要的步骤)17.(本题12分)计算: (1)213(4)33⎛⎫---+-+ ⎪⎝⎭; (2)()2020112(3)2---+-÷.18.(本题8分)解下列方程:(1)43211x x -=+; (2)21)1323(x x --=-.19.(本题8分)先化简,再求值:22222(5)2(2)a b ab a b a b ab +-+--,其中1a =-,3b =.20.(本题8分)若方程2(31)12x x +=+的解与关于x 的方程622(3)3kx -=+的解互为倒数,求k 的值.21.(本题10分)如图是由相同边长的小正方形组成的网格图形,小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,△ABC 的三个顶点都在格点上,利用网格画图.(注:所画格点、线条用黑色水笔描黑)(1)过点A 画BC 的垂线,并标出垂线所过格点P ;(2)过点A 画BC 的平行线,并标出平行线所过格点Q ; (3)画出△ABC 向右平移8个单位长度后△A ′B ′C ′的位置;(4)△A ′B ′C ′的面积为________.22.(本题10分)用“※”定义一种新运算:对于任意有理数a 和b ,规定a ※b =a (a +b ). 例如:1※2=1×(1+2)=1×3=3. (1)求(﹣3) ※5的值;(2)若(﹣2) ※(3x -2)=x +1,求x 的值.23.(本题10分)如图,已知直线AB,CD相交于点O,∠AOE与∠AOC互余.(1)若∠BOD=32°,求∠AOE的度数;(2)若∠AOD:∠AOC=5∶1,求∠BOE的度数.24.(本题10分)如图1,直线MN∥PQ、ΔABC按如图放置,∠ACB=90°,AC、BC分别与MN、PQ相交于点D、E,若∠CDM=40°.(1)求∠CEP的度数;(2)如图2,将△ABC绕点C逆时针旋转,使点B落在PQ上得△A'B'C,若∠CB'E=22°,求∠A'CB的度数.25.(本题12分)全球新冠疫情爆发后,口罩成了急需物资,中国企业积极采购机械生产口罩,为全球抗击疫情作出了贡献.某企业准备采购A、B两种机械共15台,用于生产医用口罩和N95医用防护口罩,A种机械每天每台可以生产医用口罩7万个,B种机械每天每台可以生产N95医用防护口罩2万个,根据疫情需要每天生产的医用口罩要求是N95医用防护口罩的4倍.(1)求该企业A、B两种机械各需要采购多少台?(2)设该企业每天生产数量相同的同一类型口罩,每天销售9万元,并提供优惠政策:购买不超过10天不优惠,超过10天不超过20天的部分打九折,超过20天不超过30天的部分打8折,超过30天的部分打7折.①某国内医疗机构购买了该企业2周的口罩产量,问应付多少钱?②某国外医疗机构一次性付款207万元,问医疗机构购买了多少天的口罩产量?26.(本题14分)两个完全相同的长方形ABCD 、EFGH ,如图所示放置在数轴上. (1)长方形ABCD 的面积是__________.(2)若点P 在线段AF 上,且PE +PF =10,求点P 在数轴上表示的数.(3)若长方形ABCD 、EFGH 分别以每秒1个单位长度、3个单位长度沿数轴正方向移动.设两个长方形重叠部分的面积为S ,移动时间为t .①整个运动过程中,S 的最大值是____________,持续时间是__________秒. ②当S 是长方形ABCD 面积一半时,求t 的值.附加题1.如图①,在长方形 A BCD 中, E 点在 A D 上,并且∠ABE = 28︒ ,分别以 B E 、CE 为折痕进行折叠并压平,如图②,若图②中∠A ED =n ︒,则∠D E C 2. 如上图,已知点A 是射线BE 上一点,过A 作AC ⊥BF ,垂足为C ,CD ⊥BE ,垂足为D ,给出下列结论:①∠1是∠ACD 的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF ;④与∠ADC 互补的角共有3个.其中正确结论有_____. 3.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长. (2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒, ①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由. (3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?2020年秋学期期末学业质量测试七年级数学参考答案题号 1 2 3 4 5 6 答案CBDCBD(本大题共有10题,每小题3分,共30分)7. 2021 8. 2.674×1011 9. 146 10.﹣3x 4(答案不唯一) 11. 六棱柱 12. 1 13. 22 14. 8 15. 25 16. 8a +4b +2c三、解答题(本大题共有8题,共102分.解答时应写出必要的步骤)17.(1)解:原式213433=-+-+(2分) 21(34)33⎛⎫=--++ ⎪⎝⎭(2分)71=-+6=- (2分)(2)解:原式12(3)2=-+-⨯(3分) 16=-- (1分) 7=- (2分) 18.(1)解:42311x x -=+ (2分) 214x = (1分) 7x = (1分)(2)解:()32196x x --=- (1分) 32196x x -+=- (1分) 1110x -=- (1分)1011x = (1分) 19.解:原式22222524a b ab a b a b ab =-+-+(2分)22222254a b a b a b ab ab =+--+2ab =- (3分) 当1a =-,3b =时,()2213ab -=--⨯ (2分)9= (1分)20.解: ()23112x x +=+6212x x +=+41x =-14x =- (2分)14-的倒数是4-(2分) 将4-代入方程()62233kx -=+ 则6223k-=-(2分)626k -=- 212k -=-6k = (2分)21.(1)画出垂线(1分) (2)标出格点P (1分) (2)画出平行线(1分)只要标出1个格点Q (1分) (3)画出三角形(2分)标出字母(1分) (4)9.5 (3分)22.解:(1)由题意知,()3-※5()()335=-⨯-+⎡⎤⎣⎦ (2分)()32=-⨯ 6=- (2分)(2)由题意知,()2-※(32)x -()()()2232x =-⨯-+-⎡⎤⎣⎦(2分)()()234x =-⨯- 68x =-+(2分)因为()2-※(32)1x x -=+ 所以681x x -+=+(1分)77x -=-1x = (1分)23.解:(1)因为∠AOC 与∠BOD 是对顶角所以∠AOC =∠BOD =32°(1分) 因为∠AOE 与∠AOC 互余所以∠AOE +∠AOC =90°(1分) 所以∠AOE =90°-∠AOC (1分)=90°-32° =58° (2分)(2)因为∠AOD :∠AOC =5:1所以∠AOD =5∠AOC (1分) 因为∠AOC +∠AOD =180°(1分) 所以6∠AOC =180°∠AOC =30°(1分) 由(1)知∠BOD =∠AOC =30°∠COE =∠DOE =90°(1分)所以∠BOE =∠DOE +∠BOD=90°+30° =120°(1分)24.解:(1)连接DE因为MN ∥PQ所以∠MDE +∠PED =180°(2分)即∠CDM +∠CEP +∠CDE +∠CED =180° 因为∠CDE +∠CED +∠DCE =180°所以∠CDM +∠CEP =∠DCE =90°(1分) 所以∠CEP =90°-∠CDM=90°-40° =50°(2分)(2)由(1)知∠CEP =50°因为∠CEP +∠CEB '=180° 所以∠CEB '=180°-∠CEP=180°-50° =130°(1分)因为∠ECB '+∠CEB '+∠CB 'E =180° 所以∠ECB '=180°-∠CEB '-∠CB 'E=180°-130°-22° =28°(1分)因为∠A 'CB '是由∠ACB 旋转得到 所以∠A 'CB '=∠ACB =90°(1分) 所以∠A 'CB =∠A 'CB '+∠ECB '=90°+28° =118°(2分)25.解:(1)设采购A 种机械x 台,则采购B 种机械(15-x )台.(1分)由题意得742(15)x x =⨯-(3分)解得8x =151587x -=-=答:采购A 种机械8台,采购B 种机械7台.(2分) (2)①两周=14天9×10+9×0.9×4 (1分) =90+32.4=122.4(万元)答:应付122.4万元.(1分)②购买20天费用:9×10+8.1×10=171(万元)购买30天费用:9×10+8.1×10+7.2×10=243(万元) 171<207<243设国外医疗机构购买了y 天的口罩产量(20<y <30) 则9×10+8.1×10+7.2×(y -20)=207(2分) 解得y =25答:国外医疗机构购买了25天的口罩产量.(2分)26.(1)48 (3分)(2)设点P 在数轴上表示的数是x , 则(10)10PE x x =--=+(4)4PF x x =--=+ (1分) 因为10PE PF +=所以(10)(4)10x x +++= (1分) 解得2x =-答:点P 在数轴上表示的数是﹣2.(1分)(3)①36;1 (4分) ②由题意知移动t 秒后,点E 、F 、A 、B 在数轴上分别表示的数是 103t -+、43t -+、2t +、10t + 情况一:当点A 在E 、F 之间时(43)(2)26AF t t t =-+-+=- 由题意知148242AF AD S ⋅==⨯= 所以()62624t ⋅-=解得5t =(2分)情况二:当点B 在E 、F 之间时()()10103202BE t t t =+--+=-由题意知148242BE BC S ⋅==⨯=所以()620224t ⋅-= 解得8t =(1分)综上所述,当S 是长方形ABCD 面积一半时,5t =或8.(1分)附加题1.(28+1/2 n )°2. 答案为①④.3. 【答案】解:(1)∵OA =10cm ,OB =5cm ,∴AB =OA +OB =15cm . ∵点C 是线段 AB 的中点,∴AC =12AB =7.5cm ,∴CO =AO -AC =10-7.5=2.5(cm ). (2)①∵PQ =1,∴|15-(4x -3x )|=1,∴|15-x |=1,∴15-x =±1,解得:x =14或16.②∵PM =10+7x -4x =10+3x ,OQ =5+3x ,OM =7x ,∴4PM +3OQ ﹣mOM =4(10+3x )+3(5+3x )-7mx =55+(21-7m )x ,要使4PM +3OQ ﹣mOM定值,则21-7m =0,解得:m =3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t -2t =90,解得:t =22.5; ②如图2,根据题意得:6t +90=360+2t ,解得:t =67.5.综上所述:当t =22.5秒和67.5秒时,射线 OC ⊥OD .。

