21-初中数学竞赛辅导讲座19讲(全套)整理版
初一数学竞赛讲座

初一数学竞赛讲座第3讲奇偶分析我们知道,全体自然数按被2除的余数不同可以划分为奇数与偶数两大类。
被2除余1的属于一类,被2整除的属于另一类。
前一类中的数叫做奇数,后一类中的数叫做偶数。
关于奇偶数有一些特殊性质,比如,奇数≠偶数,奇数个奇数之和是奇数等。
灵活、巧妙、有意识地利用这些性质,加上正确的分析推理,可以解决许多复杂而有趣的问题。
用奇偶数性质解题的方法称为奇偶分析,善于运用奇偶分析,往往有意想不到的效果。
例1 右表中有15个数,选出5个数,使它们的和等于30,你能做到吗?为什么?分析与解:如果一个一个去找、去试、去算,那就太费事了。
因为无论你选择哪5个数,它们的和总不等于30,而且你还不敢马上断言这是做不到的。
最简单的方法是利用奇偶数的性质来解,因为奇数个奇数之和仍是奇数,表中15个数全是奇数,所以要想从中找出5个使它们的和为偶数,是不可能的。
例2 小华买了一本共有96张练习纸的练习本,并依次将它的各面编号(即由第1面一直编到第192面)。
小丽从该练习本中撕下其中25张纸,并将写在它们上面的50个编号相加。
试问,小丽所加得的和数能否为2000?解:不能。
由于每一张上的两数之和都为奇数,而25个奇数之和为奇数,故不可能为2000。
说明:“相邻两个自然数的和一定是奇数”,这条性质几乎是显然的,但在解题过程中,能有意识地运用它却不容易做到,这要靠同学们多练习、多总结。
例3 有98个孩子,每人胸前有一个号码,号码从1到98各不相同。
试问:能否将这些孩子排成若干排,使每排中都有一个孩子的号码数等于同排中其余孩子号码数的和?并说明理由。
解:不能。
如果可以按要求排成,每排中都有一个孩子的号码数等于同排中其余孩子号码数的和,那么每一排中各号码数之和都是某一个孩子号码数的2倍,是个偶数。
所以这98个号码数的总和是个偶数,但是这98个数的总和为1+2+…+98=99×49,是个奇数,矛盾!所以不能按要求排成。
中学数学竞赛讲座及练习+生活中的数学-学生

第十八讲生活中的数学储蓄、保险、纳税是最常见的有关理财方面的数学问题,几乎人人都会遇到,因此,我们在这一讲举例介绍有关这方面的知识,以增强理财的自我保护意识和处理简单财务问题的数学能力.一.储蓄银行对存款人付给利息,这叫储蓄.存入的钱叫本金.一定存期(年、月或日)内的利息对本金的比叫利率.本金加上利息叫本利和.利息=本金×利率×存期,本利和=本金×(1+利率经×存期).如果用p,r,n,i,s分别表示本金、利率、存期、利息与本利和,那么有i=prn,s=p(1+rn).例1设年利率为0.0171,某人存入银行2000元,3年后得到利息多少元?本利和为多少元?解i=2000×0.0171×3=102.6(元).s=2000×(1+0.0171×3)=2102.6(元).答某人得到利息102.6元,本利和为2102.6元.以上计算利息的方法叫单利法,单利法的特点是无论存款多少年,利息都不参加本金.相对地,如果存款年限较长,约定在每年的某月把利息参加本金,这就是复利法,即利息再生利息.目前我国银行存款多数实行的是单利法.不过规定存款的年限越长利率也越高.例如,1998年3月我国银行公布的定期储蓄人民币的年利率如表22.1所示.用复利法计算本利和,如果设本金是p元,年利率是r,存期是n年,那么假设第1年到第n年的本利和分别是s1,s2,…,s n,那么s1=p(1+r),s2=s1(1+r)=p(1+r)(1+r)=p(1+r)2,s3=s2(1+r)=p(1+r)2(1+r)=p(1+r)3,……,s n=p(1+r)n.例2小李有20000元,想存入银行储蓄5年,可有几种储蓄方案,哪种方案获利最多?解按表22.1的利率计算.(1)连续存五个1年期,那么5年期满的本利和为20000(1+0.0522)5≈25794(元).(2)先存一个2年期,再连续存三个1年期,那么5年后本利和为20000(1+0.0558×2)·(1+0.0522)3≈25898(元).(3)先连续存二个2年期,再存一个1年期,那么5年后本利和为20000(1+0.0558×2)2·(1+0.0552)≈26003(元).(4)先存一个3年期,再转存一个2年期,那么5年后的本利和为20000(1+0.0621×3)·(1+0.0558×2)≈26374(元).(5)先存一个3年期,然后再连续存二个1年期,那么5年后本利和为20000(1+0.0621×3)·(1+0.0522)2≈26268(元).