龙三中九年级上数学竞赛题

合集下载

九年级数学(上)竞赛试题及答案

九年级数学(上)竞赛试题及答案

九年级数学(上)竞赛试题一. 选择题(每小题3分,共36分)1.一元二次方程的解是A .B .1203x x ==,C .1210,3x x == D . 2.顺次连结任意四边形各边中点所得到的四边形一定是 A .平行四边形 B .菱形 C .矩形D .正方形3. 若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是A .球B .圆柱C .圆锥D .棱锥4. 在同一时刻,身高1.6m 的小强,在太阳光线下影长是1.2m ,旗杆的影长是15m ,则旗杆高为 A 、22m B 、20m C 、18m D 、16m5. 下列说法不正确的是A .对角线互相垂直的矩形是正方形B .对角线相等的菱形是正方形C .有一个角是直角的平行四边形是正方形D .一组邻边相等的矩形是正方形 6. 直角三角形的两条直角边分别是6和8,则这三角形斜边上的高是 A .4.8 B .5 C .3 D .107. 若点(3,4)是反比例函数221m m y x+-=图像上一点 ,则此函数图像必经过点A .(3,-4)B .(2,-6)C .(4,-3)D .(2,6)8. 二次三项式243x x -+配方的结果是( )A .2(2)7x -+B .2(2)1x -- C .2(2)7x ++ D .2(2)1x +- 9.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )第9题图A .3√102B .3√105 C .√105 D .3√5510. 函数xky =的图象经过(1,-1),则函数2-=kx y 的图象是11.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E 、F 分别是AM 、MR 的中点,则EF 的长随着M 点的运动 A .变短 B .变长 C .不变 D .无法确定12.如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为A .47B .5C .27D .22二:填空题.(每小题3分,共12分)13.如图,△ABC 中,∠C=090,AD 平分∠BAC ,BC=10,BD=6,则点D 到AB 的距离是 。

上学期九年级数学竞赛试题

上学期九年级数学竞赛试题

图③ABCO·上学期 九年级 数学竞赛试题(满分120分,时间120分钟)一、选择题:(每小题4分,共40分)1、已知等腰三角形的一边等于3,一边等于6,则它的周长为( ) A 、12 B 、12或15 C 、15 D 、15或182、若521-=a , 521+=b ,则a+b+ab 的值为( )A 、521+B 、521-C 、-5D 、3 3、下列方程中,有实数根的是( ) A 、021=+-x B 、x 2+3x+4=0 C 、01=+xx D 、5-x 5=-x 4、两个相似三角形的面积比为4:9,周长和是20cm ,则这两个三角形的周长分别是( )A 、8cm 和12cmB 、7cm 和13cmC 、9cm 和11cmD 、6cm 和14cm 5、复印纸的型号有A0、A1、A2、A3、A4等,它们有如下的关系:将上一个型号(例如A3)的复印纸在长的方向对折后得到两张下一型号(A4)的复印纸,且各种型号的复印纸的长与宽的比相等,那么这些型号的复印纸的长与宽的比约为( ) A 、1. 414∶1 B 、1∶1 C 、1∶0.618 D 、1.732∶1 6、已知如图①,⊙O 的直径为10,弦AB=8,P 是弦AB 上一个动点,则OP 长的取值范围为( ) A 、OP <5 B 、8<OP <10C 、3<OP <5D 、3≤OP ≤5 图①7、为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有5条,则估计池塘里有鱼( ).A 、5000条B 、10000条C 、20000条D 、40000条 8、一次函数y=kx+b 与反比例函数y=kx 在同一直角坐标系中的大致图像如图2所示,则下列判断正确的是( ) A 、k >0, b >0 B 、k >0, b <0 C 、 k <0, b >0 D 、 k <0, b <0 9、在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定( )A 、与x 轴相切,与y 轴相切B 、与x 轴相切,与y 轴相交C 、与x 轴相交,与y 轴相切D 、与x 轴相交,与y 轴相交 10、若分式|x |-23x -2的值是负数,则x 的取值范围是( )A 、 2 3<x <2B 、x > 23或x <-2C 、-2<x <2且x ≠2 3 D 、 23<x <2或x <-2二、填空题:(每小题4分,共32分)11、已知x+y =7, xy =12则当x<y 时,1x - 1y 的值等于 。

