初中数学竞赛专题选讲
初中数学竞赛专题选讲 对称式(含答案)

初中数学竞赛专题选讲(初三.5)对称式一、内容提要一.定义1. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 任意交换两个后,代数式的值不变,则称这个代数式为绝对对称式,简称对称式.例如: 代数式x+y , xy , x 3+y 3+z 3-3xyz, x 5+y 5+xy, yx 11+, xyzx z xyz z y xyz y x +++++. 都是对称式. 其中x+y 和xy 叫做含两个变量的基本对称式.2. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 循环变换后代数式的值不变,则称这个代数式为轮换对称式,简称轮换式.例如:代数式 a 2(b -c)+b 2(c -a)+c 2(a -b), 2x 2y+2y 2z+2z 2x, abc c b a 1111-++, (xy+yz+zx )()111z y x ++, 222222222111b a c a c b c b a -++-++-+. 都是轮换式. 显然,对称式一定是轮换式,而轮换式不一定是对称式.二.性质1.含两个变量x 和y 的对称式,一定可用相同变量的基本对称式来表示.这将在下一讲介绍.2. 对称式中,如果含有某种形式的一式,则必含有,该式由两个变量交换后的一切同型式,且系数相等.例如:在含x, y, z 的齐二次对称多项式中,如果含有x 2项,则必同时有y 2, z 2两项;如含有xy 项,则必同时有yz, zx 两项,且它们的系数,都分别相等. 故可以表示为:m(x 2+y 2+z 2)+n(xy+yz+zx) 其中m, n 是常数.3. 轮换式中,如果含有某种形式的一式,则一定含有,该式由变量字母循环变换后所得的一切同型式,且系数相等.例如:轮换式a 3(b -c)+b 3(c -a)+c 3(a -b)中,有因式a -b 一项, 必有同型式b -c 和 c -a 两项.4. 两个对称式(轮换式)的和,差,积,商(除式不为零),仍然是对称式(轮换式). 例如:∵x+y, xy 都是对称式,∴x+y +xy , (x+y )xy , xyy x +等也都是对称式. ∵xy+yz+zx 和zy x 111++都是轮换式, ∴z y x 111+++xy+yz+z , (zy x 111++)(xy+yz+z ). 也都是轮换式.. 二、例题例1.计算:(xy+yz+zx )()111z y x ++-xyz()111222zy x ++. 分析:∵(xy+yz+zx )()111zy x ++是关于x,y,z 的轮换式,由性质2,在乘法展开时,只要用xy 分别乘以x 1,y 1,z1连同它的同型式一齐写下. 解:原式=(z xy y zx x yz ++)+(z+x +y )+(y+z+x)-(zxy y zx x yz ++) =2x+2y+2z.例2. 已知:a+b+c=0, abc ≠0.求代数式 222222222111ba c a cbc b a -++-++-+的值 分析:这是含a, b, c 的轮换式,化简第一个分式后,其余的两个分式,可直接写出它的同型式. 解:∵2221c b a -+=222)(1b a b a ---+=ab 21-, ∴222222222111b a c a c b c b a -++-++-+=-ab 21-bc 21-ca 21 = -abc b a c 2++=0. 例3. 计算:(a+b+c )3分析:展开式是含字母 a, b, c 的三次齐次的对称式,其同型式的系数相等,可用待定系数法.例4. 解:设(a+b+c )3=m(a 3+b 3+c 3)+n(a 2b+a 2c+b 2c+b 2a+c 2a+c 2b)+pabc.(m, n, p 是待定系数)令 a=1,b=0,c=0 . 比较左右两边系数得 m=1;令 a=1,b=1,c=0 比较左右两边系数得 2m+2n=8;令 a=1,b=1,c=1 比较左右两边系数得 3m+6n+p=27.解方程组⎪⎩⎪⎨⎧=++=+=27638221p n m n m m 得⎪⎩⎪⎨⎧===631p n m∴(a+b+c )3=a 3+b 3+c 3+3a 2b+3a 2c+3b 2c+3b 2a+3c 2a+3c 2b+6abc.例5. 因式分解:① a 3(b -c)+b 3(c -a)+c 3(a -b);② (x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5.解:①∵当a=b 时,a 3(b -c)+b 3(c -a)+c 3(a -b)=0.∴有因式a -b 及其同型式b -c, c -a.∵原式是四次齐次轮换式,除以三次齐次轮换式(a -b )(b -c)(c -a),可得 一次齐次的轮换式a+b+c.用待定系数法:得 a 3(b -c)+b 3(c -a)+c 3(a -b)=m(a+b+c)(a -b )(b -c)(c -a)比较左右两边a 3b 的系数,得m=-1.