湖南省常德市2020-2021学年七年级上学期期末数学试题(含答案解析)

湖南省常德市2020-2021学年七年级上学期期末数学试题(含答案解析)

湖南省常德市2020-2021学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.2的相反数是( ) A .2B .-2C .12D .12-2.已知:有理数a 、b 、c 满足0a b +>,0bc >,b c >,则将a 、b 、c 在数轴上可以表示为( ) A . B .C .D .3.已知线段AB=6cm ,C 为AB 的中点,D 是AB 上一点,CD=2cm ,则线段BD 的长为( ) A .1cmB .5cmC .1 cm 或5cmD .4cm4.如果单项式22m x y +-与n x y 的和仍然是一个单项式,则m 、n 的值是( ) A .2,2m n ==B .1,2m n =-=C .2,1m n ==-D .2,2m n =-=5.永辉超市同时售出两台冷暖空调,每台均卖990元,按成本计算,其中一台盈利10%,另一台亏本10%,则出售这两台空调永辉超市( )A .不赔不赚B .赚20元C .赚90元D .亏20元6.小明把自己一周的支出情况,用右图所示的统计图来表示,下面说法正确的是( )A .从图中可以直接看出具体消费数额B .从图中可以直接看出总消费数额C .从图中可以直接看出各项消费数额占总消费额的百分比D .从图中可以直接看出各项消费数额在一周中的具体变化情况7.如图所示的立方体,如果把它展开,可以是下列图形中的( )A .B .C .D .8.小颖按如图所示的程序输入一个正数x ,最后输出的结果为656,则满足条件的x 的不同值最多有( )A .2个B .3个C .4个D .5个二、填空题9.2019年12月1日,我国自行研制的探月三期工程先导星“嫦娥三号”在西昌点火升空,准确入轨赴月“嫦娥三号”开始上升的飞行速度约10800米/秒,把这个数据用科学记数法表示为__________米/秒.10.已知∠α与∠β互余,且∠α=35°18′,则∠β=_____°_____′.11.如果关于x 的方程1237ax +=的根是5x =,则=a ________.12.某服装的标价是132元,若以8折售出,仍可获利a 元,则该服装的进价是_______元.13.单项式12ab 的系数是____________;次数是_____________.14.如图,已知长方形纸片ABCD ,点E ,F 分别在边AB ,CD 上,连接EF .将BEF ∠对折,点B 落在直线EF 上的点B '处,得折痕EM ,AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN ,则图中与B ME '∠互余的角是________(只需填写三个角).15.如图,小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是______.16.1a 是不为1的有理数,我们把111a -记作2a ,211a -记作3a …依此类推,若已知114a =-,则2013a =_________.三、解答题 17.解方程: (1)32641632x x -=+ (2)13234x x+-=. 18.计算:(1)6(23)7(4)ab a a ab +--(2)()22373221a a a a a ⎡⎤-+---⎣⎦(3)221(2)(10)4---⨯- (4)4321(1)(0.751)(2)32⎡⎤⎛⎫--⨯-÷-+- ⎪⎢⎥⎝⎭⎣⎦19.先化简,再求值:()()226122269x x x x ++-++,其中12x =. 20.检修小组人员从A 地出发,在东西走向的路上检修线路,如果规定向东为正,向西为负,一天中每次行驶记录如下(单位:千米);-4,+7,-9,+8,+6,-4,-3. (1)收工时检修小组人员在A 地的哪个方向?距A 地有多远? (2)检修小组人员距A 地最远的是哪一次?(3)若每千米耗油0.3升,检修车从出发到收工共耗油多少升?21.为迎接2013年高中招生考试,某中学对全校九年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给信息, 解答下列问题:(1)请将表示成绩类别为“中”的条形统计图补充完整;(2)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角是_____________度.22.某单位计划购买电脑若干台,现从两家商场了解到同一型号电脑每台报价均为5000元,并且多买都有一定的优惠.甲商场优惠的条件是:第一台按原报价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.设该单位计划购买电脑x 台,根据题意回答下列问题:(1)若到甲商场购买,需用_____________元(填最简结果);若到乙商场购买,需用__________元(填最简结果). (2)什么情况下两家商场的收费相同?23.已知AOB ∠是一个直角,作射线OC ,再分别作AOC ∠和BOC ∠的平分线OD 、OE .(1)如图∠,当70BOC ∠=︒时,求DOE ∠的度数;(2)如图∠,当射线OC 在AOB ∠内绕O 点旋转时,DOE ∠的大小是否发生变化,说明理由;(3)当射线OC 在AOB ∠外绕O 点旋转且AOC ∠为钝角时,画出图形,直接写出相应的DOE ∠的度数(不必写出过程).24.已知数轴上两点A 、B 对应的数分别是 6,﹣8,M 、N 、P 为数轴上三个动点,点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,点P 从原点出发速度为每秒1个单位.(1)若点M 向右运动,同时点N 向左运动,求多长时间点M 与点N 相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?参考答案:1.B 【解析】 【详解】 2的相反数是-2. 故选:B. 2.C 【解析】 【分析】根据选项中数轴上点的位置,看看是否符合条件a +b >0,bc >0,b >c 即可. 【详解】解:∠0a b +>,0bc >,b c >, ∠A 、0a b +<,故本选项错误; B 、0a b +<,故本选项错误;C 、符合0a b +>,0bc >,b c >,故本选项正确;D 、0bc <,故本选项错误; 故选:C . 【点睛】本题考查了数轴和有理数的大小比较的应用,主要考查学生的理解能力和计算能力. 3.C 【解析】 【分析】根据题意画出图形,由于点D 的位置不能确定,故应分两种情况进行讨论. 【详解】解:线段6AB cm =,C 为AB 的中点,132AC BC AB cm ∴===. 当点D 如图1所示时,325BD BC CD cm =+=+=;当点D 如图2所示时,321BD BC CD cm =-=-=.∴线段BD 的长为1cm 或5cm .故选:C .【点睛】本题考查的是两点间的距离,在解答此题时要注意进行分类讨论,不要漏解. 4.B 【解析】 【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m 和n 的值. 【详解】解:由单项式22m x y +-与n x y 的和仍然是一个单项式,得 22m x y +-与n x y 是同类项,21,2m n +==. 解得1,2m n =-=, 故选:B 【点睛】本题主要考查同类项的定义,根据同类项的定义列出关于m 和n 的等式是解决问题的关键. 5.D 【解析】 【分析】设盈利10%的这台空调的进价为x 元,亏损10%的这台空调的进价为y 元,由销售问题的数量关系建立方程求出其解即可 【详解】解:设盈利10%的这台空调的进价为x 元,亏损10%的这台空调的进价为y 元,由题意得 (110%)990,(110%)990x y +=-=,解得:900,1100x y ==,所以这次销售的进价为:90011002000+=元, ∠售价和为:9909901980+=元,-=-元.利润为:1980200020∠出售这两台空调永辉超市亏20元.故选:D.【点睛】本题考查了一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键,此题要运用销售问题的数量关系利润=售价-进价,此题难度不大.6.C【解析】【分析】因为没有总数,所以无法直接看出具体消费数额和各项消费数额在一周中的具体变化情况,由此即可作出选择.【详解】解:因为没有总数,所以无法直接看出具体消费数额和各项消费数额在一周中的具体变化情况.但是从图中可以直接看出各项消费数额占总消费数额的百分比,故选C.7.B【解析】【分析】根据圆面、正方向面、三角形面是临面,且圆面、正方形面与三角形面只有一个公共顶点,可得答案.【详解】解:根据图形得:A、C、D选项中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;B选项中折叠后与原立方体符合,所以正确的是B.故选:B【点睛】本题考查了几何体的展开图,根据题意得到圆面、正方形面与三角形面只有一个公共顶点是解题的关键.8.C【解析】【分析】结合题意,根据一元一次方程的性质计算,即可得到答案.【详解】∠输出结果是656,∠51656x+=,∠131x=,∠51131x+=,解得:26x=,5126x+=,解得:5x=,515x+=,解得:45x=,∠4 515 x+=解得:125 x=-∠小颖按如图所示的程序输入一个正数x,∠125x=-不符合题意∠输入的x的不同值最多可以是45,5,26,131,共4个故选:C.【点睛】本题考查了一元一次方程的知识,解题的关键是熟练掌握一元一次方程的性质,从而完成求解.9.41.0810⨯【解析】【分析】科学记数法的表示形式为10na⨯的形式,其中1||10a<,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值10时,n是正数;当原数的绝对值1<时,n是负数.【详解】解:将10800用科学记数法表示为:41.0810⨯. 故答案为:41.0810⨯. 【点睛】此题考查科学记数法的表示方法,解题的关键是掌握科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值. 10. 