数学竞赛试题及答案九上

数学竞赛试题及答案九上

数学竞赛试题及答案九上试题一:代数问题题目:若\( a \),\( b \),\( c \)为实数,且满足\( a + b + c = 6 \),\( ab + bc + ac = 8 \),求\( a^2 + b^2 + c^2 \)的值。

解答:首先,我们可以通过给定的条件建立方程:\[ a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = (a + b + c)^2 \]\[ a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ac) \]将已知条件代入:\[ a^2 + b^2 + c^2 = 6^2 - 2 \times 8 = 36 - 16 = 20 \]试题二:几何问题题目:在直角三角形ABC中,∠C是直角,AC = 6,BC = 8,求斜边AB的长度。

解答:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和:\[ AB^2 = AC^2 + BC^2 \]\[ AB^2 = 6^2 + 8^2 = 36 + 64 = 100 \]\[ AB = \sqrt{100} = 10 \]试题三:数列问题题目:一个等差数列的前三项为3,7,11,求第20项的值。

解答:等差数列的通项公式为:\[ a_n = a_1 + (n - 1)d \]其中,\( a_1 \)是首项,\( d \)是公差,\( n \)是项数。

已知首项\( a_1 = 3 \),公差\( d = 7 - 3 = 4 \),求第20项:\[ a_{20} = 3 + (20 - 1) \times 4 = 3 + 19 \times 4 = 3 + 76 = 79 \]试题四:函数问题题目:若函数\( f(x) = 2x^2 - 5x + 3 \),求\( f(x) \)在\( x = 1 \)处的导数值。

解答:首先,求函数\( f(x) \)的导数\( f'(x) \):\[ f'(x) = 4x - 5 \]然后,将\( x = 1 \)代入求导数:\[ f'(1) = 4 \times 1 - 5 = -1 \]结束语:以上是数学竞赛试题及答案九上的四个问题,涵盖了代数、几何、数列和函数等基础知识点。

初三上册数学竞赛试卷

初三上册数学竞赛试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共20分)1. 下列各数中,绝对值最小的是:A. -3B. 0C. 3D. -2.52. 如果 \( a^2 + b^2 = 10 \),那么 \( (a + b)^2 \) 的最小值是:A. 20B. 18C. 16D. 143. 已知 \( x^2 - 4x + 3 = 0 \),则 \( x^2 + 4x + 3 \) 的值是:A. 0B. 4C. 8D. 124. 在直角坐标系中,点A(2,3)关于原点的对称点是:A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)5. 下列函数中,在定义域内是增函数的是:A. \( y = -2x + 1 \)B. \( y = x^2 \)C. \( y = 2^x \)D. \( y = \sqrt{x} \)二、填空题(每题5分,共20分)6. 若 \( \sqrt{3x - 5} = 2 \),则 \( x = \) ________。

7. 已知 \( \frac{a}{b} = \frac{c}{d} \),且 \( ad - bc \neq 0 \),则\( \frac{a + c}{b + d} = \) ________。

8. 若 \( a, b, c \) 是等差数列,且 \( a + b + c = 15 \),则 \( a^2 + b^2 + c^2 = \) ________。

9. 在三角形ABC中,若 \( \angle A = 45^\circ \),\( \angle B = 60^\circ \),则 \( \angle C = \) ________。

10. 若 \( x + y = 5 \) 且 \( xy = 6 \),则 \( x^2 + y^2 = \) ________。

三、解答题(每题10分,共30分)11. (10分)已知二次函数 \( y = ax^2 + bx + c \) 的图象与x轴有两个交点,且 \( a > 0 \),\( b^2 - 4ac = 0 \)。