∴a 3(b -c)+b 3(c -a)+c 3(a -b)=-(a+b+c)(a -b )(b -c)(c -a).② x=0时,(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=0∴有因式x ,以及它的同型式y 和z.∵原式是五次齐次轮换式,除以三次轮换式xyz ,其商是二次齐次轮换式.∴用待定系数法:可设(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=xyz [m(x+y+z)+n(xy+yz+zx)].令 x=1,y=1,z=1 . 比较左右两边系数, 得 80=m+n ;令 x=1,y=1,z=2. 比较左右两边系数, 得 480=6m+n.解方程组⎩⎨⎧=+=+480680n m n m得⎩⎨⎧==080n m . ∴(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=80xyz(x+y+z).三、练习1.已知含字母x,y,z 的轮换式的三项x 3+x 2y -2xy 2,试接着写完全代数式______ 2. 已知有含字母a,b,c,d 的八项轮换式的前二项是a 3b -(a -b),试接着写完全代数式_________________________________.3. 利用对称式性质做乘法,直接写出结果:① (x 2y+y 2z+z 2x )(xy 2+yz 2+zx 2)=_____________________. ② (x+y+z )(x 2+y 2+z 2-xy -yz -zx )=___________________.4. 计算:(x+y )5.5. 求(x+y )(y+z)(z+x)+xyz 除以x+y+z 所得的商.6. 因式分解:① ab(a -b)+bc(b -c)+ca(c -a);② (x+y+z)3-(x 3+y 3+z 3);③ (ab+bc+ca )(a+b+c)-abc ;④ a(b -c)3+b(c -a)3+c(a -b)3.7. 已知:abcc b a 1111=++. 求证:a, b, c 三者中,至少有两个是互为相反数.8. 计算:bc ac ab a a +--22+ca ba bc b b +--22+abcb ca c c +--22. 9. 已知:S =21(a+b+c ). 求证:16)(416)(416)(4222222222222222b a c a c a c b c b c b a b a -+-+-+-+-+- =3S (S -a )(S -b)(S -c).10. 若x,y 满足等式 x=1+y 1和y=1+x1且xy ≠0,那么y 的值是( ) (A )x -1. (B )1-x. (C )x. (D )1+x.参考答案1. y 3+z 3+y 2z+z 2x -2y 2z -2z 2x2. b 3c+c 3d+d 3a -(b -c)-(c -d)-(d -a)3. ②x 3+y 3+z 3-3xyz4. 设(x+y)5=a(x 5+y 5)+b(x 4y+xy 4)+c(x 3y 2+x 2y 3), a=1, b=5, c=10.5. 设原式=(x+y+z )[a(x 2+y 2+z 2)+b(xy+yz+zx)], a=0, b=1.6 .③当a=-b 时,原式=0, 原式=m(a+b)(b+c)(c+a) m=17. 由已知等式去分母后,使右边为0, 因式分解8. 19. 一个分式化为S (S -a )(S -b)(S -c)10. 选 C。
初中数学竞赛题选讲

初中数学竞赛题选讲(代数部分)一.内容主要分为四部分:1.代数式的求值问题2.方程与方程组的求解问题及其应用3.一元一次不等式(组)及二元一次不等式(组)的求解及应用4.二次函数问题二.代数式的求值的相关考点:1.关于整式的求值问题2.关于分式的化简与求值3.二次根式的化简与求值三.方程与方程组相关考点:1.一元一次方程与多元一次方程组;2.一元二次方程;3.可化为一元二次方程的方程;4.列方程组解应用题。
四.不等式(组)的考点:1.考察不等式组的解法2.不等式组的整数解问题3.不等式中字母范围的确定4.带绝对值的不等式解答5.利用不等式解决实际问题 五.二次函数考点: 1、二次函数的性质 2、二次函数的表达式3、二次函数与一元二次方程的关系4、根与系数的关系 六.有关知识拓展: (一)整式:1、高次二项式的变形:2、的变形:3、 的变形:4. 公式5.带余除:若关于x 的多项式A 与B 相除,商式为f(x),余式为Q(x),则: A=f(x)B+Q(x)()()()y x y x yx yx yxyx y xy xy x y x yx yx y x +++-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+-=+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+333344773326622223355233cabc ab c b a ---++222()()()⎥⎦⎤⎢⎣⎡++=-++-----a c c b b a cabc ab c b a22222221b a 33+()()()()b a ab b a b ab a b a b a ++++-=-=+332233()c b a ++2()()ca bc ab c b a c b a +++++++=22222(二)分式:运算法则:(三)二次根式:代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍. 一、灵活运用乘法公式和运算法则代数式的变形化简,离不开乘法公式、各种运算法则及它们的变形用法。