54 42 【解析】 【详解】由题意得∠β=90°-35°18′=54°42′. 11.5 【解析】 【分析】方程的解就是能够使方程左右两边相等的未知数的值,把x =5代入方程ax +12=37就得到关于a 的方程,从而求出a 的值. 【详解】解:把x =5代入ax +12=37得:5a +12=37, 解得:a =5. 故答案为:5. 【点睛】本题考查了一元一次方程的解和解一元一次方程,关键是能根据题意得出一个关于a 的方程.12.(105.6)a - 【解析】 【分析】根据进价=售价−获利列式即可. 【详解】解:进价1320.8105.6a a =⨯-=-. 故答案为:(105.6)a -. 【点睛】本题考查了列代数式,解题关键是在于理清八折的意义.13.122.【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:由单项式的定义知,单项式12ab的系数是12,次数是2.故答案是:12;2.【点睛】考查了单项式的定义,解题的关键是确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数.14.∠B′EM,∠MEB,∠A′NE【解析】【分析】由折叠的性质得到∠MB′E=∠B=90°,∠NA′E=∠A=90°,∠MEB=∠MEB′,∠AEN=∠A′EN,再由平角的定义得到NE与ME垂直,根据同角(等角)的余角相等,即可在图中找出与∠B′ME互余的角.【详解】解:由折叠及长方形ABCD可得:∠MB′E=∠B=90°,∠NA′E=∠A=90°,∠MEB=∠MEB′,∠AEN=∠A′EN,∠∠MEB+∠MEB′+∠AEN+∠A′EN=180°,∠∠MEB+∠AEN=∠MEB′+∠A′EN=90°,则图中与∠B′ME互余的角是∠B′EM,∠MEB,∠A′NE.故答案为:∠B′EM,∠MEB,∠A′NE.【点睛】本题考查了余角和补角,以及翻折变换,熟练掌握图形折叠的性质是解本题的关键.15.8 ;【解析】【分析】根据数轴的单位长度,判断墨迹盖住部分的整数,然后求出其和.【详解】解:由图可知,左边盖住的整数数值是-2,-3,-4,-5;右边盖住的整数数值是0,1,2,3;所以他们的和是(-2)+(-3)+(-4)+(-5)+0+1+2+3=-8.故答案为:-8.【点睛】此题考查了数轴上表示的数,此题的关键是先看清盖住了哪几个整数值,然后相加. 16.5【解析】【分析】 已知114a =-,可依次计算出a 2、a 3、a 4,即可发现每3个数为一个循环,然后用2013除以3,即可得出答案.【详解】解:∠把111a -记作2a ,211a -记作3a …依此类推,114a =-, ∠2141514a ==⎛⎫-- ⎪⎝⎭, 315415a ==-,411154a ==--,… 每3个数据一循环,∠20133671÷=,∠201335a a ==.故答案为:5.【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a 2、a 3、a 4,找出数字变化的规律.17.(1)6x =(2)4x =-【解析】【分析】(1)按解一元一次方程的一般步骤即可.(2)按解一元一次方程的一般步骤即可.(1)解:32641632x x -=+移项得:32163264x x -=+,合并同类项得:1696x =,系数化为1得:6x =.(2)13234x x +-=. 去分母得:4(1)924x x +-=,去括号得:44924x x +-=,移项得:49244x x -=-,合并同类项得:520x -=,系数化为1得:4x =-.【点睛】此题考查了一元一次方程的解法,解题的关键是:熟记解法的一般步骤.18.(1)1910ab a -(2)22+a(3)-21(4)5【解析】【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并即可得到结果;(3) 先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(4)先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(1)解:原式=12182871910ab a a ab ab a +-+=-;(2)解:原式2223732422a a a a a a =-+-++=+;(3)解:原式=14-1004⨯42521=-=-; (4) 解:原式()=22=1112---8=1-4-8=1--62413323-⎡⎤⎛⎫⎛⎫⎛⎫⨯÷⨯⨯⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1+4=5. 【点睛】本题考查了整式的加减,有理数的混合运算,熟练掌握运算法则和有理数混合运算顺序是解本题的关键.19.2416x -,-15【解析】【分析】先去括号,合并同类项算化简,然后把字母的值代入代数式计算即可.【详解】解:原式222612*********x x x x x =++---=-, 当12x =时,原式11615=-=-. 【点睛】先去括号,合并同类项化简,然后把字母的值代入代数式计算即可.20.(1)A 地的东边,距A 地1千米;(2)第5次;(3)12.3升【解析】【分析】(1)根据有理数的加减法,可得每次距A 地的距离,根据有理数的大小比较,可得答案;(2)根据有理数的加法,可得和,根据和的大小,可得答案;(3)根据行车就耗油,可得耗油量.【详解】解:(1) -4+7-9+8+6-4-3=+1,则收工时检修小组人员在A 地的东边,距A 地1千米;(2)第一次距A 地|-4|=4千米;第二次:|-4+7|=3千米;第三次:|-4+7-9|=6千米;第四次:|-4+7-9+8|=2千米;第五次:|-4+7-9+8+6|=8千米;第六次:|-4+7-9+8+6-4|=4千米;第七次:|-4+7-9+8+6-4-3|=1千米.所以检修小组人员距A 地最远的是第5次.(3)|-4|+|+7|+|-9|+|+8|+|+6|+|-4|+|-3|=4+7+9+8+6+4+3=41(千米)41×0.3=12.3(升)答:从A 地出发到收工回A 地检修车共耗油12.3升.【点睛】本题考查的知识点是正数和负数,解题关键是有理数的加法运算.21.(1)见解析(2)72【解析】【分析】(1)首先根据成绩类别为“差”的是8人,占总人数的16%,据此即可求得总人数,然后利用总人数乘以“中”的类型所占的百分比即可求出“中”的类型的人数,补全图统计图即可; (2)利用360°乘以对应的百分比即可求解.(1)解:总人数是:816%50÷=(人),则类别是“中”的人数是:5022%11⨯=(人). 条形统计图:(2)表示成绩类别为“优”的扇形所对应的圆心角是360(116%20%44%)=72⨯---︒度. 故答案是:72.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)37501250x +;4000x(2)当购买5台电脑时,两家商场的收费相同【解析】【分析】(1)根据题意分别求出两商场的费用,即可求解;(2)根据题意可得当(1)中两代数式的值相等时,两家商场的收费相同,列出方程,即可求解.(1)解:甲商场需要花费:50005000(125%)(1)37501250x x +⨯--=+;乙商场需要的花费为:5000(120%)4000x x ⨯-=;(2)解:由题意有375012504000x x +=,解得:5x =.答:当购买5台电脑时,两家商场的收费相同.【点睛】本题主要考查了列代数式,一元一次方程的应用,明确题意,准确得到数量关系是解题的关键.23.(1)45︒(2)DOE ∠的大小不变,理由见解析(3)45︒或135︒【解析】【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠BOC 的一半,而∠DOE =∠COD +∠COE ,即可求出∠DOE 度数为45°;(3)分两种情况考虑,利用角平分线的定义计算,如图3,∠DOE 为45°;如图4,∠DOE 为135°.(1)如图,9020AOC BOC ∠=︒-∠=︒,∠OD OE 、分别平分AOC ∠和BOC ∠, ∠1110,3522COD AOC COE BOC ∠=∠=∠︒∠==︒, ∠45DOE COD COE ∠=∠+∠=︒;(2)DOE ∠的大小不变,理由是:1111()452222DOE COD COE AOC COB AOC COB AOB ∠=∠+∠=∠+∠=∠+∠=∠=︒; (3)DOE ∠的大小发生变化情况为,如图3,则DOE ∠为45︒;如图4,则DOE ∠为135︒,分两种情况:如图3所示,∠OD OE 、分别平分AOC ∠和BOC ∠,∠11,22COD AOC COE BOC ∠=∠∠=∠, ∠1()452DOE COD COE AOC BOC ∠=∠-∠=∠-∠=︒; 如图4所示,∠OD OE 、分别平分AOC ∠和BOC ∠, ∠11,22COD AOC COE BOC ∠=∠∠=∠, ∠11()27013522DOE COD COE AOC BOC ∠=∠+∠=∠∠︒+=⨯=︒. 【点睛】此题考查了角的计算,角平分线定义,注意分情况讨论是解本题的关键.24.(1)5;(2)72或13. 【解析】【详解】试题分析:(1)设经过x 秒点M 与点N 相距54个单位,由点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过x 秒点P 到点M ,N 的距离相等,得出(2t+6)﹣t=(6t ﹣8)﹣t 或(2t+6)﹣t=t ﹣(6t ﹣8),进而求出即可.试题解析:(1)设经过x 秒点M 与点N 相距54个单位.依题意可列方程为:26+1454x x +=,解方程,得5x =.答:经过5秒点M 与点N 相距54个单位.(算术方法对应给分)(2)设经过t 秒点P 到点M ,N 的距离相等.()()2668t t t t +-=--或()()2668t t t t +-=--,658t t +=-或685t t +=-,解得:72t =或13t =, 答:经过72或13秒点P 到点M ,N 的距离相等. 考点:1.一元一次方程的应用;2.数轴.。

