(完整)初中数学竞赛相似三角形专题
(完整版)相似三角形专题

【一】知识梳理 【1】比例①定义:四个量a,b,c,d 中,其中两个量的比等于另两个量的比,那么这四个量成比例 ②形式:a:b=c:d ,③性质:基本性质:dcb a = ac=bd4,比例中项:bcc a = ab c =2【2】黄金分割定义:如图点C 是AB 上一点,若BC AB AC •=2,则点C 是AB 的黄金分割点,一条线段的黄金分割点有两个ACAC BC AB AB BC AB AB AC 618.0215382.0253618.0215≈-=≈-=≈-=注意:如图△ABC ,∠A=36°,AB=AC ,这是一个黄金三角形,【3】平行线推比例AB AB BC 618.0215≈-=dcb a =注:比例式有顺序性的,比例线段没有负的,比例数有正有负1、可以把比例式与等积式互化。
2、可以验证四个量是否成比例 上比全=上比全,下比全=下比全,上比下=上比下,左比右=左比右 全比上=全比上,全比下=全比下 下比上=下比上【4】相似三角形1、相似三角形的判定①AA 相似:∵∠A=∠D, ∠B=∠E ∴△ABC ∽△DEF②‘S A S ’ E B EFBCDE AB ∠=∠=,∴△ABC ∽△DEF③‘S S S ’EFBCDF AC DE AB =∴△ABC ∽△DEF ④平行相似: ∵DE ∥BC ∴△ADE ∽△ABC2、相似三角形的性质①相似三角形的对应角相等,对应边成比例②相似三角形的对应高的比、对应中线的比、对应角平分线的比、对应周长的比都等于相似比③相似三角形的面积比等于相似比的平方3、相似三角形的常见图形‘A 型图’ ‘ X 型图’ ‘K 型图’‘母子图’ ‘一般母子图’ AC 2=AD •AB母子图中的射影定理AC 2=AD •AB BC 2=BD •AB CD 2=AD •BD【二】题型 1、求线段的比【例题1】如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1, l 2, l 3于点A ,B ,C ;直线DF 分别交l 1, l 2, l 3于点D ,E ,F .AC 与DF 相较于点H ,且AH=2,HB=1,BC=5则EFDE的值为【例题2】如图,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且AD ∶DB = 3∶5,那么CF ∶CB 等于(1) (2)【例题3】如图,点D 是△ABC 的边AB 上一点,且AB=3AD ,点P 是△ABC 的外接圆上的一点,且∠ADP=∠ACB 则PB:PD=【例题4】如图,已知AD 为△ABC 的角平分线,DE ∥AB 交AC 于E , 如果AE EC =23,那么ABAC =( ) A .13B .23C .25D .35(3) (4)【例题5】 已知32==d c b a ,则ba ba 4332-+=求a 比b 的方法:①求a,b 的长度,②设k 法,③利用三角形相似的性质,④平行推比例线段⑤比例分配32=-a b a ,则ba=【例题6】如图,将矩形纸片ABCD(AD>DC)的一角沿着过点D 的直线折叠,使点A 与BC 边上的点E 重合,折痕交AB 于点F.若BE:EC=m:n ,则AF:FB= .【例题7】如图所示,将矩形ABCD 折叠,使点B 落在边AD 上,点B 与点F 重合,折痕为AE,此时,矩形EDCF 与矩形ABCD 相似,则ABAD= .【例题8】如图,Rt △ABC 内接于⊙O ,∠,A=90°,AB=4,AC=3,D 为弧AB 的中点,则DECE=(6)(7) (8)【例题9】在Rt △ABC 中,∠ACB=90°,CD 为AB 的中线,AN ⊥CD ,交BC 于N,若CD=3,AN=4,则tan ∠CAN=2、相似三角形的性质与判定【例题1】如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )【例题2】如图,已知△ABC ,P 是边AB 上的一点,连结CP ,以下条件中不能确定△ACP 与△ABC 相似的是( )A ∠ACP=∠B , B ∠APC=∠ACBC AC 2=AP.ABD BCABCP AC【例题3】已知四边形ABCD 与四边形A /B /C /D /,且AB:BC:CD:DA=20:15:9:8,若四边形A /B /C /D /为26,则A /B /的长为【例题4】 如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为【例题5】如图,P 为□ABCD 的边AD 上一点,E,F 分别为PB,PC 的中点, △PEF 的面积为3,则平行四边形的面积是已知两个相似三角形的对应高的比为3:10,面积差为100,则大三角形的面积为【例题6】如图,将边长为6的正方形ABCD 折叠,使点D 落在AB 的中点E处,折痕为FH ,点C 落在点Q 出,EQ 与BC 相较于点G ,则△EBG 的周长为(4) (5) (6)【例题7】如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为多少?