初中数学竞赛专题选讲《条件等式的证明》

初中数学竞赛专题选讲条件等式的证明一、内容提要1 恒等式:如果等式中所含的字母在允许值范围内,用任何实数值代替它,等式都能成立,那么这个等式叫做恒等式例如: ①ab=ba , ②ab 2=a 22abb 2, ③ -x 4=x x 42-≠0, ④a 2=a 在实数范围内a ≥0, ⑤n n a =a 在实数范围内n 为正奇数都是恒等式 只含常数的等式是恒等式的特例 如:3-2=1, 32321-=+2 条件等式:满足一定条件下的等式,称为条件等式 方程是条件等式,解方程就是求出能满足等式的条件未知数的值3 证明条件等式就是在题设的条件下,判断恒等式4 证明条件等式的方法,除和证明恒等式的一般方法见第20讲以外,要特别注意如何把已知的条件用上 一般有以下几种:① 用已知的条件直接代入即等量代换② 变形后代入包括把已知变形,或把结论变形③ 引入参数后代入包括换元5. 分式,根式在恒等变形时,要注意字母保持允许值的范围不变二、例题例1 已知:a z y x =+, b x z y =+, c yx z =+且≠0 求证:1111=+++++cc b b a a 分析:①设法化为同分母, ②轮换式可先代入一式,其余的可用同型式③用已知直接代入证明 :∵z y x x zy x z y xa a ++=+++=+11 根据 轮换式的性质,得∴c c b b a a +++++111=1=++++++++zy x z z y x y z y x x 例2 已知:cb ac b a ++=++1111求证:12121212)(1111++++++=++n n n n c b a c b a n 是整数 分析:先把已知变形,找出a, b, c 之间的关系证明:由已知,去分母,得bcabcacabcababc=abcabcbcacabab=0abbcca=0∴a=-b , 或b=-c , 或c=-a∵n 是整数, ∴2n1是奇数当a=-b 时 ,左边=12121212111)(1++++=++-n n n n c c b b ; 右边=12)(1+++-n c b b =121+n c 即a=-b 时,等式成立同理可证:当b=-c 和c=-a 时,等式也成立∴12121212)(1111++++++=++n n n n c b a c b a n 为整数 例3 已知:a 3=b 3=c 3, 1111=++zy x 求证:=++3222cz by ax 333c b a ++ 证明:设a 3=b 3=c 3= 引入参数那么a 2=x k, b 2=yk , c 2=z k 代入左边, 得 : 左边=333)111(k zy x k z k y k x k =++=++; 而且 a=3x k , b=3yk , c=3z k 代入右边, 得: 右边==++333333zk y k x k z y x 111++3k =3k ∴=++3222cz by ax 333c b a ++例4 已知: abc ≠0,方程ac -bc 2bc -abab -ac=0有两个相等实根求证:bc a b 1111-=- 分析:要等式b c a b 1111-=-成立,必须且只须ac -bc=ab -ac 证明:∵方程有两个相等的实数根,∴△=0即 bc -ab 2-4ac -bc ab -ac=0bc -abac -ac 24bc -acab -ac=0, 添项ac -ac[bc -ac -ab -ac ]24bc -acab -ac=0∴[bc -acab -ac ]2=0∴bc -acab -ac =0∴ ac -bc=ab -ac∵abc ≠0,两边都除以abc,得,bc a b 1111-=- 例5 已知:a a c c b b 111+=+=, a ≠b ≠c 求证:a 2b 2c 2=1证明:由已知a -b=b c 11-=bcc b -, ∵ a ≠b ,即a -b ≠0,∴bc=ba cb -- 根据轮换式性质,得同型式: ca=c b a c --, ab=ac b a -- ∴ ab ×bc ×ca=a c b a --×b a c b --× cb ac -- ∴a 2b 2c 2=1三、练习1 已知: abc=1 求证:1111=++++++++c ca c b bc b a ab a 2 已知: =b a b a +-, =c b c b +-, =a c a c +- 求证: 111=1-1-1-3 已知:a -b 2b -c 2c -a 2=0 求证:c z b y a x == 4 已知: cb b a = 求证: abc 2a 2b 2c 2=2abcac 5. 