(6)存一个5年期,那么到期后本利和为20000(1+0.0666×5)≈26660(元).显然,第六种方案,获利最多,可见国家所规定的年利率已经充分考虑了你可能选择的存款方案,利率是合理的.例3小华是独生子女,他的父母为了给他支付将来上大学的学费,从小华5岁上小学前一年,就开始到银行存了一笔钱,设上大学学费每年为4000元,四年大学共需16000元,设银行在此期间存款利率不变,为了使小华到18岁时上大学本利和能有16000元,他们开始到银行存入了多少钱?(设1年、3年、5年整存整取,定期储蓄的年利率分别为5.22%,6.21%和6.66%) 解从5岁到18岁共存13年,储蓄13年得到利息最多的方案是:连续存两个5年期后,再存一个3年期.设开始时,存入银行x元,那么第一个5年到期时的本利和为x+x·0.0666×5=x(1+0.0666×5).利用上述本利和为本金,再存一个5年期,等到第二个5年期满时,那么本利和为x(1+0.0666×5)+x(1+0.0666×5)·0.0666×5=x(1+0.0666×5)2.利用这个本利和,存一个3年定期,到期时本利和为x(1+0.0666×5)2(1+0.0621×3).这个数应等于16000元,即x(1+0.0666×5)2·(1+0.0621×3)=16000,所以1.777×1.186x=16000,所以x≈7594(元).答开始时存入7594元.二.保险保险是现代社会必不可少的一种生活、生命和财产保护的金融事业.例如,火灾保险就是由于火灾所引起损失的保险,人寿保险是由于人身意外伤害或养老的保险,等等.下面举两个简单的实例.例4 假设一个小城镇过去10年中,发生火灾情况如表22.2所示.试问:(1)设想平均每年在1000家中烧掉几家?(2)如果保户投保30万元的火灾保险,最低限度要交多少保险费保险公司才不亏本?解(1)因为1+0+1+2+0+2+1+2+0+2=11(家),365+371+385+395+412+418+430+435+440+445=4096(家).11÷4096≈0.0026.(2)300000×0.0026=780(元).答(1)每年在1000家中,大约烧掉2.6家.(2)投保30万元的保险费,至少需交780元的保险费.例5财产保险是常见的保险.假定A种财产保险是每投保1000元财产,要交3元保险费,保险期为1年,期满后不退保险费,续保需重新交费.B种财产保险是按储蓄方式,每1000元财产保险交储蓄金25元,保险一年.期满后不管是否得到赔款均全额退还储蓄金,以利息作为保险费.今有兄弟二人,哥哥投保8万元A种保险一年,弟弟投保8万元B种保险一年.试问兄弟二人谁投的保险更合算些?(假定定期存款1年期利率为5.22%)解哥哥投保8万元A种财产保险,需交保险费80000÷1000×3=80×3=240(元).弟弟投保8万元B种财产保险,按每1000元交25元保险储蓄金算,共交80000÷1000×25=2000(元),而2000元一年的利息为2000×0.0522=104.4(元).兄弟二人相比拟,弟弟少花了保险费约240-104.4=135.60(元).因此,弟弟投的保险更合算些.三.纳税纳税是每个公民的义务,对于每个工作人员来说,除了工资局部按国家规定纳税外,个人劳务增收也应纳税.现行劳务报酬纳税方法有三种:(1)每次取得劳务报酬不超过1000元的(包括1000元),预扣率为3%,全额计税.(2)每次取得劳务报酬1000元以上、4000元以下,减除费用800元后的余额,依照20%的比例税率,计算应纳税额.(3)每次取得劳务报酬4000元以上的,减除20%的费用后,依照20%的比例税率,计算应纳税额.每次取得劳务报酬超过20000元的(暂略).由(1),(2),(3)的规定,我们如果设个人每次劳务报酬为x元,y为相应的纳税金额(元),那么,我们可以写出关于劳务报酬纳税的分段函数:例6小王和小张两人一次共取得劳务报酬10000元,小王的报酬是小张的2倍多,两人共缴纳个人所得税1560元,问小王和小张各得劳务报酬多少元?解根据劳务报酬所得税计算方法(见函数①),从条件分析可知小王的收入超过4000元,而小张的收入在1000~4000之间,如果设小王的收入为x元,小张的收入为y元,那么有方程组:由①得y=10000-x,将之代入②得x(1-20%)20%+(10000-x-800)20%=1560,化简、整理得0.16x-0.2x+1840=1560,所以0.04x=280,x=7000(元).那么y=10000-7000=3000(元).