2020-2021学年七年级第一学期期末质量检测数学试题

2020-2021学年七年级第一学期期末质量检测数学试题

2020-2021学年七年级第一学期期末质量检测数学试题一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.下列结论中正确的是A .0既是正数,又是负数B .0是最小的正数C .0是最大的负数D .0既不是正数,也不是负数 2.下列图形不是正方体展开图的是3.下列方程的解为13x =的是A .621x -+=B .343x -+=C .211233x x +=- D .11232x +=4.下列说法中,错误的是 A .经过一点可以作无数条直线 B .经过两点只能作一条直线C .一条直线只能用一个字母表示D .线段CD 和线段DC 是同一条线段5. x +|x |= 0,则x 一定是A .正数B .负数C .非正数D .非负数6.运用等式性质进行的变形,正确的是 A .如果a = b ,那么a +c = b -c ; B .如果a b c c=,那么a = b ;C .如果a = b ,那么a b c c=; D .如果a 2 = 3a ,那么 a = 3。

7.下列各组数中,数值相等的是A .-23和(-2)3B .-22和(-2)2C .-23和-32D .-110和(-1)10 8.为打造县城河道风光带,现有一段长为180米的河道整治任务由甲、乙两个工程队先后接力完成. 甲工程队每天整治12米,乙工程队每天整治8米,共用时20天. 则甲工程队共整治河道A .60米B .80米C .100米D .120米 9.下列各式中,角度互化正确的是 A .63.5°= 63°50′ B .23°12′36″ = 23.48° C .18°18′18″ = 18.33° D .22.25° = 22°15′ 10.数a 四舍五入后的近似值为3.1, 则a 的取值范围是A .3.05≤a <3.15B .3.14≤a <3.15C .3.144≤a ≤3.149D .3.0≤a ≤3.2AB C D A B C D11.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程A.0.8x-10 = 90B.0.08x-10 = 90C.90-0.8x = 10D.x-0.8x-10 = 9012.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则10098!!的值为A.5049B. 99!C. 9900D. 2!二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.一只苍蝇腹内的细菌多达28000000个,用科学记数表示为_______________个。

2020-2021学年河南省洛阳市七年级(上)期末数学试卷(附详解)

2020-2021学年河南省洛阳市七年级(上)期末数学试卷(附详解)