已知:zx y c y z x b x y z a +-=+-=+-222 求证:abc=0 6. 已知:b b ac a a c b c c b a -+=-+=-+, abc ≠0求证: 8))()((=+++abca c cb b a 7 已知: 19492=19882 且111=+yx , >0, >0 求证: 1988194919881949+=+y x8 已知:=ab ba 2-, 且ab a x x b a x a =++++)1)((1222122+b ab 0,0b x a x a x a x a 1=--+-++321420+321420-a z y x =+b x z y =+c yx z =+1111=+++++c c b b a a a k k b a c a c b c b a =+=+=+abb a 4)(2+0 9把左边分母有理化10左边被开方数配方a 2)2b 可得a=2,b=14. 用反比,合比12 0。
初中数学竞赛专题选讲换元法(含答案)

初中数学竞赛专题选讲(初三.8)换元法一、内容提要1. 换元就是引入辅助未知数.把题中某一个(些)字母的表达式用另一个(些)字母的表达式来代换,这种解题方法,叫做换元法,又称变量代换法.2. 换元的目的是化繁为简,化难为易,沟通已知和未知的联系.例如通过换元来降次,或化分式、根式为整式等.换元的关鍵是选择适当的式子进行代换.3. 换元要注意新旧变元的取值范围的变化.要避免代换的新变量的取值范围被缩小;若新变量的取值范围扩大了,则在求解之后要加以检验.4. 解二元对称方程组,常用二元基本对称式代换.5. 倒数方程的特点是:按未知数降幂排列后,与首、末等距离的项的系数相等.例如:一元四次的倒数方程ax 4+bx 3+cx 2+bx+a=0.两边都除以x 2,得a(x 2+21x )+b(x+x 1)+c=0. 设x+x 1=y, 那么x 2+21x = y 2-2, 原方程可化为ay 2+by+c -2=0.对于一元五次倒数方程 ax 5+bx 4+cx 3+cx 2+bx+a=0, 必有一个根是-1.原方程可化为 (x+1)(ax 4+b 1x 3+c 1x 2+b 1x+a)=0.ax 4+b 1x 3+c 1x 2+b 1x+a=0 ,这是四次倒数方程.形如 ax 4-bx 3+cx 2+bx+a=0 的方程,其特点是:与首、末等距离的偶数次幂项的系数相等,奇数次幂的系数是互为相反数.两边都除以x 2, 可化为a(x 2+21x)-b(x -x 1)+c=0. 设x -x 1=y, 则x 2+21x=y 2+2, 原方程可化为 ay 2-by+c+2=0.二、例题例1. 解方程1112---++x x x =x. 解:设11-++x x =y, 那么y 2=2x+212-x .原方程化为: y -21y 2=0 . 解得 y=0;或y=2.当y=0时,11-++x x =0 (无解) 当y=2时, 11-++x x =2,解得,x=45. 检验(略). 例2. 解方程:x 4+(x -4)4=626.解:(用平均值24-+x x 代换,可化为双二次方程.) 设 y= x -2 ,则x=y+2.原方程化为 (y+2)4+(y -2)4=626.[((y+2)2-(y -2)2)2+2(y+2)2(y -2)2-626=0整理,得 y 4+24y 2-297=0. (这是关于y 的双二次方程).(y 2+33)(y 2-9)=0.当y 2+33=0时, 无实根 ;当y 2-9=0时, y=±3.即x -2=±3,∴x=5;或x=-1.例3. 解方程:2x 4+3x 3-16x 2+3x+2=0 .解:∵这是个倒数方程,且知x ≠0,两边除以x 2,并整理 得2(x 2+21x )+3(x+x 1)-16=0. 设x+x 1=y, 则x 2+21x =y 2-2. 原方程化为 2y 2+3y -20=0.解得 y=-4;或y=25. 由y=-4得 x=-2+3;或x=-2-3.由y=2.5得 x=2;或x=21. 例4 解方程组⎪⎩⎪⎨⎧=+++++=+++++01012124012522222y x y xy x y x y xy x解:(这个方程组的两个方程都是二元对称方程,可用基本对称式代换.) 设x+y=u, xy=v. 原方程组化为:⎪⎩⎪⎨⎧=+++=+++010********v u u v u u . 解得⎩⎨⎧-==374v u ; 或⎪⎪⎩⎪⎪⎨⎧=-=91132v u . 即⎩⎨⎧-==+374xy y x ; 或⎪⎪⎩⎪⎪⎨⎧=-=+91132xy y x . 解得:⎪⎪⎩⎪⎪⎨⎧--=+-=33213321y x ;或⎪⎪⎩⎪⎪⎨⎧+-=--=33213321y x ;或⎪⎩⎪⎨⎧-=+=412412y x ;或⎪⎩⎪⎨⎧+=-=412412y x .