所以答小王收入7000元,小张收入3000元.例7如果对写文章、出幅员书所获稿费的纳税计算方法是其中y(x)表示稿费为x元应缴纳的税额.那么假设小红的爸爸取得一笔稿费,缴纳个人所得税后,得到6216元,问这笔稿费是多少元?解设这笔稿费为x元,由于x>4000,所以,根据相应的纳税规定,有方程x(1-20%)·20%×(1-30%)=x-6216,化简、整理得0.112x=x-6216,所以0.888x=6216,所以x=7000(元).答这笔稿费是7000元.练习二十二1.按以下三种方法,将100元存入银行,10年后的本利和各是多少?(设1年期、3年期、5年期的年利率分别为5.22%,6.21%,6.66%保持不变)(1)定期1年,每存满1年,将本利和自动转存下一年,共续存10年;(2)先连续存三个3年期,9年后将本利和转存1年期,合计共存10年;(3)连续存二个5年期.2.李光购置了25000元某公司5年期的债券,5年后得到本利和为40000元,问这种债券的年利率是多少?3.王芳取得一笔稿费,缴纳个人所得税后,得到2580元,问这笔稿费是多少元?4.把本金5000元存入银行,年利率为0.0522,几年后本利和为6566元(单利法)?四、地板砖展铺的图形地板砖展铺的图形,一般都是用几种全等的平面图形展铺开来的,有时用由直线构成的多边形组成的图案,有时用由曲线组成的图案,千变万化.但是作为根底还是用平面多边形展铺平面.有时虽然有曲线,却常常是由多边形和圆作适当变化而得到的.例如,一个由正方形展铺的平面图案(图1-77(a)),如果对正方形用圆弧做一些变化(图1-77(b)),那么把以上两个图形结合起来设计,就可由比拟单调的正方形图案,变化曲线形成花纹图案了(图1-77(c)).由于多边形是构成地板砖展铺复杂图形的根底,因此,下面我们对利用多边形展铺平面图形做些简要分析.例1怎样以三角形为根底展铺平面图案.分析与解三角形是多边形中最简单的图形,如果用三角形为根本图形来展铺平面图案,那么就要考虑三角形的特点.由于三角形的三个内角和为180°,所以要把三角形的三个角集中到一起,就组成了一个平角.如果要在平面上一个点的周围集中三角形的角,那么必须使这些角的和为两个平角.因此,假设把图1-78中的三角形的三个内角集中在一起,并进行轴对称变换或中心对称变换,就可以得到集中于一点的六个角,它们的和为360°,刚好覆盖上这一点周围的平面.变换的方法见图1-79.在中心对称的情况下,三角形不翻折,在轴对称的情况下,三角形要翻折.如果把三角形正、反两面涂上颜色,那么通过对称变换,正、反两面就会明显地反映出来了.由上面的分析可知,用三角形为根本图形展铺平面图案,共有以下四种情况,如图1-80.例2怎样以四边形为根底展铺平面图案?分析与解由于四边形内角和为360°,所以,任何四边形都可以作为根本图形来展铺平面图案.图1-81中的(a),(b),(C),(d)分别是以矩形、菱形、梯形、一般四边形为根本图形的平面展铺图案.例3怎样以正多边形为根本图形展铺平面图案?分析与解用正多边形为根本图形展铺平面图案,集中于一点的周围的正多边形的各个角的和应是360°.例如,正五边形一个内角为正十边形一个内角为如果把两个正五边形的内角与一个正十边形的内角加起来,那么其和为2×108°+144°=360°.但是它们并不能用来展铺平面.如果用同种的正n边形来展铺平面图案,在一个顶点周围集中了m个正n 边形的角.由于这些角的和应为360°,所以以下等式成立因为m,n都是正整数,并且m>2,n>2.所以m-2,n-2也都必定是正整数.所以当n-2=1,m-2=4时,那么n=3,m=6;当n-2=2,m-2=2时,那么n=4,m=4;当n-2=4,m-2=1时,那么n=6,m=3.这就证明了只用一种正多边形展铺平面图案,只存在三种情况:(1)由6个正三角形拼展,我们用符号(3,3,3,3,3,3)来表示(见图1-82).(2)由4个正方形拼展,我们用符号(4,4,4,4)来表示(见图1-83).(3)由3个正六边形来拼展,我们用符号(6,6,6)来表示(见图1-84).如果用两种正多边形来拼展平面图案,那么就有以下五种情况:(3,3,3,4,4),(3,3,3,3,6),(3,3,6,6),(3,12,12)以及(4,8,8).这五种情况中,(3,3,3,4,4)又可有两种不同的拼展方法,参看下面六种拼展图形(图1-85).用三种正多边形展拼平面图形就比拟难设计了.下面举出两例供同学们思考(图1-86).有兴趣的同学请自己设想出一两个例子.练习二十三1.试用三角形和梯形这两种多边形拼展平面图案.2.试用形如图1-87的图形拼展平面图案.3.试用边长为1的正三角形、边长为1的正方形和两腰为1、夹角为120°的等腰三角形拼展平面图案.4.试用圆弧和多边形(多边形可以用圆弧割补)设计一种平面图案.5.试用一个正方形,仿照图1-76(a),(b),(c)的变化方式,设计一种平面图案.。