初三数学竞赛考试试题及答案

初三数学竞赛考试试题及答案

初三数学竞赛考试试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. 0.333...C. πD. √22. 如果一个直角三角形的两个直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的立方根是2,这个数是多少?A. 2B. 4C. 8D. 164. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 一个数的相反数是-3,这个数是多少?A. 3B. -3C. 6D. -66. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 07. 如果一个二次方程的解是x1=2和x2=3,那么这个方程可以表示为?A. x^2 - 5x + 6 = 0B. x^2 - 5x + 4 = 0C. x^2 + 5x - 6 = 0D. x^2 + 5x + 4 = 08. 一个数列的前三项是2, 4, 6,这是一个什么数列?A. 等差数列B. 等比数列C. 等比数列D. 既不是等差也不是等比数列9. 一个长方体的长、宽、高分别是2, 3, 4,那么它的体积是多少?A. 24B. 26C. 28D. 3210. 一个分数的分子是3,分母是6,化简后是多少?A. 1/2B. 2/3C. 3/6D. 1/3二、填空题(每题4分,共20分)11. 一个数的平方根是4,这个数是_________。

12. 一个数的平方是16,这个数是_________。

13. 一个数的立方是27,这个数是_________。

14. 一个数的倒数是2/3,这个数是_________。

15. 一个数的对数(以10为底)是2,这个数是_________。

三、解答题(每题10分,共50分)16. 解一个一元二次方程:x^2 - 7x + 10 = 0。

17. 证明:对于任意实数a和b,(a + b)^2 ≤ 2(a^2 + b^2)。

初中九年级数学竞赛试题

初中九年级数学竞赛试题

初中九年级数学竞赛试题一、选择题(每题5分,共30分)1. 若关于公式的一元二次方程公式的常数项为公式,则公式的值等于()A. 公式B. 公式C. 公式或公式D. 公式解析:对于一元二次方程公式,常数项公式。

因为常数项为公式,所以公式。

分解因式得公式,解得公式或公式。

又因为方程是一元二次方程,二次项系数公式,即公式。

所以公式,答案为B。

2. 抛物线公式与公式轴的交点坐标为()A. 公式和公式B. 公式和公式C. 公式和公式D. 公式和公式解析:要求抛物线与公式轴的交点,令公式,即公式。

分解因式得公式。

解得公式或公式。

所以交点坐标为公式和公式,答案为A。

3. 已知反比例函数公式的图象经过点公式,则这个函数的图象位于()A. 第一、三象限B. 第二、三象限C. 第二、四象限D. 第三、四象限解析:因为反比例函数公式的图象经过点公式,把公式代入公式得公式。

因为公式,所以函数图象位于第二、四象限,答案为C。

二、填空题(每题5分,共30分)1. 方程公式的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为______。

解析:解方程公式,分解因式得公式,解得公式或公式。

当底为公式,腰为公式时,满足三角形三边关系(公式),此时周长为公式。

当底为公式,腰为公式时,公式,不满足三角形三边关系,舍去。

所以周长为公式。

2. 若公式,公式,则公式______。

解析:根据完全平方公式公式。

已知公式,公式,则公式。

三、解答题(每题20分,共40分)1. 已知二次函数公式的图象经过点公式,公式,公式。

(1)求二次函数的表达式。

(2)设该二次函数的对称轴与公式轴交于点公式,连接公式,求公式的面积。

解析:(1)因为二次函数公式的图象经过点公式,公式,公式。

把公式,公式,公式分别代入公式得:公式将公式代入公式由公式得公式,将其代入公式得:公式公式公式,解得公式。

把公式代入公式得公式。

所以二次函数的表达式为公式。

(2)对于二次函数公式,对称轴为公式,所以公式。

初三数学竞赛试卷带答案

初三数学竞赛试卷带答案

一、选择题(每题5分,共20分)1. 下列数中,不是有理数的是()A. -√2B. 0.5C. 3D. 2/32. 若a,b是方程x^2 - 4x + 3 = 0的两个根,则a + b的值为()A. 4B. -4C. 3D. 13. 下列函数中,是奇函数的是()A. y = x^2B. y = 2xC. y = |x|D. y = x^34. 在直角坐标系中,点A(2,3)关于原点对称的点的坐标是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)5. 若等差数列{an}的前n项和为Sn,且S5 = 50,S9 = 90,则公差d为()A. 2C. 4D. 5二、填空题(每题5分,共20分)6. 若一个数的平方等于它本身,则这个数是_______。