三、练习解下列方程和方程组:(1到15题): 1. =++++)7(27x x x x 35-2x.2. (16x 2-9)2+(16x 2-9)(9x 2-16)+(9x 2-16)2=(25x 2-25)2.3. (2x+7)4+(2x+3)4=32 .4. (2x 2-x -6)4+(2x 2-x -8)4=16.5. (2115-+x )4+(2315-+x )4=16.6. x x x x 112+++=223. 7. 2x 4-3x 3-x 2-3x+2=0. 8. ⎪⎩⎪⎨⎧=++=+++19182222xy y x y x y x 9. ⎪⎩⎪⎨⎧=+=+160311122y x y x . 10. 563964467222+-=+-+--x x x x x x . 11. (6x+7)2(3x+4)(x=1)=6.12. ⎪⎩⎪⎨⎧=+=-++13511y x y x . 13. ⎪⎩⎪⎨⎧=+=+1025y x x y y x .14. ⎪⎩⎪⎨⎧=+-+=-+++01823312y xy y y x y x . 15x xx x =-+-111. 16. 分解因式: ①(x+y -2xy)(x+y -2)+(1-xy)2; ②a 4+b 4+(a+b)4 .17. 已知:a+2=b -2=c ×2=d ÷2, 且a+b+c+d=1989.则a=___,b= ____,c=_____,d=____18. [a ]表示不大于a 的最大整数,如[2]=1,[-2]=-2,那么 方程 [3x+1]=2x -21 的所有根的和是_____.参考答案 1. 221229 2. ±43±34 3. -25 4. 2,-23,4651± 5.3231-32211, 6. 1 7.21,2 8.⎪⎩⎪⎨⎧+-=--=⎪⎩⎪⎨⎧--=+-=⎩⎨⎧==⎩⎨⎧==727272722332y x y x y x y x 9. ⎪⎩⎪⎨⎧+-=--=⎪⎩⎪⎨⎧--=+-=⎩⎨⎧==⎩⎨⎧==555555555555412124y x y x y x y x 10. 7,-111.-32,-3512.⎩⎨⎧==⎩⎨⎧==10358y x y x 13.⎩⎨⎧==⎩⎨⎧==8228y x y x 14. ⎪⎩⎪⎨⎧+=-=⎪⎩⎪⎨⎧-=+=⎩⎨⎧-==⎩⎨⎧==1031041031041513y x y x y x y x 15. x=251± 16.①设x+y=a,xy=b ②设a 2+b 2=x,ab=y17.设原式=k, k=44218. –2可设2x -21=t, x=21t+41代入[3x+1]。
(完整版)初中数学竞赛专题选讲-配方法(含答案)

初中数学竞赛专题[配方法]一、内容提要1. 配方:这里指的是在代数式恒等变形中,把二次三项式a2土2ab+b2写成完全平方式(a土b) 2.有时需要在代数式中添项、折项、分组才能写成完全平方式.常用的有以下三种:①由a +b配上2ab, ②由 2 ab 配上a +b ,③由a2土2ab配上b2.2. 运用配方法解题,初中阶段主要有:①用完全平方式来因式分解例如:把x4+4因式分解.2 2 2 2 2母乱=x +4 + 4x — 4x =(x +2) — 4x = ...........这是由a2+b2配上2ab.②二次根式化简常用公式:福|a ,这就需要把被开方数写成完全平方式.例如:化简、一5一2 6.我们把5-2*写成2 - 2逐+ 3=(克V - ^ 2^3 + (V3)2=(V2 —V3 ).这是由2 ab配上a2+b2.③求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即a >0, .,•当a=0时, a2的值为0是最小值.例如:求代数式a2+2a — 2的最值... a2+2a— 2= a2+2a+1 - 3=(a+1) 2- 3当a=— 1时,a +2a— 2有最小值—3.这是由a2土2ab配上b2④有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方.例如::求方程x2+y2+2x-4y+5=0的解x, y.解:方程x2+y2+2x-4y+1 + 4= 0.配方的可化为(x+1) 2+(y - 2) 2=0.要使等式成立,必须且只需x 1 0y 2 0x 1 y2解得此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.二、例题2 2 2 2例 1.因式分解:a b —a +4ab— b +1.解:a b — a +4ab — b +1 = a b +2ab+1+( — a +2ab — b ) (折项,分组)=(ab+1 ) 2 - (a - b):(配方)= (ab+1+a-b ) (ab+1-a+b) (用平方差公式分解)本题的关键是用折项,分组,树立配方的思想^例2.化简下列二次根式:①J7 5 ;②*2焰;③了10时3 2豆. 解:化简的关键是把被开方数配方①(7 4>/3 = J4 2 2/3 3 = J(2 V3)2=2 < 3 = 2 + 43.②户=居=疗=\吁<2(73 1)=无V2 2 . 2③\;10 4^3 2龙=寸10 4》(。