全国初中数学竞赛辅导(初3)-第19讲-平面几何中的几个著名定理

第十九讲* 平面几何中的几个著名定理几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理.1.梅内劳斯定理亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理.定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得同理将这三式相乘,得说明 (1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为AX×BY×CZ=XB×YC×ZA,仍然成立.(2)梅内劳斯定理的逆定理也成立,即“在△ABC的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线.例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线.证如图3-99有相乘后得由梅内劳斯定理的逆定理得F,D,E共线.例2(戴沙格定理)在△ABC和△A′B′C′中,若AA′,BB′,CC′相交于一点S,则AB与A′B′,BC与B′C′,AC与A′C′的交点F,D,E共线.证如图3-100,直线FA′B′截△SAB,由梅内劳斯定理有同理,直线EC′A′和DC′B′分别截△SAC和△SBC,得将这三式相乘得所以D,E,F共线.2.塞瓦定理意大利数学家塞瓦(G.Ceva)在1678年发表了下面的十分有用的定理,它是证明共点线的重要定理.定理在△ABC内任取一点P,直线AP,BP,CP分别与边BC,CA,AB 相交于D,E,F,则证如图3-101,过B,C分别作直线AP的垂线,设垂足为H和K,则由于△BHD∽△CKD,所以同理可证将这三式相乘得说明 (1)如果P点在△ABC外,同样可证得上述结论,但P点不能在直线AB,BC,CA上,否则,定理的结论中的分母出现零,分子也出现零,这时,定理的结论应改为BD×CE×AF=DC×EA×FB,仍然成立.(2)塞瓦定理的逆定理也成立,即“在△ABC的边BC,CA,AB上分别取点D,E,F,如果那么直线AD,BE,CF相交于同一点.”证如图3-102,设AD和BE相交于P,作直线CP,交直线AB于F′,由塞瓦定理得所以 F′B=FB,即F′与F重合,所以AD,BE,CF相交于同一点.塞瓦定理的逆定理常被用来证明三线共点.例3 求证:三角形的三条中线、三条内角平分线和三条高所在的直线分别相交于同一点.证 (1)如果D,E,F分别是△ABC的边BC,CA,AB的中点,则由塞瓦定理的逆定理得中线AD,BE,CF共点.(2)如果D,E,F分别是△ABC的内角平分线AD,BE,CF与边BC,CA,AB的交点,则由塞瓦定理的逆定理得角平分线AD,BE,CF共点.(3)设D,E,F分别是△ABC的高AD,BE,CF的垂足.(i)当△ABC是锐角三角形时(如图3-103),D,E,F分别在BC,CA,AB上,有BD=ccosB,DC=bcosC,CE=acosc,EA=ccosA,AF=bcosA,FB=acosB,所以由塞瓦定理的逆定理得高AD,BE,CF共点.(ii)当△ABC是钝角三角形时,有BD=ccosB,DC=bcosC,CE=acosC,EA=ccos(180°-A)=-ccosA,AF=bcos(180°-A)=-bcosA,FB=acosB,所以由塞瓦定理的逆定理,得高AD,BE,CF共点.(iii)当△ABC是直角三角形时,高AD,BE,CF都经过直角顶点,所以它们共点.例4 在三角形ABC的边上向外作正方形,A1,B1,C1是正方形的边BC,CA,AB的对边的中点,证明:直线AA1,BB1,CC1相交于一点.证如图3-104.设直线AA1,BB1,CC1与边BC,CA,AB的交点分别为A2,B2,C2,那么BA2:A2C等于从点B和C到边AA1的垂线的长度之比,即其中∠θ=∠CBA1=∠BCA1.同理将上述三式相乘得根据塞瓦定理的逆定理,得AA1,BB1,CC1共点.3.