7. 二项式定理中,(x + y)^n展开式中,x的系数是_______。

8. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C = _______。

9. 若x^2 - 5x + 6 = 0,则x^2 - 5x的值为_______。

10. 一个等腰三角形的底边长为8,腰长为10,则这个三角形的周长为_______。

三、解答题(每题10分,共30分)11. 解方程:3x^2 - 5x + 2 = 0。

12. 已知函数y = 2x - 3,求证:对于任意实数x1,x2,都有y1 + y2 ≥ 2y。

13. 在△ABC中,AB = AC,点D是边BC上的一点,且BD = DC。

若∠ADB = 40°,求∠A的度数。

答案一、选择题1. A2. A3. D4. A5. A二、填空题6. 07. C_n^1 x^(n-1) y9. -510. 28三、解答题11. 解:分解因式得 (3x - 2)(x - 1) = 0,所以 x = 2/3 或 x = 1。

12. 证明:设x1 < x2,则y1 = 2x1 - 3,y2 = 2x2 - 3。

九年级(上)竞赛数学试卷(解析版)

九年级(上)竞赛数学试卷(解析版)

九年级(上)竞赛数学试卷一、选择题(每小题3分,共15分)1.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=92.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C.4D.23.已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.84.三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定5.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16二、填空题(每小题3分,共15分)6.若一元二次方程ax2﹣bx﹣2016=0有一根为x=﹣1,则a+b=.7.若关于x的一元二次方程mx2+3x﹣4=0有实数根,则m.8.菱形两条对角线长度比为1:,则菱形较小的内角的度数为度.9.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为.10.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为.三、解答题(共10分)11.(10分)关于x的方程mx2+(m+2)x+=0有两个不相等的实数根.(1)求m的取值范围.(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,说明理由.九年级(上)竞赛数学试卷一、选择题(每小题3分,共15分)1.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.2.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C.4D.2【分析】由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB的长,然后利用勾股定理,求得AB的长,继而求得答案.【解答】解:∵四边形ABCD是菱形,AC=6,BD=4,∴AC⊥BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD,∴在Rt△AOB中,AB==,∴菱形的周长是:4AB=4.故选:C.【点评】此题考查了菱形的性质与勾股定理.此题难度不大,注意掌握数形结合思想的应用.3.已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.8【分析】阴影部分的面积等于矩形面积减去四个直角三角形的面积.【解答】解:矩形的面积=2×4=8;S△AEF=×1×2=1;∴阴影部分的面积=8﹣1×4=4.故选B.【点评】本题另外的解法是:利用菱形的面积公式计算.4.三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定【分析】将已知的方程x2﹣10x+21=0左边分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解得到原方程的解为3或7,利用三角形的两边之和大于第三边进行判断,得到满足题意的第三边的长.【解答】解:x2﹣10x+21=0,因式分解得:(x﹣3)(x﹣7)=0,解得:x1=3,x2=7,∵三角形的第三边是x2﹣10x+21=0的解,∴三角形的第三边为3或7,当三角形第三边为3时,2+3<6,不能构成三角形,舍去;当三角形第三边为7时,三角形三边分别为2,6,7,能构成三角形,则第三边的长为7.故选A【点评】此题考查了利用因式分解法求一元二次方程的解,以及三角形的边角关系,利用因式分解法解方程时,首先将方程右边化为0,左边分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化两个一次方程来求解.5.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16【分析】根据平行线的性质和折叠的性质易证得△EFB′是等边三角形,继而可得△A′B′E 中,B′E=2A′E,则可求得B′E的长,然后由勾股定理求得A′B′的长,继而求得答案.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故答案为:16.【点评】此题考查了矩形的性质、折叠的性质、勾股定理以及等边三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.二、填空题(每小题3分,共15分)6.若一元二次方程ax2﹣bx﹣2016=0有一根为x=﹣1,则a+b=2016.【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2016=0得:a+b﹣2016=0,即a+b=2016.故答案是:2016.【点评】此题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,关键是把方程的解代入方程.7.若关于x的一元二次方程mx2+3x﹣4=0有实数根,则m≥且m≠0.