2020-2021学年河南省洛阳市七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.−4的相反数是()A. 14B. −14C. 4D. −42.在国庆70周年的联欢活动中,参与表演的3290名群众演员,每人手持一个长和宽都为80厘米的光影屏,每一块光影屏上都有1024颗灯珠,约3369000颗灯珠共同构成流光溢彩的巨幅光影图案,给观众带来了震撼的视觉效果.将3369000用科学记数法表示为()A. 0.3369×107B. 3.369×106C. 3.369×105D. 3369×1033.下表是12月份某一天洛阳四个县区的平均气温:区县涧西栾川嵩县伊川气温℃+1−3−20这四个区中该天平均气温最低的是()A. 涧西B. 栾川C. 嵩县D. 伊川4.下列计算正确的是()A. 5a+6b=11abB. 9a−a=8C. −3(a+b)=−3a+3bD. −3(a+b)=−3a−3b5.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A. −1B. −2C. −3D. −66.下列解方程的步骤中正确的是()A. 由x−5=7,可得x=7−5B. 由8−2(3x+1)=x,可得8−6x−2=xC. 由16x=−1,可得x=−16D. 由x−12=x4−3,可得2(x−1)=x−37.下列说法正确的是()A. 在所有连接两点的线中,直线最短B. 射线OA与射线AO表示的是同一条射线C. 连接两点的线段,叫做两点间的距离D. 两点确定一条直线8.某微信平台将一件商品按进价提高40%后标价,又以八折优惠卖出,结果每件仍获利78元,这件商品的进价是多少元?若设这种商品每件的进价是x元,那么所列方程为()A. 80%(1+40%)x−x=78B. 40%(1+80%)x=78C. x−80%(1+40%)x=78D. 80%(1−40%)x−x=789.a,b,c在数轴上的位置如图所示,则a−b|a−b|−b−c|b−c|+c−a|c−a|的值是()A. −1B. 1C. −3D. 310.如图是一个运算程序:若x=−4,输出结果m的值与输入y的值相同,则y的值为()A. −2或1B. −2C. 1D. 2或−1二、填空题(本大题共5小题,共15.0分)11.若关于x的方程2x+a+4=0的解是x=−3,则a的值等于_________.12.若∠A=42°37′,则∠A的余角的大小为______.13.绝对值大于1.5并且小于3的整数之和是______.14.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”,大约成书于公元前200年~公元前50年,其中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,则多出3400钱;每人出300钱,则多出100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为______.15.观察下列一组图形中的点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…,按此规律第10个图中点的个数共有______个.三、解答题(本大题共8小题,共75.0分)16.计算:(1)3×(−4)+18÷(−6)−(−5);|×(−1).(2)−14−16÷(−2)3+|−3217.化简求值3m2−[5m−2(2m−3)+4m2],其中m=−4.18.已知线段AB如图所示,延长AB至C,使BC=AB,反向延BC,点E是线段CD的中点.长AB至D,使AD=12(1)依题意补全图形;(2)若AB的长为4,求BE的长.19. 解方程:3x+25=1+2x−13.20. 观察下列两个等式:1−23=2×1×23−1,2−35=2×2×35−1给出定义如下:我们称使等式a −b =2ab −1成立的一对有理数a ,b 为“同心有理数对”,记为(a,b),如:数对(1,23),(2,35),都是“同心有理数对”. (1)数对(−2,1),(3,47)是“同心有理数对”的是______. (2)若(a,3)是“同心有理数对”,求a 的值.(3)若(m,n)是“同心有理数对”,则(−n,−m) ______“同心有理数对”(填“是”或“不是”).21. 2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个口罩.由于种种原因,实际每天生产量与计划量相比有出入.如表是工人小王某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知,小王星期五生产口罩______个;(2)根据表格记录的数据,求出小王本周实际生产口罩数量;(3)若该厂实行每日计件工资制,每生产一个口罩可得0.6元,若超额完成每日计划工作量,则超过部分每个另外奖励0.15元,若完不成每天的计划量,则少生产一个扣0.2元,小王周五这一天的工资是多少?22.甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多40件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件.(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?(2)如果甲组工人实际完成的此月人均工作量比乙组的多3件,则此月人均定额是多少件?23.阅读下面材料小聪遇到这样一个问题:如图1,∠AOB=α,请画一个∠AOC,使∠AOC与∠BOC互补.小聪是这样思考的:首先通过分析明确射线OC在∠AOB的外部,画出示意图,如图2所示:然后通过构造平角找到∠AOC的补角∠COD.如图3所示:进而分析要使∠AOC与∠BOC互补,则需∠BOC=∠COD.因此,小聪找到了解决问题的方法:反向延长射线OA得到射线OD,利用量角器画出∠BOD的平分线OC,这样就得到了∠BOC与∠AOC互补.(1)根据小聪的画法可知,如图3,点O在直线AD上,射线OC平分∠BOD.请说明∠AOC 与∠BOC互补的理由;(2)参考小聪的画法,请在图4中画出一个∠AOH,使∠AOH与∠BOH互余(保留画图痕迹);(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ,若∠EPQ=β(45°<β<90°),直接写出锐角∠MPN的度数是______.答案和解析1.【答案】C【解析】解:−4的相反数是4.故选:C.根据相反数的定义作答即可.本题考查了相反数的知识,注意互为相反数的特点:互为相反数的两个数的和为0.2.【答案】B【解析】解:将3369000用科学记数法表示为3.369×106,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:∵|−3|=3,|−2|=2,而3>2,∴−3<−2<0<+1,∴这四个区中该天平均气温最低的是栾川.故选:B.正数大于负数,两个负数比较大小,绝对值大的其值反而小,据此判断即可.本题考查有理数大小的比较,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.4.【答案】D【解析】解:∵5a+6b≠11ab,∴选项A不符合题意;∵9a−a=8a≠8,∴选项B不符合题意;∵−3(a+b)=−3a−3b≠−3a+3b,∴选项C不符合题意;∵−3(a+b)=−3a−3b,∴选项D符合题意;故选:D.利用去括号和合并同类项法则,对每个选项进行判断,即可得出答案.本题考查了整式的加减,掌握去括号及合并同类项法则是解题的关键.5.【答案】A【解析】解:易得2和−2是相对的两个面;0和1是相对两个面;−4和3是相对的2个面,∵2+(−2)=0,0+1=1,−4+3=−1,所以原正方体相对两个面上的数字和最小的是−1.故选:A.根据相对的面相隔一个面得到相对的2个数,相加后比较即可.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.【答案】B【解析】解:A、由x−5=7,可得x=7+5,不符合题意;B、由8−2(3x+1)=x,可得8−6x−2=x,符合题意;C、由16x=−1,可得x=−6,不符合题意;D、由x−12=x4−3,可得2(x−1)=x−12,不符合题意,故选:B.各项方程变形得到结果,即可作出判断.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.【答案】D【解析】【分析】本题考查了“两点之间,线段最短“,两点确定一条直线,两点间的距离.根据“两点之间,线段最短“,两点确定一条直线,两点间的距离,既可解答.【解答】解:A.错误,在所有连接两点的线中,线段最短;B.错误,射线OA与射线AO表示的不是同一条射线;C.错误,连接两点的线段长度,叫做两点间的距离;D.正确,故选D.8.【答案】A【解析】解:由题意可得,x(1+40%)×0.8−x=78,即80%(1+40%)x−x=78,故选:A.