【例题8】如图,AB=4,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,BE=DB ,作EF ⊥DE 并截取EF=DE ,连结AF 并延长交射线BM 于点C .设BE=x ,BC=y ,则y 关于x 的函数解析式是点拨:同一时刻、同一地点,物高与影长的比是 定值3、相似三角形讨论方法1、固定一个角,按AA讨论,2、按夹相等角得两边的比值相等讨论【例题1】直线y=-x+1分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.(1)写出点A、B、C、D的坐标;(2)求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3)在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD 相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【例题2】已知二次函数y=ax2+bx的图象经过点A(-5,0)和点B,其中点B1在第一象限,且OA=OB,tan∠BAO=2(1)求点B的坐标。
初中数学相似三角形模型(题型)大全-值得收藏

初中数学相似三角形模型(题型)大全-值得收藏一、比的性质:特征:比的基本性质,合比性质,等比性质 例1:已知,3==d c b a ,则ddc b b a 22+=+=( ) 例2:如果P 是线段AB 的黄金分割点,且AP >PB ,则下列各等式①AB 2=AP •PB , ②AP 2=PB •AB ,③BP 2=AP •PB ,④AP /AB=PB /AP 中,正确的是( )例3:已知k cba a cb bc a =+=+=+,则k 的值为( ) 二、平行A 字型如图(1)DE//BC ,则△ADE ∽△ABC 特征:△ADE ∽△ABC ⇒AD AE DEAB AC BC==应用1:(求线段的长)例1. 如图(2)DE//BC,且DB=AE,若AB=5,AC=10,则AE 的长为(103) 角度:平行产生比例 DE ∥BC 51051010,103AB AC AE BD EC AE EC AE AE ⇒=∴=∴==- PB例2.如图(3)△ABC 中,BC = a 是AB 边的五等分点;1234,,,C C C C 是AC 边的五等分点,则11223344B C B C B C B C +++=(2a )应用2:(证明比例线段)例3.如图(4),DE//BC//AF ,求证:111DE AF BC=+ 证明:分析:此题用了两个平行A 字型 在△ABC 中,DE//BC ,AD DE⇒= ①在△ABF 中,DE//AF ,DB DEAB AF⇒=② ①+②得AD DB DE DEAB BC AF+=+111()111DE BC AFDE BC AF ∴=+∴=+应用3:(证明线段相等) 例4.如图(5),一直线与△ABC 的边AB ,AC 及BC 的延长线分别交于D 、E 、F 。
求证:若AE BFEC CF=,则D 是AB 的中点。
证明:作CM//BA 与EF 交于M ,则△ADE ∽△CME//AD AEAE BF AD BFBD BFCM BD CM ECEC CF CM CFCM CF∴==∴=∴=因此,.AB AD BDAD BD CM CMD ==∴从而是的中点。
专题28 相似三角形篇(解析版)

专题28 相似三角形考点一:比例1. 比例的性质:①基本性质:两内项之积等于量外项之积。
即若d c b a ::=,则ad bc =。
②合比性质:若d c b a =,则d d c b b a +=+。
③分比性质:若d c b a =,则d d c b b a -=-。
④合分比性质:若d c b a =,则d c d c b a b a -+=-+。
⑤等比性质:若n m d c b a ===...,则n m d c b a n d b m c a ====++++++.........。
2. 比例线段:若四条线段d c b a ,,,,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如d c b a ::=(即ad bc =),我们就说这四条线段是成比例线段,简称比例线段。
3. 平行线分线段成比例:三条平行线被两条直线所截,所得的对应线段成比例。
即如图:有EFDE BC AB =;DFDE AC AB =;DFEF AC BC =。
推论:①平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
②如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
③平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。