斯台沃特定理定理△ABC的边BC上任取一点D,若BD=u,DC=v,AD=t,则证过A作AE⊥BC,E为垂足(如图3-105),设DE=x,则有AE2=b2-(v-x)2=c2-(u+x)2=t2-x2,(若E在BC的延长线上,则v-x换成x-v.)于是得消去x得(u+v)2=b2u+c2v-uv(u+v),这就是中线长公式.(2)当AD是△ABC的内角平分线时,由三角形的内角平分线的性质设a+b+c=2p,得这就是内角平分线长公式.(3)当AD是△ABC的高时,AD2=b2-u2=c2-v2.再由u+v=a,解得所以若设AD=h a,则这就是三角形的高线长公式.当D在BC的延长线上时,用-v代替v,同样可得高线长线公式.这就是三角形的面积公式.伦公式例5 如图3-106.在△ABC中,c>b,AD是△ABC的角平分线,E 在BC上,BE=CD.求证:AE2-AD2=(c-b)2.证为方便起见,设BD=u,DC=v,则BE=v,EC=u.由斯台沃特定理得所以因为AD是角平分线,所以于是4.托勒密定理托勒密(Ptolemy,约公元85~165年)是古代天文学的集大成者.一般几何教科书中的“托勒密定理”(圆内接四边形的对边积之和等于对角线之积),实出自依巴谷(Hipparchus)之手,托勒密只是从他的书中摘出。
九年级数学竞赛辅导系列 讲座一 数练习试题

轧东卡州北占业市传业学校数学竞赛辅导系列讲座一 —数1、 计算:1111(12)(123)(12320)2320+++++++++++.2、 如果5555555555555554444666666233322n ++++++++⨯=+++,那么n=_______. 3、 HY 训基地购置苹果慰问学员,苹果总数用八进制表示为abc ,七进制表示为cba ,那么苹果总数用十进制表示为_______.4、 实数a 满足|2012|2013a a a --=,那么a -20212的值是〔 〕A 、2021B 、2012C 、2021D 、20215、设分数13(13)56n n n -≠+不是最简分数,那么正整数n 的最小值可以是〔 〕A 、84B 、68C 、45D 、1156、数272-1能被500与600之间的假设干整数整除,试找出三个这样的整数,它们是________. 7、n 是自然数,19n+14与10n+3都是某个不等于1的自然数d 的倍数,那么d=________. 8、设71a=,那么3a 3+12a 2-6a -12=〔 〕A 、24B 、25C 、10D 、129、a 、b 是正整数,且满足2⎛⎝是整数,那么这样的有序数对〔a ,b 〕共有____对. 10、设n 是大于1909的正整数,使得19092009n n--为完全平方数的n 的个数有〔〕个A 、3B 、4C 、5D 、611、设a n 表示数n 4的末位数,那么a 1+a 2+…+a 2021=________.12、如果对于某一特定范围内x 的任意允许值,p=|1-2x|+|1-3x|+…+|1-10x|为定值,那么定值为〔 〕A 、2B 、3C 、4D 、513、假设1,2,3xy yz zxx y y z z x===+++,那么x=______. 14、试求|x -1|+|x -2|+|x -3|+…+|x -2021|的最小值.15、p 、q 均为素数,且满足5p 2+3q=59,那么以p+3,1-p+q ,2p+q -4为边长的三角形是〔 〕A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等腰三角形16、假设x 1、x 2 、x 3 、x 4 、x 5为互不相等的正奇数,满足(2005-x 1)(2005-x 2)(2005-x 3)(2005-x 4)(2005-x 5)=242,那么x 12+x 22+x 32+x 42+x 52的末尾数字是〔 〕A 、1B 、3C 、5D 、717、在数1、2、3、…、2021、2021前面任意添加上“+〞或“-〞进行计算,所得可能的最小非负数是________.18、设a 、b 、c 为实数,2222,2,2362xa b y b c z c a πππ=-+=-+=-+,x 、y 、z 中至少有一个值〔 〕A 、大于0B 、等于0C 、不大于0D 、小于019、今天是星期日,假设明天算第1天,那么第13+23+…+20213天是星期_____.20、()()()⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++++=201313121201321.11)(2f f f f f