根据利润=售价−进价,可以写出相应的方程,本题得以解决.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,写出相应的方程.9.【答案】C【解析】解:∵c<a<b,∴a−b<0,b−c>0,c−a<0,∴原式=a−b−(a−b)−b−cb−c+c−a−(c−a)=−1−1+(−1)=−1+(−1)+(−1) =−3,故选:C.根据数轴比较大小得c<a<b,从而a−b<0,b−c>0,c−a<0,根据绝对值的性质去绝对值化简即可.本题考查了数轴,绝对值,有理数的加减混合运算,掌握绝对值的性质是解题的关键,正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值等于0.10.【答案】C【解析】解:∵当x=−4,y=−2时,x<y,则m=|−4|−3×(−2)=4+6=10,当x=−4,y=2时,x<y,则m=|−4|−3×2=−2,当x=−4,y=1时,x<y,则m=|−4|−3×1,当x=−4,y=−1时,x<y,则m=|−4|−3×(−1)=7,∴当x=−4,y=1时,m=|−4|−3×1=1=y,故选:C.由题意得,此题属于x小于等于y的情况,通过试值可得此题结果.此题考查了代数式和有理数的运算能力,关键是能根据运算程序进行计算验证.11.【答案】2【解析】【分析】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.把x=−3代入方程计算即可求出a的值.【解答】解:把x=−3代入方程得:−6+a+4=0,解得:a=2.故答案为2.12.【答案】47°23′【解析】解:∵∠A=42°37′,∴∠A的余角=90°−42°37′=47°23′,故答案为:47°23′.如果两个角的和是90°,那么称这两个角互为余角余角.由定义即可求解.本题考查余角的计算,熟练掌握两个角互余的定义,并能准确计算是解题的关键.13.【答案】0【解析】解:∵绝对值大于1.5并且小于3的整数的绝对值等于2,∴绝对值大于1.5并且小于3的整数是−2,2,∴绝对值大于1.5并且小于3的整数之和是0.故答案为:0.首先根据有理数大小比较的方法,判断出绝对值大于3,且小于7的整数有哪些;然后把它们相加即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.14.【答案】400x−3400=300x−100【解析】解:设有x个人,依题意,得:400x−3400=300x−100.故答案为:400x−3400=300x−100.设有x个人,根据金的价钱不变,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.【答案】166【解析】解:第1个图中共有点数为:1+1×3=4,第2个图中共有点数为:1+1×3+2×3=10,第3个图中共有点数为:1+1×3+2×3+3×3=19,…,第n个图有点数为:1+1×3+2×3+3×3+⋯+3n.所以第10个图中共有点的个数是1+1×3+2×3+3×3+⋯+10×3=166.故答案为:166.由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3= 10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n个图有1+1×3+2×3+3×3+⋯+3n个点.此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.16.【答案】解:(1)原式=−12−3+5==15+5=−10;×(−1)(2)原式=−1−16÷(−8)+32=−1+2−32=1−32=−1.2【解析】(1)根据有理数的混合运算顺序计算即可,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)根据绝对值的性质以及有理数的混合运算顺序计算即可.本题考查了有理数的混合运算,掌握相关运算法则是解答本题的关键.17.【答案】解:原式=3m2−(5m−4m+6+4m2)=3m2−5m+4m−6−4m2=−m2−m−6,当m=−4时,原式=−16+4−6=−18.【解析】去括号、合并同类项即可化简,再代入计算即可.本题考查整式的加减,掌握去括号、合并同类项法则是正确解答的关键.18.【答案】解:(1)图形如图所示:(2)∵AB =BC =4,AD =12AB =2,∴CD =AD +AB +BC =10,∴DE =EC =12CD =5, ∴EB =EC −BC =5−4=1.【解析】(1)根据要求作出图形即可;(2)求出EC ,BC ,可得结论.本题考查作图−复杂作图,线段的和差定义等知识,解题的关键是理解题意,正确作出图形,属于中考常考题型.19.【答案】解:去分母得:9x +6=15+10x −5,移项合并得:−x =4,解得:x =−4.【解析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 此题考查了一元一次方程,熟练掌握运算法则是解本题的关键.20.【答案】(3,47) 是【解析】解:(1)∵−2−1=−3,2×(−2)×1−1=−5,−3≠−5,∴数对(−2,1)不是“同心有理数对”;∵3−47=177,2×3×47−1=177, ∴3−47=2×3×47−1,∴(3,47)是“同心有理数对”,∴数对(−2,1),(3,47)是“同心有理数对”的是(3,47).故答案为:(3,47);(2)∵(a,3)是“同心有理数对”.∴a−3=6a−1,∴a=−2;5(3)∵(m,n)是“同心有理数对”,∴m−n=2mn−1.∴−n−(−m)=−n+m=m−n=2mn−1,∴(−n,−m)是“同心有理数对”.故答案为:是.(1)根据:使等式a−b=2ab−1成立的一对有理数a,b为“同心有理数对”,判断出)是“同心有理数对”的是哪个即可.数对(−2,1),(3,47(2)根据(a,3)是“同心有理数对”,可得:a−3=6a−1,据此求出a的值是多少即可.(3)根据(m,n)是“同心有理数对”,可得:m−n=2mn−1,据此判断出(−n,−m)是不是同心有理数对即可.此题主要考查了等式的性质,以及同心有理数对的含义和判断,要熟练掌握.21.【答案】291【解析】解:(1)小王星期五生产口罩数量为:300−9=291(个),故答案为:291;(2)+5−2−4+13−9+16−8=10(个),则本周实际生产的数量为:2100+10=2110(个)答:小王本周实际生产口罩数量为2110个;(3)第五天:(300−9)×0.6−9×0.2=172.8(元),答:小王周五这一天的工资是172.8元.(1)根据题意和表格中的数据,可以得到小王星期五生产口罩的数量;(2)根据题意和表格中的数据,可以得到小王本周生产口罩的数量;(3)根据题意和表格中的数据,可以解答本题.本题考查了正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.22.【答案】解:(1)设此月人均定额是x件,依题意得:4x+404=6x−205,解得:x=70.答:此月人均定额是70件.(2)设此月人均定额是y件,依题意得:4y+404−6y−205=3,解得:y=55.答:此月人均定额是55件.【解析】(1)设此月人均定额是x件,根据两组工人实际完成的此月人均工作量相等,即可得出关于x的一元一次方程,解之即可得出此月的人均定额;(2)设此月人均定额是y件,根据甲组工人实际完成的此月人均工作量比乙组的多3件,即可得出关于y的一元一次方程,解之即可得出此月的人均定额.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.23.【答案】45°或|β−45°|【解析】解:(1)如图3中,∵OC平分∠BOD,∴∠BOC=∠COD,∵∠AOC+∠COD=180°,∴∠AOC+∠BOC=180°,即∠AOC与∠BOC互补;(2)如图4中,射线OH即为所求;(3)如图,∵PM平分∠EPQ,PN平分∠FPQ,∴∠MPQ=12∠EPQ,∠NPQ=12∠FPQ,∵∠MPN=∠MPQ+∠NPQ=12∠EPQ+12∠FPQ=12∠EPF,∵∠EPQ和∠FPQ互余,∴∠EPQ+∠FPQ=90°,即∠EPF=90°,∴∠MPN=45°;如图:∵PM平分∠EPQ,PN平分∠FPQ,∴∠MPQ=12∠EPQ,∠NPQ=12∠FPQ,∵∠MPN=|∠MPQ−∠NPQ|=|12∠EPQ−12∠FPQ|,∵∠EPQ和∠FPQ互余,∠EPQ=β,∴∠FPQ=90°−β,∴∠MPN=|12β−12∠(90°−β)|=|β−45°|,故答案为:45°或|β−45°|.(1)证明∠AOC+∠BOC=180°,即可解决问题;(2)延长AO到T,作∠BOT的角平分线OH,射线OH即为所求;(3)分两种情形分别画出图形求解即可.本题主要考查角平分线的定义,余角和补角,灵活运用角平分线的定义求解角度之间的关系是解题的关键.。