【分析】根据一元二次方程的定义和△的意义得到m≠0且△≥0,即32﹣4×m×(﹣4)≥0,求出两个不等式的公共部分即可.【解答】解:∵关于x的一元二次方程mx2+3x﹣4=0有实数根,∴m≠0且△≥0,即32﹣4×m×(﹣4)≥0,解得m≥﹣,∴m的取值范围为m≥﹣且m≠0.故答案为:≥﹣且m≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.菱形两条对角线长度比为1:,则菱形较小的内角的度数为60度.【分析】根据已知可得到菱形的较小的内角的一半的度数,从而就不难求得较小内角的度数.【解答】解:因菱形的对角线互相垂直平分,且每一条对角线平分一组对角,可得菱形较小的内角的一半的正切值为1:,则菱形较小的内角的一半为30°,则菱形较小的内角的度数为60°.【点评】此题主要考查菱形的对角线的性质和直角三角形的函数值.9.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为或.【分析】根据题意得,应分P与A在BD的同侧与异侧两种情况进行讨论.【解答】解:当P与A在BD的异侧时:连接AP交BD于M,∵AD=AB,DP=BP,∴AP⊥BD(到线段两端距离相等的点在垂直平分线上),在直角△ABM中,∠BAM=30°,∴AM=AB•cos30°=3,BM=AB•sin30°=3,∴PM==,∴AP=AM+PM=4;当P与A在BD的同侧时:连接AP并延长AP交BD于点MAP=AM﹣PM=2;当P与M重合时,PD=PB=3,与PB=PD=2矛盾,舍去.AP的长为4或2.故答案为4或2.【点评】本题注意到应分两种情况讨论,并且注意两种情况都存在关系AP⊥BD,这是解决本题的关键.10.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为28.【分析】运用平移个观点,五个小矩形的上边之和等于AD,下边之和等于BC,同理,它们的左边之和等于AB,右边之和等于CD,可知五个小矩形的周长之和为矩形ABCD的周长.【解答】解:由勾股定理,得AB==6,将五个小矩形的所有上边平移至AD,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,∴五个小矩形的周长之和=2(AB+BC)=2×(6+8)=28.故答案为:28.【点评】本题考查了平移的性质的运用.关键是运用平移的观点,将小矩形的四边平移,与大矩形的周长进行比较.三、解答题(共10分)11.(10分)关于x的方程mx2+(m+2)x+=0有两个不相等的实数根.(1)求m的取值范围.(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,说明理由.【分析】(1)由二次项系数非零及根的判别式△>0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围;(2)假设存在,设方程的两根分别为x1、x2,根据根与系数的关系结合+=0,即可得出关于m的方程,解之即可得出m的值,再根据(1)的结论即可得出不存在实数m,使方程的两个实数根的倒数和等于0.【解答】解:(1)∵关于x的方程mx2+(m+2)x+=0有两个不相等的实数根,∴,解得:m>﹣1且m≠0.(2)假设存在,设方程的两根分别为x1、x2,则x1+x2=﹣,x1x2=.∵+==﹣=0,∴m=﹣2.∵m>﹣1且m≠0,∴m=﹣2不符合题意,舍去.∴假设不成立,即不存在实数m,使方程的两个实数根的倒数和等于0.【点评】本题考查了根的判别式以及根与系数的关系,解题的关键是:(1)根据二次项系数非零结合根的判别式△>0,找出关于m的一元一次不等式组;(2)根据根与系数的关系结合+=0,列出关于m的方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
龙三中九年级(上)数学竞赛测试卷
命题人:王昌季
一、 选择题(每题3分,共30分) 1、函数x
y 2008
=
自变量x 的取值范围是 ( ) A .x >0 B .x <0 C .x=0 D .x≠0
2、如果关于x 的不等式 (a+1) x>a+1的解集为x>1,那么a 的取值范围是:( ) A 、a>0 B 、a<0 C 、a>-1 D 、a<-1
3、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =1, 则S △BEF 的值为 ( )
A 、
61 B 、51 C 、41 D 、3
1 4、已知反比例函数k
y x
=
(0k ≠)的图象经过点(1,2),则此反比例函数的图象在 ( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限 5、已知2 x
b +5 y 3a
与-4 x 2a y 6是同类项,则b a 的值为 ( )
A 、 2
B 、 -2
C 、 1
D 、 -1
6、若关于x 的方程x 2
-2k x-1=0有两个不相等的实数根,则直线y=kx +3必不经过 ( ) A. 第三象限 B. 第四象限 C. 第一、二象限 D. 第三、四象限
7、下列命题中的真命题是 ( )
A 、一组对边平行,另一组对边相等的四边形是平行四边形
B 、有两组对边分别相等的四边形是菱形
C 、两组对角分别相等的四边形是平行四边形
D 、两条对角线互相垂直且相等的四边形是正方形
8、如图,P 是Rt ΔABC 的斜边BC 上异于B 、C 的一点,过点P 做直线截 ΔABC ,使截得的三角形与ΔABC 相似,满足这样条件的直线共有( ) A . 1条 B. 2条 C. 3条 D. 4条
9、如图,AB 是半圆的直径,弦AD ,BC 相交于P ,已知∠DPB =60º,D 是BC ︵
中点,则∠ADC 等于 ( )
A .30度 B.35度 C .45度 D. 60度
10、如图,正方形ABCD 的边长与等腰直角三角形PMN 的腰长均为4cm ,且AB 与MN 都在直线l 上,
开始时点B 与点M 重合.让正方形沿直线向右平移,直到A 点与N 点重合为止,设正方形与三角形重叠部分的面积为y(cm 2
),MB 的长度为x(cm),则y 与x 之间的函数关系的图象大致是( )
二、填空题(每空3分,共30
分) 11、已知二元一次方程12
1
3-+
y x =0,用含y 的代数式表示x ,则x =_________ 12、把抛物线2x y -=向上平移2个单位,那么所得抛物线与x 轴的交点坐标是 13、时钟在1点20分时,分针与时针之间的夹角度数为____________。