初中数学竞赛专题选讲

初中数学竞赛专题选讲图象法一、内容提要1. 在讲(一元二次方程)中,根据根的判别式和根与系数的关系,介绍了存在实数根,有理数根,整数根的充分必要条件.2. 要讨论两个实数根的符号,则可以建立不等式组.方程ax 2+bx+c=0中,① 有两个实数根的充分必要条件是⎩⎨⎧≥∆≠00a ②有两个正实数根的充要条件是⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≥∆00-0ac ab (a ≠0包含在0 >ac 之中) ③有一正一负实数根的充要条件是0<ac (a ≠0,△>0均已包含在内) ④有一正一负实根且负根绝对值较大的充要条件是⎪⎪⎩⎪⎪⎨⎧<-<00ab a c3. 在较小区间内讨论实数根,则常利用图象来建立不等式组.4. 一些含有绝对值符号的方程、不等式的题解,也可借助图象.二、例题例1..已知:方程7x 2-(k+13)x+k 2-k -2=0的两个实数根x 1,x 2满足:0<x 1<1<x 2<2.求:k 的取值范围. (1990年全国初中数学联赛题)解:先画出二次函数y=7x 2-(k+13)x+k 2-k -2的图象的略图.根据图象的开口方向是向上,它与横轴有两个交点,这两点在点(1,0)的两旁,的大体位置是:分析图象 可知当x=0 时,y>0, 记作f(0)>0;当x=1时,y<0, f(1)<0;当x=2时,y>0, f(2)>0.得不等式组 ⎪⎪⎩⎪⎪⎨⎧>--++-<--++->--.02)13(202)13(02222k k k k k k k k ;;解这个不等式组得⎪⎩⎪⎨⎧><<<->-<.30422 1k k k k k 或;;或∴原不等式组解集是 -2<k<-1;或3<k<4.答:k 的取值范围是 -2<k<-1;或3<k<4时.本题由三个点的横坐标0,1,2和它所对应的纵坐标范围建立不等式组.例2. m 取什么值时,方程x 2+(m+2)x+3=0的两个根都大于1?解:根据抛物线y= x 2+(m+2)x+3的开口向上;它在纵轴的交点为(0,3);与横轴的两个交点都在点(1,0)右边. 得图象的略图如下(左、右两图):据图象分析当x=1时, y>0; 顶点横坐标 -ab 2>1;纵坐标a b ac 442-≤0. 得不等式组⎪⎪⎪⎩⎪⎪⎪⎨⎧≤+->+->+++.04)2(1212203212m m m ,, 解这个不等式组得⎪⎩⎪⎨⎧--≤+-≥-<>.32232246m m m m 或,,∴原不等式组解集是 -6<m ≤-2-23.答:当-6<m ≤-2-23时,方程x 2+(m+2)x+3=0的两个根都大于1.本题只有一个特殊点,故用了抛物线的顶点横、纵坐标.例3.已知:方程(1-m 2)x 2+2mx -1=0的两个实数根都在0到1之间(不包括0和1).求:m 的取值范围.解:函数y=(1-m 2)x 2+2mx -1的图象可由:①它在纵轴上的截距是-1;②与横轴的两个交点在0到1之间.得知开口是向下的,画出略图如下::从图象分析:a<0; f(1)<0; 0<-ab 2<1 . 得不等式组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<--<<-+-<-.1)1(220012101 222m m m m m ,,解这个不等式组 得⎪⎪⎪⎩⎪⎪⎪⎨⎧+>-<>><>-<.25125102011m m m m m m m 或,,或,或∴不等式组解集是 m>2.本题因抛物线的顶点横坐标,上下都有界,故不用顶点的纵坐标.例4.已知:方程x 2+2px+6=0的两个实数根,一根大于1,另一根小于1.求:p 的值.解:根据抛物线y= x 2+2px+6的开口向上,它与横轴的两个交点的大致位置,画出略图如下:根据图象可知:f (1)<0;顶点纵坐标a b ac 442-<0. 得不等式组⎪⎩⎪⎨⎧<--<-++.044)6(406212p p p p , 解这个不等式组, 得⎩⎨⎧>-<-<.237p p p 或, ∴不等式组解集是p<-7 . 答(略)本题因顶点横坐标无法定,故只有两个不等式. 其实只要f (1)<0就可以了.关键是建立充分必要条件的不等式组.注意:(1)若方程可求得有理数根时,则可以直接建立不等式组. 如:例3 可得两个根为11+m 和11-m ; (2)若符合基本对称式,则可用韦达定理来解.如: 例4 可用x 1-1>0, x 2-1<0建立不等式(x 1-1)(,x 2-1)<0.左边去括号后,再转化为关于p 的不等式.例5. a 取什么值时,方程12+=-a x 无解? ②有3个解?③两个解?解:画出函数y=1-2-x 和y=a 的图象 ,它们的交点就是方程的解.∵直线y=a 平行于横轴.∴①当a <-1时,直线y=a 与y=1-2-x 没有交点,即方程无解;②当a =1时,直线y=1 与. y=1-2-x 恰好有3个公共点,即方程12+=-a x 有3个解.;③.当a=-1或a>1时,y=a 与y=1-2-x 都有2个公共点,就是方程有2个解.例6. 求代数式|x+1|+|x -1|+|x+2| 在-2<x<2 区间内的最大值和最小值.解:作函数 y=|x+1|+|x -1|+|x+2| 的图象.由图象可知:当x=-1, y 有最小值 3;当x=2时,y 有最大值 8.∴代数式 |x+1|+|x -1|+|x+2| 有最大值8和最小值 3.。