2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)

2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)

2020—2021学年七年级上期数学期末质量监测试题注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.12.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A 重合的点是()A.点B ,IB.点C ,EC.点B ,ED.点C ,H8.下列各组数中,相等的是()A.()23-与23- B.()32-与32-C.23与23- D.32-与()32-9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.9410.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +-> D.0b c a +->11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +312.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x⨯++= D.3(20)5109x x ⨯++=+二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.14.若5a =,3b =-,且0a b +>,则ab =_______.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg 4741体重与平均体重的差值/kg+302-+416.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.20.如图,已知点A ,B ,C ,利用尺规,按要求作图:(1)作线段AB ,AC ,过B ,C 作射线BQ ;在射线CQ 上截取CD=BC ,在射线DQ 上截取DE=BD ;(2)连接AE ,在线段AE 上截取AF=AC ,作直线AD 、线段DF ;(3)比较BC 与DF 的大小,直接写出结果.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.22.解方程:(1)()235x x +=-;(2)325123y y ---=.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/325.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h,骑车速度是步行速度的4倍,从学校到家有2km的路程,通过计算发现,方案1比方案2多用6min.(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km,用含x的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.-和10的位置上,沿数轴做向东、向西移动的游戏.26.如图,甲、乙两人(看成点)分别在数轴10移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m次,乙猜对了n次.(1)请用含m,n的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.2020—2021学年七年级上期数学期末质量监测试题答案解析注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.1【答案】B【解析】【分析】直接利用有理数的加法法则计算即可.-+=-【详解】211故选:B.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.2.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,根据“面动成体”可得答案.【详解】解:根据“面动成体”可得,旋转后的几何体为两个底面重合的圆锥的组合体,因此选项B中的几何体:符合题意,故选:B.【点睛】本题考查“面动成体”,解题的关键是明确点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.【答案】D【解析】【分析】根据主视图定义,由此观察即可得出答案.【详解】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为D【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱【详解】解:上述四个几何体中,圆柱、圆锥和球的截面图都有可能是圆;只有棱柱的截面图不可能是圆.故选D .5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+【答案】A 【解析】【分析】根据绝对值的性质化简化简求解.【详解】A.()()94---=9455-+=-=,故正确;B.()()94941313-+-=--=-=,故错误;C.949413-+-=+=,故错误;D .9+4-+=9413+=,故错误;故选A .【点睛】此题主要考查绝对值的运算,解题的关键是熟知绝对值的定义.6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③ B.①③⑤C.②③④D.②④⑤【答案】C 【解析】【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.【详解】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【点睛】此题主要考查统计调查的应用,解题的关键是熟知体育运动项目的定义.7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A重合的点是()A.点B,IB.点C,EC.点B,ED.点C,H【答案】B【解析】【分析】首先能想象出来正方形的展开图,然后作出判断即可.【详解】由正方形的展开图可知A、C、E重合,故选B.【点睛】本题考查了正方形的展开图,比较简单.8.下列各组数中,相等的是()A.()23-与23-B.()32-与32-C.23与23-D.32-与()32-【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】∵(-3)2=9,-32=-9,故选项A不符合题意,-=,故选项B不符合题意,∵(-2)3=-8,328∵32=9,-32=-9,故选项C不符合题意,∵-23=-8,(−2)3=-8,故选项D 符合题意,故选D .【点睛】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.94【答案】B 【解析】【分析】根据给出的※的含义,以及有理数的混合运算的运算法则,即可得出答案.【详解】解: a ※2(1)b a b =÷-,∴()3-※4()()2=341933-÷-=÷=,故选B .【点睛】本题考查了新定义的运算以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,后算加减;同级运算,应按从左往右的顺序进行计算,如果有括号,要先计算括号里的.10.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +->D.0b c a +->【答案】D 【解析】【分析】根据数轴上点的位置确定出a ,b ,c 的正负及绝对值大小,利用有理数的加减法则判断即可.【详解】解:根据数轴上点的位置得:a <0<b <c ,且|b|<|a|<|c|,∴a+b <0,故选项A 错误,不符合题意;0a c +>,故选项B 错误,不符合题意;0a b c +-<,故选项C 错误,不符合题意;0b c a +->,故选项D 正确,符合题意;故选:D .【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +3【答案】C 【解析】【分析】先求出从甲盒子中取出2枚后剩下的棋子数,再求出从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数,把它们相减即可求解.【详解】解:依题意可知,乙盒中的围棋子的枚数是n +2+3-(n -2)=7.故选:C .【点睛】考查了列代数式,关键是得到从甲盒子中取出2枚后剩下的棋子数,从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数.12.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x ⨯++=D.3(20)5109x x ⨯++=+【答案】D 【解析】【分析】直接利用表示十位数的方法进而得出等式即可.【详解】解:设“”内数字为x ,根据题意可得:3×(20+x )+5=10x+9.故选:D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.【答案】2;【解析】【分析】方程移项合并后,将x 的系数化为1,即可求出方程的解.【详解】解:213x -=23+1x =2x=4,解得:x=2.故答案为:2.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,将x 的系数化为1,求出解.14.若5a =,3b =-,且0a b +>,则ab =_______.【答案】15-;【解析】【分析】根据绝对值的意义及a+b>0,可得a ,b 的值,再根据有理数的乘法,可得答案.【详解】解:由|a|=5,b=-3,且满足a+b >0,得a=5,b=-3.当a=5,b=-3时,ab=-15,故答案为:-15.【点睛】本题考查了绝对值、有理数的加法、有理数的乘法,确定a 、b 的值是解题的关键.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg4741体重与平均体重+302-+4的差值/kg【答案】7;【解析】【分析】根据题目中的平均体重即可分别求出体重与平均体重的差值及体重,然后填表即可得出最重的和最轻的同学体重,再相减即可得出答案.【详解】解: 某中学七年级学生的平均体重是44kg,∴小润的体重与平均体重的差值为4744=3-kg;+kg;小华的体重为443=47+kg;小颖的体重为440=44-kg;小丽的体重为442=42--kg;小惠的体重与平均体重的差值为4144=3+kg;小胜的体重为444=48填表如下:姓名小润小华小颖小丽小惠小胜体重/kg474744424148体重与平均体重+3+302--3+4的差值/kg可知,最重的同学的体重是48kg,最轻的同学的体重是41kg∴最重和最轻的同学体重相差4841=7-kg.故答案为:7.【点睛】本题考查了有理数加减的应用,熟练掌握有理数的加减运算法则是解题的关键.16.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).【答案】2αβ-【解析】【分析】由,AOD AOC DOC ∠=∠+∠,DOC BOD BOC ∠=∠-∠可得:,AOD AOC BOD BOC ∠=∠+∠-∠从而可得答案.【详解】解:,AOD AOC DOC ∠=∠+∠ ,DOC BOD BOC ∠=∠-∠,AOD AOC BOD BOC ∴∠=∠+∠-∠,,AOC BOD BOC αβ∠=∠=∠= 2.AOD ααβαβ∴∠=+-=-故答案为:2.αβ-【点睛】本题考查的是角的和差关系,掌握利用角的和差关系进行计算是解题的关键.17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).【答案】20125400x π-+;【解析】【分析】根据题意和图形可知,水池的面积是长方形的面积减去两个扇形的面积,本题得以解决.【详解】解:由图可得,水池的面积为:20×(x +20)−π×102×14−π×202×14=20125400x π-+(m 2),故答案为:20125400x π-+.【点睛】本题考查列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.【答案】66.【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为1,3,5,6可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4,5.丁所购票数最多,即可得出丁应该为6,8,10,12,14,16,再将所有数相加即可.【详解】解: 甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.∴丙选座要尽可能得小,选择:1,2,3,4,5.此时左边剩余5个座位,右边剩余6个座位,∴丁选:6,8,10,12,14,16.∴丁所选的座位号之和为681012141666+++++=;故答案为:66.【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.【答案】(1)-6;(2)5【解析】【分析】(1)根据有理数的混合运算法则先算乘除后算加减即可;(2)根据有理数混合运算法则先算括号里面的再算乘除.【详解】解:(1)原式=93-+6=-;(2)原式123+12234⎛⎫=-⨯ ⎪⎝⎭12312+×1212234=⨯-⨯6+89=-5=.【点睛】此题考查了有理数混合运算的运算法则,难度一般,认真计算是关键,注意能简便运算的尽量简便运算.20.如图,已知点A,B,C,利用尺规,按要求作图:(1)作线段AB,AC,过B,C作射线BQ;在射线CQ上截取CD=BC,在射线DQ上截取DE=BD;(2)连接AE,在线段AE上截取AF=AC,作直线AD、线段DF;(3)比较BC与DF的大小,直接写出结果.【答案】(1)见解析;(2)见解析;(3)BC=DF【解析】【分析】(1)利用几何语言画出对应的图形即可;(2)利用几何语言画出对应的图形即可;(3)利用作图特征和等量代换即可得出答案.【详解】解:(1)、(2)如图所示,要求有作图痕迹;(3)BC=DF.证明:由作图知CD=DF ,又 CD=BC ,∴BC=DF .【点睛】本题考查了尺规作图-线段,利用圆规和直尺的特征作图是解题的关键.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.【答案】(1)2ab c -;(2)236x xy --+【解析】【分析】(1)原式先去括号,然后合并同类项即可得到答案;(2)原式先去括号,然后合并同类项即可得到答案.【详解】解:(1)()()222ab c ab c -+-+242ab c ab c =--+2ab c =-.(2)()22233(2)x xy x xy --+-+2262+336x xy x xy =-+-+236x xy =--+.【点睛】本题考查整式的加法运算,要先去括号,然后合并同类项.运用去括号法则进行多项式化简.合并同类项时,注意只把系数想加减,字母与字母的指数不变.22.解方程:(1)()235x x +=-;(2)325123y y ---=.【答案】(1)11x =-;(2)5y =-【解析】【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可;(2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y 系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).【答案】(1)6至11月三种品牌电脑销售量总量最多是B 品牌,11月份,A 品牌的销售量为270台;(2)221台;(3)答案不唯一,如,建议买C 品牌电脑;或建议买A 品牌电脑,或建议买B 产品,见解析【解析】【分析】(1)从条形统计图、折线统计图可以得出答案;(2)根据A品牌电脑销售量及A品牌电脑所占百分比即可求出11月份电脑的总的销售量,再减去A、B、C品牌的销售量即可得出答案;(3)从所占的百分比、每月销售量增长比等方面提出建议即可.【详解】解:(1)6至11月三种品牌电脑销售量总量最多是B品牌;11月份,A品牌的销售量为270台;(2)11月,A品牌电脑销售量为270台,A品牌电脑占27%,÷=(台).所以,11月份电脑的总的销售量为27027%1000---=(台).其它品牌的电脑有:1000234270275221(3)答案不唯一.如,建议买C品牌电脑.销售量从6至11月,逐月上升;11月份,销售量在所有品牌中,占的百分比最大.或:建议买A品牌电脑.销售量从6至11月,逐月上升,且每月销售量增长比C品牌每月的增长量要快.或:建议买B产品.因为B产品6至11月的总的销售量最多.【点睛】本题考查了条形图、折线统计图、扇形统计图,熟练掌握和理解统计图中各个数量及数量之间的关系是解题的关键.24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/3【答案】(1)见解析;(2)()22v b a b =-;(3)见解析,剪去的小正方形的边长可能是3cm 【解析】【分析】(1)将正方形的四个角的小正方形大小要一致即可;(2)根据图形中的字母表示的长度即可得出()22v b a b =-;(3)将18a =cm 结合容积公式及表格即可得出答案.【详解】解:(1)如图所示(可以不标出a ,b ,但四个角上的正方形大小要一致).(2)无盖厂长方体盒子的容积v 为()22v b a b =-(3)当18a =,b=1时,()2221(1821)256v b a b =-=⨯-⨯=,当18a =,b=2时,()2222(1822)392v b a b =-=⨯-⨯=,当18a =,b=3时,()2223(1832)432v b a b =-=⨯-⨯=,当18a =,b=4时,()2224(1842)400v b a b =-=⨯-⨯=,当18a =,b=5时,()2225(1825)320v b a b =-=⨯-⨯=,当18a =,b=6时,()2226(1826)216v b a b =-=⨯-⨯=,填表如下:剪去小正方形的边长/cm 123456……无盖长方体的容积/3cm 256392432400320216……有表可知,无盖长方体容积取得最大值时,剪去的小正方形的边长可能是3cm .【点睛】本题考查了代数式求值的实际应用,结合题意得到等量关系是解题的关键.25.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km ,用含x 的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.【答案】(1)见解析;(2)2210=52020x x +++,或62156010x x --=;(3)需要的时间为48min 【解析】【分析】(1)根据题意可知小区在学校的左边,标出即可;(2)根据“步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .”解答即可;(3)设学校到图书馆的路程为x km ,根据题意得出226554560x x +=++⨯,求解后即可得出方案1需要的时间.【详解】解:(1)如图所示;(2)根据题意,得2210=52020x x +++,或62156010x x --=(3)设学校到图书馆的路程为x km ,根据题意,得226554560x x +=++⨯解方程,得4x =.所以,455x =.460=485⨯.答:方案1中,需要的时间为48min .【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找到命题中隐含的等量关系式是解题的关键.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.26.如图,甲、乙两人(看成点)分别在数轴10-和10的位置上,沿数轴做向东、向西移动的游戏.移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m 次,乙猜对了n 次.(1)请用含m ,n 的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.【答案】(1)甲在数轴上的位置上的点代表的数为:640m -,其中010m ≤≤,且m 为整数;乙在数轴上的位置上的点代表的数为:405n -,其中010n ≤≤,且n 为整数;(2)n 的值2n =或6n =【解析】【分析】(1)甲猜对了m 次,则猜错了()10m -次,根据“如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位”即可表示出甲在数轴上的位置上的点;乙猜对了n 次,则猜错了()10n -次,根据“如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位”即可表示出乙在数轴上的位置上的点;(2)分两种情况:当甲在乙西面,甲乙相距10个单位及当甲在乙东面,甲乙相距10个单位,列关于m 、n 的方程,将10m =求n 的值即可.【详解】解:(1)甲猜对了m 次,则猜错了()10m -次,10次游戏结束后,甲在数轴上的位置上的点,代表的数为:()103310640m m m -+--=-,其中010m ≤≤,且m 为整数;乙猜对了n 次,则猜错了()10n -次,10次游戏结束后,乙在数轴上的位置上的点,代表的数为:()102310405n n n -+-=-,其中010n ≤≤,且n 为整数.(2)当甲在乙西面,甲乙相距10个单位,可得64010405m n -+=-,其中,=10m ,010n ≤≤,即60570n +=,解得2n =.当甲在乙东面,甲乙相距10个单位,可得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