14、已知正六边形的外接圆的半径是a ,则正六边形的周长是________。

15、已知圆锥的母线长为5c m ,底面半径为3c m ,则此圆锥的侧面积为 。

16、已知三角形的两边长分别是3和5,第三边长是方程3x 2
-10x=8的根,则这个三角形的形状是_______三角形。

17、观察这一列数:34-,57, 910-, 1713,3316
-,依此规律下一个数是________。

18、如图,已知AB 为⊙O 的直径,∠E =20°,∠DBC =50°,则 ∠CBE =______.
19、二次函数2
y ax bx c =++的部分对应值如下表:
则当x =
20、如图,矩形ABCD 中,折叠矩形的边AD ,使点D 落在BC 边的点F 处,已知AE =55cm ,且
FC EC =4
3
,则矩形ABCD 的周长为______________. 三、解答题(共40分)(题目见答题卷)
x
龙三中九年级(上)数学竞赛答题卷
一、选择题(每题3分,共30分)
11、 12、 13、 14、 15、 16、 17、 18、 19、 20、 三、解答题(共40分)
21、(6分)先化简再求值:22
2111
x x x
x x ++---,其中1x =
22、(6分)要了解某地区八年级学生的身高情况从中随机抽取150名学生个身高作为一个样本,身
高均在140c m ~175c m 之间(取整数厘米),整理后分成7组,绘制频率分布直方图(不完整)。

根据图中提供的信息,解答下列问题: (1)补全频数分布直方图;
(2)该地区共有3 000名八年级学生,估计其中身高不低于161c m 的人数。

班级_______________ 姓名________________ 学号__________________ ------------------------------------------密--------------------------------------------封--------------------------------------线--------------------------------------------------------------
23、(8分)如图,四边形ABCD 是正方形,BC =5,CF =3,∠BFC =90º,将△BCF 绕点C 顺时针旋转90º得到△DCE ,G 是CD 与EF 的交点。

(1)求出在整个旋转过程中,边BF 所扫过区域的面积; (2)求DG ∶GC 的值。

24、(8分)有一个运算程序,可以使:当a ⊕b = n (n 为常数)时,得 (a +1)⊕b =
n +1, a ⊕
(b +1)= n -2,现在已知1⊕1 = 2,求2008⊕2008的值。

G
F
E
D
C B
A
25、(12分)如图①,正方形 ABCD 中,点AB 的坐标分别为(0,10),(8,4),点C 在第一 象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴上运动,当P 点到D 点时,两点同时停止运动,设运动的时间为t 秒. (1) 求正方形边长及顶点C 的坐标;
(2)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,问当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标.
(3) 在(2)中,如果点P 、Q 保持原速度速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.
(第24题图①
)
(第24题图②)。

相关文档
最新文档