初中数学竞赛专题选讲(初三.22)

初中数学竞赛专题选讲(初三.22)辅助圆一、内容提要1.经过两个点可以画无数个圆;经过三个点作圆,必须是不在同一直线上的三个点,可以作一个圆,并且只能作一个圆.2.经过四点作圆(即四点共圆)有如下的判定定理:①到一个定点的距离相等的所有的点在同一个圆上(圆的定义).②一组对角互补的四边形顶点在同一圆上.③一个外角等于它的内对角的四边形顶点共圆.④同底同侧顶角相等的三角形顶点共圆.推论:同斜边的直角三角形顶点共圆(斜边就是圆的直径).3.画出辅助圆就可以应用圆的有关性质.常用的有:①同弧所对的圆周角相等.②圆内接四边形对角互补,外角等于内对角.③圆心角(圆周角)、弧、弦、弦心距的等量关系.④圆中成比例线段定理:相交弦定理,切割线定理.4.证明型如ab+cd=m2常用切割线定理二、例题例1.已知:点O是△ABC的外心,BE,CD是高.求证:AO⊥DE证明:延长AO交△ABC的外接圆于F,连接BF.∵O是△ABC的外心∴AF是△ABC外接圆的直径,∠ABF=Rt∠.∵BE,CD是高,∠BDC=∠CEB=Rt∠.∴B,C,E,D四点共圆(同斜边的直角三角形顶点共圆)∴∠ADE=∠ECB=∠F.∴∠AGD=∠ABF=Rt∠,即AO⊥DE.例2.正方形ABCD的中心为O,面积为1989cm2,P为正方形内的一点,且∠OPB=45 ,PA ∶PB=5∶14,则PB=____cm. 解:∵∠OPB=∠OAB=45∴ABOP 四点共圆(同底同侧顶角相等的三角形顶点共圆) ∴∠APB=∠AOB=Rt ∠.在Rt △APB 中,设PA 为5x ,则PB 是14x. ∴(5x)2+(14x)2=1989. 解得x=3, 14x.=42. ∴PB=42 (cm).例3.已知:平行四边形ABCD 中,CE ⊥AB 于E ,AF ⊥BC 于F. 求证:AB ×AE+CB ×CF=AC 2. 证明:作BG ⊥AC 交AC 于G. ∵CE ⊥AB , AF ⊥BC.∴A ,F ,B ,G 和B ,E ,C ,G 分别共圆. (对角互补的四边形顶点共圆)根据切割线定理,得 AB ×AE=AG ×AC CB ×CF=CG ×AC∴AB ×AE+CB ×CF=AC(AG+CG)=AC 2.例4.已知:AD 是Rt △ABC 斜边的高,角平分线BE 交AD 于F. 求证:AE 2=AB 2-BE ×BF.分析:根据同角的余角相等,可证AE=AF. 由射影定理AB 2=BD ×BC.故只要证AE ×AF =BD ×BC -BE ×BF 创造应用切割线定理的条件,作△ABC 的 外接圆并延长BE 交圆于G ,得 F 、D 、C 、G 四点共圆 . ∴ BD ×BC=BF ×BG .∴右边= BF ×BG .- BE ×BF=BF(BG -BE)=BF ×EGC从而转为要证AE ×AF= BF ×BG . 即AFEGBF AE只要证△AEG ∽△BFA ……(证明由同学自已完成)例5已知:从⊙O 外一点P 作⊙O 的两条切线PA ,PB 切点A 和B ,在AB 上任取一点C ,经过点C 作OC 的垂线交PA 于M ,交PB 于N.求证:OM=ON. 证明:连结OA ,OB .∵A ,B 是切点 ∴OA ⊥PA ,OB ⊥PB. 又∵OC ⊥MN.∴A ,M ,C ,O 和B ,N ,O ,C(辅助圆可以不画)根据同弧所对的圆周角相等,得 ∠OAC=∠OMC , ∠ONC=∠OBC. ∵OA=OB , ∴∠OAC=∠OBC. ∴∠OMC=∠ONC , ∴OM=ON.。
初中数学竞赛题选讲知识点梳理

初中数学竞赛题选讲知识点梳理数学竞赛在初中阶段是一项受到广泛关注的活动,无论是对学生的数学能力的考察还是对数学知识的综合运用都提出了高要求。
在数学竞赛中,学生所面临的题目类型和考点非常多样化和丰富。
为了帮助同学们更好地应对数学竞赛,笔者将按照常见的数学竞赛题目类型,梳理其中涉及的重要知识点,以供大家参考。
1. 空间几何题空间几何题是数学竞赛中的一类常见题型,主要考察学生对几何形体的认识和推理能力。
在此类题目中,常见的几何形体包括立体图、平面图和几何体的侧视图、俯视图和正视图。
知识点梳理:- 几何体的名称与特点:如球体、长方体、正方体等。
- 几何体的计算:包括体积、表面积的计算公式。
- 侧视图、俯视图和正视图之间的转换与关系:学会根据图形的特点判断几何体的形状和位置。
2. 数列与函数题数列与函数题在数学竞赛中常常出现,涉及到同学们熟悉的数列概念和函数的运算求解。
知识点梳理:- 数列的概念与性质:包括等差数列、等比数列等。
学生需要了解数列的通项公式、前n项和等概念等。