嘉兴市七年级(上)学科期末检测
数学试题卷
(2021.1)
【考生须知】
1.本卷为试题卷,请将答案做在答题卷上.
2.本次检测不使用计算器.
一、选择题(每小题有4个选项,其中有且只有一个正确,请把正确选项的代码填入答题卷的相应空格,每小题3分,共30分)
1.在0,1-,2-3 )
(A )0 (B )1- (C )2- (D 3
2.2020年12月4日,我国量子计算原型机“九章”问世,它求解数学算法高斯玻色取样只需200秒,而目前世界最快的超级计算机要用600000000年,数“600000000”用科学记数法表示为( )
(A )9610⨯ (B )8610⨯ (C )90.610⨯ (D )80.610⨯
3.下列各组数中,是同类项的是( )
(A )22x 与22y (B )3π与2x (C )23a b 与32a b (D ) 2.5-与25
4.下列关于数的平方根说法正确的是( )
(A )33
(B )2的平方根是4± (C )1的平方根是1± (D )0没有平方根
5.已知32a b =,则下列等式不成立的是( )
(A )94a b = (B )3121a b -=- (C )32a b -=- (D )23
a b = 6.如图,小嘉同学用剪刀沿直线将树叶剪去一部分,发现剩余树叶的周长比原来树叶的周长小.能正确解释这一现象的数学知识是( )
(A )两点之间,线段最短
(B )两点确定一条直线 (C )垂线段最短 (D )经过一点有无数条直线
7.某公司2019年的销售额为a 元,成本为销售额的60%,税额和其它费用合计为销售额的%p ,则该公司的年利润可以表示为( )
(A )60%%a p a - (B )160%%p -- (C )60%%a p -- (D )40%%a p a -
8.将一把直尺和一块三角板如图叠放,直尺的一边刚好经过直角三角板的直角顶点且与斜边相交,则1∠与2∠一定满足的数量关系是( )
(A )221∠=∠ (B )21180∠+∠=︒ (C )221180∠+∠=︒ (D )2190∠-∠=︒
9.甲、乙、丙三人进行骑自行车比赛,三人的骑行情况如下表: 甲
一半路程速度为6/m s ,一半路程速度为4/m s 乙
全程速度均为5/m s 丙 一半时间速度为6/m s ,一半时间速度为4/m s
设三人到达终点所用时间分别为t 甲、t 乙、t 丙,则( )
(A )t t t <=乙甲丙
(B )t t t =<乙甲丙 (C )t t t <<乙甲丙 (D )t t t <<乙甲丙
10.小明和小亮在一起探究一个数学活动.首先小亮站立在箱子上,小明站立在地面上(如图1),然后交换位置(如图2),测量的数据如图所示,想要探究的问题有:①小明的身高;②小亮的身高;③箱子的高度;④小明与小亮的身高和.根据图上信息,你认为可以计算出的是( )
(图1) (图2)
(A )① (B )② (C )③ (D )④
二、填空题(本题有10小题,每小题3分,共30分)
11.如果涨潮时水位升高7.2m ,水位变化记作7.2m +,那么退潮时水位下降2.3m ,水位变化可记作_______m .
12.单项式24
a b -的系数是_______. 13.计算:56.82336'︒-︒=_______.
14.若a 10a =_______.
15.已知关于x 的一元一次方程63x x k +=-的解是2x =,则k 的值为______.
16.定义一种新运算:2&2a b a b =-,则(1)3 &-=_______.
17.小明花费66元购买甲、乙两种水果共5kg ,已知甲种水果的售价为12元/kg ,乙种水果的售价为15元/kg ,设小明购买甲种水果的数量为()x kg ,则根据题意可列方程为________.
18.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,2其中1a <-,且AB BC =,则a =_______.
19.如图,阶梯图的每个台阶上都标着一个数,从下往上的第1个和第3个台阶上分别标着5-和1,且任意相邻的4个台阶的数的和都等于3,则从下往上的第2021个台阶上的数字是_______.
20.小方同学设计了一个“魔法棒转不停”程序,如图所示,点O ,0A 在直线MN 上,第一步,0OA 绕点O 顺时针旋转α度()030α︒<<︒至1OA ;第二步,1OA 绕点O 顺时针旋转2α度至2OA ;第三步,2OA 绕点O 顺时针旋转3α度至3OA ,以此类推,在旋转过程中若碰到直线MN 则立即绕点O 反方向旋转.当2421A OA ∠=︒时,则α等于______度.
三、解答题(本题有6小题,共40分)
21.计算:
(1)22(2)--÷-
(2)2020|2|(1)4-+-
22.如图,已知A ,B ,C 是平面上不共线的三点.用直尺和圆规作图:
(1)画射线AB ,线段BC ;
(2)在射线AB 上作出一点D ,使得AB BC AD +=.
(不写作法,保留作图痕迹)
23.先化简,再求值:()()2261322a a a a -+---,其中2a =-.
24.解方程:
(1)(1)4x x --=+
(2)11136
y y ---= 25.将一副三角板如图1摆放,30AOB ∠=︒,45COD ∠=︒,OM 平分AOD ∠,ON 平分BOC ∠.
图1 图2
(1)MON ∠=_______;
(2)将图1的三角板OCD 绕点O 逆时针旋转α度至图2位置.
①当25α=时,求MON ∠的度数.
②当0150α<<时,请直接写出MON ∠,AOB ∠,COD ∠之间的数量关系.
26.小嘉和小海相约去某景区游玩,其地理位置及部分路线如图1.A ,B ,C 为三个高速路口,已知高速路段AB 的路程为10km ,在高速上小海每小时可比小嘉多行驶20km ,在其余道路上两人的开车速度均为60/km h .他俩的微信对话部分信息如图2.(注:在高速上匀速行驶)
(图1) (图2)
(1)小海从小嘉家开车到高速路口A 需要多少时间?
(2)求小海在高速上的行驶速度.
(3)在返回过程中为节省高速路费,小海从B 下高速,先送小嘉回家后再返回自己家,发现整个返回过程与整个前往景区过程的时间相同,求小嘉家与小海家之间的距离.
嘉兴市七年级(上)学科期末检测
数学参考答案与评分建议(2021.1)
一、选择题(每小题3分,共30分)
1-5:CBDCA 6-10:ADDBC
二、填空题(每小题3分,共30分)
11. 2.3-
12.14- 13.3312'︒ 14.610- 15.2-
16.1- 17.1215(5)66x x +-= 18.2219.5- 20.3或38113或33913
三、解答题
21.(1)解:原式21=-+
1=-
(2)解:原式212=+-
1=
22.
画对射线AB ,线段BC ,点D 各得2分
23.解:原式2261636a a a a =-+-++
27a =+
当2a =-时,272(2)7a +-⨯-+
3=
24.(1)解:去括号得:14x x -+=+
移项得:41x x --=-
合并同类项得:23x -=
方程两边同除以2-得:32
x =- (2)解:去分母得:2(1)(1)6y y ---=
去括号得:2216y y --+=
移项得:2621y y -=+-
合并同类项得:7y =
25.解:(1)37.5︒
(2)25BOD ∠=︒
302527.52
DOM ︒+︒∠=
=︒ 4525352BON ︒+︒∠==︒ MON DOM BON BOD ∴∠=∠+∠-∠
27.53525=︒+︒-︒
37.5=︒
(3)1()2
MON AOB COD ∠=∠+∠ 26.解:(1)10606010÷⨯=分
(2)设小海在高速上的速度为x ()/km h ,依题意得:
7102(20)4
x x =+- 解得:120x =
答:小海在高速上的速度为120/km h .
(3)设小嘉家与小海家之间的距离为()y km 81010
606060120y +=+
解得:7y =
答:小嘉家与小孩家之间的距离为7km .。

相关文档
最新文档