1.(2022•镇江)《九章算术》中记载,战国时期的铜衡杆,其形式既不同于天平衡杆,也异于称杆.衡杆正中有拱肩提纽和穿线孔,一面刻有贯通上、下的十等分线.用该衡杆称物,可以把被称物与砝码放在提纽两边不同位置的刻线上,这样,用同一个砝码就可以称出大于它一倍或几倍重量的物体.图为铜衡杆的使用示意图,此时被称物重量是砝码重量的 倍.【分析】根据比例的性质解决此题.【解答】解:由题意得,5m被称物=6m砝码.∴m被称物:m砝码=6:5=1.2.故答案为:1.2.2.(2022•巴中)如图,在平面直角坐标系中,C为△AOB的OA边上一点,AC:OC=1:2,过C作CD ∥OB交AB于点D,C、D两点纵坐标分别为1、3,则B点的纵坐标为( )A.4B.5C.6D.7【分析】根据CD∥OB得出,根据AC:OC=1:2,得出,根据C、D两点纵坐标分别为1、3,得出OB=6,即可得出答案.【解答】解:∵CD∥OB,∴,∵AC:OC=1:2,∴,∵C 、D 两点纵坐标分别为1、3,∴CD =3﹣1=2,∴,解得:OB =6,∴B 点的纵坐标为6,故选:C .3.(2022•临沂)如图,在△ABC 中,DE ∥BC ,32 DB AD ,若AC =6,则EC =( )A .56B .512C .518D .524【分析】利用平行线分线段成比例定理解答即可.【解答】解:∵DE ∥BC ,∴=,∴,∴,∴EC =.故选:C .4.(2022•丽水)如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A ,B ,C 都在横线上.若线段AB =3,则线段BC 的长是( )A .32B .1C .23D .2【分析】过点A 作平行横线的垂线,交点B 所在的平行横线于D ,交点C 所在的平行横线于E ,根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:过点A作平行横线的垂线,交点B所在的平行横线于D,交点C所在的平行横线于E,则=,即=2,解得:BC=,故选:C.5.(2022•襄阳)如图,在△ABC中,D是AC的中点,△ABC的角平分线AE交BD于点F,若BF:FD=3:1,AB+BE=33,则△ABC的周长为 .【分析】如图,过点F作FM于点M,FN⊥AC于点N,过点D作DT∥AE交BC于点T.证明AB =3AD,设AD=CD=a,证明ET=CT,设ET=CT=b,则BE=3b,求出a+b,可得结论.【解答】解:如图,过点F作FM⊥AB于点M,FN⊥AC于点N,过点D作DT∥AE交BC于点T.∵AE平分∠BAC,FM⊥AB,FN⊥AC,∴FM=FN,∴===3,∴AB=3AD,设AD =DC =a ,则AB =3a ,∵AD =DC ,DT ∥AE ,∴ET =CT ,∴==3,设ET =CT =b ,则BE =3b ,∵AB +BE =3,∴3a +3b =3,∴a +b =,∴△ABC 的周长=AB +AC +BC =5a +5b =5,故答案为:5.6.(2022•哈尔滨)如图,AB ∥CD ,AC ,BD 相交于点E ,AE =1,EC =2,DE =3,则BD 的长为( )A .23B .4C .29D .6【解答】解:∵AB ∥CD ,∴△ABE ∽△CDE ,∴=,即=,∴BE =1.5,∴BD =BE +DE =4.5.故选:C .7.(2022•雅安)如图,在△ABC 中,D ,E 分别是AB 和AC 上的点,DE ∥BC ,若12 BD AD ,那么BCDE =( )A .94B .21C .31D .32【分析】根据相似三角形的判定定理和性质定理解答即可.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴=,∵=,∴=,∴==.故选:D .8.(2022•凉山州)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,若DE ∥BC ,32 BD AD ,DE =6cm ,则BC 的长为( )A .9cmB .12cmC .15cmD .18cm【分析】根据=,得到=,根据DE ∥BC ,得到∠ADE =∠B ,∠AED =∠C ,得到△ADE ∽△ABC ,根据相似三角形对应边成比例即可得出答案.【解答】解:∵=,∴=,∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C ,∴△ADE ∽△ABC ,∴=,∴=,∴BC =15(cm ),故选:C .9.(2022•鞍山)如图,AB ∥CD ,AD ,BC 相交于点E ,若AE :DE =1:2,AB =2.5,则CD 的长为 .【分析】由平行线的性质求出∠B =∠C ,∠A =∠D ,其对应角相等得△EAB ∽△EDC ,再由相似三角形的性质求出线段CD 即可.【解答】解:∵AB ∥CD ,∴∠B =∠C ,∠A =∠D ,∴△EAB ∽△EDC ,∴AB :CD =AE :DE =1:2,又∵AB =2.5,∴CD =5.故答案为:5.10.