- 数列的运算:同学们需要掌握数列的加法、减法及乘法等运算,以及运用这些运算求解问题的能力。
- 函数的概念与性质:学生需要理解函数的定义、函数的图像以及函数的性质等。
- 函数的运算与组合:包括函数相加、相减、相乘等基本运算,以及函数的复合等。
3.方程与不等式题方程与不等式题在数学竞赛中也是常见的题型,主要考察学生的方程与不等式的解法和推理能力。
知识点梳理:- 一元一次方程与一元一次不等式:学生需要掌握解一元一次方程和不等式的基本方法,并能灵活应用于问题求解。
- 二元一次方程与二元一次不等式:同学们需要熟悉解二元一次方程和不等式的方法,包括图形解法和代入法等。
- 绝对值方程与绝对值不等式:学生需要理解绝对值的概念,掌握解绝对值方程和不等式的方法。
- 分式方程与分式不等式:同学们需要了解分式方程和不等式的性质,并学会解这类问题的方法。
4.概率与统计题概率与统计题在数学竞赛中也经常出现,主要考察学生对概率与统计的基本理解和运用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛专题选讲
倍数约数
一、内容提要
1两个整数A和B(B≠0),如果B能整除A(记作B|A),那么A叫做B的倍数,B 叫做A的约数。
例如3|15,15是3的倍数,3是15的约数。
2因为0除以非0的任何数都得0,所以0被非0整数整除。
0是任何非0整数的倍数,非0整数都是0的约数。
如0是7的倍数,7是0的约数。
3整数A(A≠0)的倍数有无数多个,并且以互为相反数成对出现,0,±A,±2A,……都是A的倍数,例如5的倍数有±5,±10,……。
4整数A(A≠0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括±1和±A。
例如6的约数是±1,±2,±3,±6。
5通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的公约数。
6公约数只有1的两个正整数叫做互质数(例如15与28互质)。
7在有余数的除法中,
被除数=除数×商数+余数若用字母表示可记作:
A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除
例如23=3×7+2则23-2能被3整除。
二、例题
例1写出下列各正整数的正约数,并统计其个数,从中总结出规律加以
应用:2,22,23,24,3,32,33,34,2×3,22×3,22×32。
解:列表如下
其规律是:设A=a m b n(a,b是质数,m,n是正整数)
那么合数A的正约数的个是(m+1)(n+1)
例如求360的正约数的个数
解:分解质因数:360=23×32×5,
360的正约数的个数是(3+1)×(2+1)×(1+1)=24(个)
例2用分解质因数的方法求24,90最大公约数和最小公倍数
解:∵24=23×3,90=2×32×5
∴最大公约数是2×3,记作(24,90)=6
最小公倍数是23×32×5=360,记作[24,90]=360
例3己知32,44除以正整数N有相同的余数2,求N
解:∵32-2,44-2都能被N整除,∴N是30,42的公约数
∵(30,42)=6,而6的正约数有1,2,3,6
经检验1和2不合题意,∴N=6,3
例4一个数被10余9,被9除余8,被8除余7,求适合条件的最小正整数
分析:依题意如果所求的数加上1,则能同时被10,9,8整除,所以所求的数是10,9,8的最小公倍数减去1。
解:∵[10,9,8]=360,
∴所以所求的数是359
三、练习
1,12的正约数有_________,16的所有约数是_________________
2,分解质因数300=_________,300的正约数的个数是_________
3,用分解质因数的方法求20和250的最大公约数与最小公倍数。
4,一个三位数能被7,9,11整除,这个三位数是_________
5,能同时被3,5,11整除的最小四位数是_______最大三位数是________
6,己知14和23各除以正整数A有相同的余数2,则A=________
7,写出能被2整除,且有约数5,又是3的倍数的所有两位数。
答____
8,一个长方形的房间长1.35丈,宽1.05丈要用同一规格的正方形瓷砖铺满,问正方形最大边长可以是几寸?若用整数寸作国边长,有哪几种规格的正方形瓷砖适合?
9,一条长阶梯,如果每步跨2阶,那么最后剩1阶,如果每步跨3阶,那么最后剩2阶,如果每步跨4阶,那么最后剩3阶,如果每步跨5阶,那么最后剩4阶,如果每步跨6阶,那么最后剩5阶,只有每步跨7阶,才能正好走完不剩一阶,这阶梯最少有几阶?
练习参考答案
1. 1,2,3,4,6,12;±1,±2,±3,±6,±9,±18
2. 22×3×52;18
3. 2×5;22×53
4. 693
5. [3,5,11]=165,1155;990
6. A=3 即求14-2与23-2的公约数
7. 30,60,90
8.(135,105)=15,正约数有1,3,5,15
9.119。
∵[2,3,4,5,6]=60,60×2-1=119。