f x x f 则=.21、四个互不相等的正数x、y、m、n中,x最小,n最大,且x:y=m:n,试比较x+n与y+m的大小,并证明你的结论.2210099++23、设x>0,y>0=的值.2425、设a、b、c为有理数.26=0<x<y,那么满足上述等式的整数对(x,y)的个数有多少?27、设11980100S=++++[S]表示不超过S的最大整数,试求S.28、x、y是整数,并且13|(9x+10y),求证:13|(4x+3y).29、假设a、b是整数,且7|(a+b),7|(2a-b),求证:7|(5a+2b).30、正整数p、q都大于1,且2121,p qq p--都是整数,求p+q.31、当n是正整数时,n4-6n2+25是质数还是合数?证明你的结论.32、a是自然数,问a4-3a2+9是质数还是合数?证明你的结论.33、试求出一个四位数,它是一个完全平方数,并且它的前两位数字相同,后两位数字也相同.34、设a、b、c、d是正整数,并且a2+b2=c2+d2,证明a+b+c+d一定是合数.35、你能找到三个正整数a、b、c,使得关系式(a+b+c)(a-b+c)(a+b-c)(b+c-a)=3388成立吗?如果能找到,请举一例;如果找不到,请说明理由.36、一个正整数a,假设将其数字重新排列,可得到一个新的正整数b,如果a恰好是b的3倍,我们称a 是一个“希望数〞.〔1〕请你举例:“希望数〞一定存在;〔2〕请你证明:如果a 、b 都是“希望数〞,那么ab 一定是729的倍数.37、将自然数1、2、3、…、21这21个数,任意地放在一个圆周上,证明:一定有相邻的三个数,它们的和不小于33.38、设x =a 是x 的小数局部,b 是-x 的小数局部,求333ab ab ++的值.39、设a 、b 都是整数,求证:a ,b ,a 2+b 2,a 2-b 2中一定有一个被5整除.40、假设一个数能够表示成2222xxy y ++(x ,y 是整数)的形式,那么称该数为“好数〞〔1〕试判断29是否为好数; 〔2〕写出80,81,…,100中的好数; 〔3〕如果m ,n 都是好数,证明mn 也是好数.41、有三堆小石子的个数分别是19、8、9,现在进行如下的操作:每次从三堆中的任意两堆中取出1个石子,然后把这两个石子都加到另一堆中,试问能否进过假设干次这样的操作后,使得〔1〕三堆的石子数分别是2、12、22? 〔2〕三堆的石子数都是12?如能到达要求,请用最小的操作次数完成它,如不能到达,请说明理由.注:每次操作可用如下方式表示,比方从第一、二堆中各取出一个石子,加到第三堆上,可表示为〔19,8,9〕→〔18,7,11〕等等.42为无理数.43、p 为大于3的质数,证明p 的平方被24除的余数是1.44、M 是一个四位的完全平方数,假设将M 的千位数字减少3而各位数字增加3可以得到另一个完全平方数,那么M=_________.45、在“□1□2□3□4□5□6□7□8□9”的小方格中填上“+〞或“-〞号,如果可以使其代数和为n ,就称数n 是“可被表出的数〞,否那么,就称数n 是“不可被表出的数〞〔如1是可被表出的数,这是因为1+2-3-4+5+6-7-8+9是1的一种可被表出的方法〕. 〔1〕求证:7是可被表出的数,而8是不可被表出的数; 〔2〕求25可被表出的不同方法种数.46、是否存在:用0,1,2,…,9这十个数字组成几个数,使它们的和恰好为100,每个数字都用一次并且只能用一次.47、设〔x 〕表示不超过实数x 的最大整数.那么在平面直角坐标系xoy 中满足〔x 〕〔y 〕=2021的所有点〔x ,y 〕组成的图形的面积 . 48、201321,,,a a a 是一列互不相等的正整数.假设任意改变这2021个数的顺序,并201321,b,,b b 记为.那么数()()()201320132211b a b a b a M ---= 的值必为 .49、〔1〕证明:由2021个1和0组成的自然数不是完全平方数;〔2〕试说明:存在最左边2021位都是1的形如11…1﹡﹡…﹡的自然数〔﹡代表阿拉伯数码〕是完全平方数.。
17zuoye初中数学竞赛课程

17zuoye初中数学竞赛课程(原创版)目录1.17zuoye 初中数学竞赛课程简介2.课程的主要内容3.课程的优势和特点4.如何报名参加课程正文【17zuoye 初中数学竞赛课程简介】17zuoye 是一家专注于在线教育的企业,其初中数学竞赛课程旨在帮助学生提高数学能力,备战各类初中数学竞赛。
该课程根据我国初中数学教育大纲和竞赛要求进行设计,注重理论与实践相结合,让学生在掌握知识的同时,提高解题能力和应试技巧。
【课程的主要内容】17zuoye 初中数学竞赛课程主要包括以下内容:1.初中数学基本概念和公式:有理数、整式、一元一次方程、平面直角坐标系等。
2.代数式与方程:整式与分式、一元二次方程、不等式及其解集等。
3.函数与图像:函数的概念、性质、图像与解析式等。
4.几何与三角形:三角形及其性质、四边形、圆等。
5.数据与概率:统计图表的读取、频数分布、概率等。
6.逻辑与思维:数学思维方法、解题技巧、竞赛策略等。
【课程的优势和特点】1.专业的师资团队:课程由经验丰富的初中数学教师授课,他们熟悉竞赛题型和解题方法,能为学生提供有效的指导。
2.系统的教学体系:课程根据学生的学习需求和竞赛要求,设计了系统的教学内容,帮助学生扎实掌握知识点。
3.灵活的在线学习:学生可以根据自己的时间安排进行在线学习,既可以观看录播课程,也可以参加直播课程,与老师互动交流。
4.丰富的学习资源:课程提供了大量的例题、习题和竞赛真题,供学生参考学习,提高解题能力。
【如何报名参加课程】有兴趣报名参加 17zuoye 初中数学竞赛课程的学生,可以通过以下方式进行报名:1.访问 17zuoye 官方网站,了解课程详情和报名信息。
2.注册并登录账号,选择初中数学竞赛课程,填写报名信息。
3.完成报名后,按照提示支付课程费用。
4.支付成功后,即可开始学习课程。
通过以上介绍,相信你对 17zuoye 初中数学竞赛课程已经有了一定的了解。
九年级数学专题讲座

九年级数学专题讲座一、函数专题1. 一次函数知识点回顾一次函数的表达式为公式(公式,公式为常数,公式)。
当公式时,函数为正比例函数公式。
一次函数的图象是一条直线,公式决定直线的倾斜程度(公式,直线从左到右上升;公式,直线从左到右下降),公式决定直线与公式轴的交点(公式)。
题目解析例:已知一次函数公式,求它的图象与公式轴、公式轴的交点坐标。
解:当公式时,公式,解得公式,所以与公式轴交点坐标为公式。
当公式时,公式,所以与公式轴交点坐标为公式。
2. 二次函数知识点回顾二次函数的表达式一般式为公式(公式,公式,公式为常数,公式)。
顶点式为公式(公式为顶点坐标)。
二次函数图象是抛物线,公式决定抛物线的开口方向(公式开口向上;公式开口向下),对称轴为公式(一般式)或公式(顶点式)。
题目解析例:求二次函数公式的顶点坐标和对称轴。
解:对于二次函数公式,其中公式,公式,公式。
对称轴公式。
把公式代入函数得公式,所以顶点坐标为公式。
3. 反比例函数知识点回顾反比例函数表达式为公式(公式为常数,公式)。
图象是双曲线。
当公式时,双曲线在一、三象限;当公式时,双曲线在二、四象限。
题目解析例:已知反比例函数公式,求当公式时公式的值,以及当公式时公式的值。
解:当公式时,公式。
当公式时,公式,解得公式。
二、几何专题1. 三角形知识点回顾三角形内角和为公式。
三角形的分类:按角分为锐角三角形、直角三角形、钝角三角形;按边分为等边三角形、等腰三角形、不等边三角形。
相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似。
题目解析例:在公式中,公式,公式,求公式的度数。
解:因为三角形内角和为公式,所以公式。
例:已知公式和公式,公式,公式,判断这两个三角形是否相似。
解:因为在公式和公式中,公式,公式,两角分别相等,所以公式。
2. 四边形知识点回顾平行四边形的性质:对边平行且相等,对角相等,对角线互相平分。
初中数学竞赛辅导资料(初一用)

初中数学竞赛辅导资料第一讲 数的整除一、内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除。
0能被所有非零的整数整除.能被7整除的数的特征:①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除.如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除) 二、例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。
求x,y解:x ,y 都是0到9的整数,∵75y 能被9整除,∴y=6。
∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8 当末两位4x 能被4整除时,x =0,4,8∴x =8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263.练习一1、分解质因数:(写成质因数为底的幂的连乘积)①756②1859③1287④3276⑤10101⑥10296987能被3整除,那么a=_______________2、若四位数ax能被11整除,那么x=__________3、若五位数123435m能被25整除4、当m=_________时,59610能被7整除5、当n=__________时,n6、能被11整除的最小五位数是________,最大五位数是_________7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。
初中数学趣味数学竞赛课件(共43张)

先考虑两个店主之间的得失,鞋店主先拿假钞去隔壁店主 那里换来两张50元的真钞,后来又赔给隔壁店主100元, 所以双方没得失。所以鞋店主只是损失了一双50元的鞋子 与50元现金。
24.把10个硬币放入三只杯子中,使得每只杯子 中硬币的个数仍都是奇数,请问如何能办得到?
答案:只需要把一个杯子套入另一只杯子之中即可
25. 一辆四轮赛车参加距离比赛,行程18Байду номын сангаас0千米, 轮胎都是新的,每只轮胎在1200千米内有效, 问车上最少应该带几只备用的新轮胎?
答案:2只 当车走了600米时,换下两个轮胎,当走到1200米时, 用之前换下来的两个轮胎去换另外两个轮胎。
26、盒子里有27只球,其中有一只是次品, 这个次品外观上与正品毫无区分,只是分量 略重一些。现在有一架天平,要把次球找出 来,至少要称几次?
答案:后报的取胜
15、请问如何用三根直木棒组成12个直角?
答案:把三根木棒 按东西、南北、上 下三个方位交叉 放置即可组成12个 直角。
16、有一个密封的
长方体水箱(如图)
,如果从里面量得
宽3分米,高5分米,
3
箱内水的高度是4分
米,如果将水箱向
后推倒,以它的后
5
面为底面,这时箱
内水的高度是多少
分米?
答案:先用5升壶装满后倒进6升壶里,在再将 5升壶装满向6升壶里到,使6升壶装满为止, 此时5升壶里还剩4升水将6升壶里的水全部倒 掉,将5升壶里剩下的4升水倒进6升壶里,此 时6升壶里只有4升水再将5升壶装满,向6升壶 里到,使6升壶里装满为止,此时5升壶里就只 剩下3升水了
29、一位老人有17只羊,分给三个儿子:老大 九分之一,老二三分之一,老三二分之一.三个 儿子想:羊又不能宰,这该怎么办?三人各得 多少只羊?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛辅导讲座19讲(全套)
第一讲有理数
一、有理数的概念及分类。
二、有理数的计算:
1、善于观察数字特征;
2、灵活运用运算法则;
3、掌握常用运算技巧(凑整法、分拆
法等)。
三、例题示范
1、数轴与大小
例1、已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,
那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个?
例2、将9998
,19991998
,9897
,19981997
这四个数按由小到大的顺序,用“”连结起来。
提示1:四个数都加上1不改变大小顺序;
提示2:先考虑其相反数的大小顺序;
提示3:考虑其倒数的大小顺序。
例3、观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。
试确定三个
数c a b ab 1,1
,1
的大小关系。
分析:由点B 在A 右边,知b-a 0,而A 、B 都在原点左边,故ab 0,又c 10,故要比较c a b ab 1,1
,1
的大小关系,只要比较分母的大小关系。
例4、在有理数a 与b(b a)之间找出无数个有理数。
提示:P=n a
b a (n 为大于是的自然数)
注:P 的表示方法不是唯一的。
2、符号和括号
在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。
例5、在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非
负数是多少?
提示:造零:n-(n+1)-(n+2)+(n+3)=0
注:造零的基本技巧:两个相反数的代数和为零。
3、算对与算巧
例6、计算123 (200020012002)
提示:1、逆序相加法。
2、求和公式:S=(首项+末项)项数2。