(2022•上海)如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC 上,BC DE AB AD ,则AC AE = .【分析】利用平行线截线段成比例解答.【解答】解:∵D 为AB 中点,∴=.当DE ∥BC 时,△ADE ∽△ABC ,则===.当DE 与BC 不平行时,DE =DE ′,=.故答案是:或.11.(2022•宜宾)如图,△ABC 中,点E 、F 分别在边AB 、AC 上,∠1=∠2.若BC =4,AF =2,CF =3,则EF = .【分析】由∠1=∠2,∠A =∠A ,得出△AEF ∽△ABC ,再由相似三角形的性质即可得出EF 的长度.【解答】解:∵∠1=∠2,∠A =∠A ,∴△AEF ∽△ABC ,∴,∵BC =4,AF =2,CF =3,∴,∴EF =,故答案为:.考点二:相似三角形的性质1.相似图形的概念:把形状相同的图形称为相似图形。
人教版初中数学九年级下册27.2:相似三角形 解答题专项

人教版九年级下册27.2相似三角形解答题专项1.如图,△ABC中,BD平分∠ABC,E为BC上一点,∠BDE=∠BAD=90°.(1)求证:BD2=BA•BE;(2)若AB=6,BE=8,求CD的长.2.如图,在正方形ABCD中,E是AD边的中点,AP⊥BE于点P,延长AP交CD于点F,连接CP.(1)求证:①BP=2AP;②PC=BC;(2)求的值.3.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若△MBN与△ABC相似,求t的值.(2)当t为何值时,四边形ACNM的面积最小?并求出最小值.4.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)判定△ABP与△PCD是否相似,说明理由;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.5.如图,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若=3,求的值.6.如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD、BC交于点E,连接AC、BD.(1)求证:AB=AE;(2)若AB=5,DE=2,求线段CE的长.7.如图,在平行四边形ABCD中,过点A作AE垂直BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=6,AD=8,AF=4,求AE的长.8.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s速度向点c移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t 秒.(1)根据题意知:CQ=cm,CP=cm;(用含t的代数式表示)(2)t为何值时,△CPQ与△ABC相似.9.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.10.如图,已知∠DAB=∠ECB,∠ABD=∠CBE.求证:△ABC∽△DBE.11.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.12.已知:如图,BF、CE分别是△ABC的边AC、AB上的高,BF与CE相交于点O,AN 是∠BAC的角平分线,交EF于点M,交BC于点N.(1)求证;△ABF∽△ACE;(2)求证:=.13.如图,在△ABC中,∠ABC=90°,F是AC的中点,过AC上一点D作DE∥AB,交BF的延长线于点E,AG⊥BE,垂足是G,连接BD,AE.(1)求证:△ABC∽△BGA;(2)若AF=5,AB=8,求FG的长;14.如图,△ABC中,D为BC边上的一点,E在AD上,过点E作直线l分别和AB、AC 两边交于点P和点Q,且EP=EQ.(1)当点P和点B重合的时候,求证:;(2)当P、Q不与A、B、C三点重合时,求证:.15.如图,△ADE∽△ABC,且=,点D在△ABC内部,连结BD、CD、CE.(1)求证:△ABD∽△ACE.(2)若CD=CE,BD=3,且∠ABD+∠ACD=90°,求DE的长.16.如图,⊙O中的弦AC、BD相交于点E.(1)求证:AE•CE=BE•DE;(2)若AE=4,CE=3,BD=8,求线段BE的长.17.如图,已知点D为△ABC内一点,点E为△ABC外一点,且满足.(1)求证:△ABD∽△ACE;(2)联结CD,如果∠ADB=90°,∠BAD=∠ACD=30°,BC=,AC=4,求CD 的长.18.如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为2.(1)求证:△CDE∽△CBA;(2)求DE的长.19.如图,在矩形ABCD中,AB=4,BC=4,点E是AB上动点,以DE为直径的圆交对角线AC于F,EG⊥AC垂足为G.(1)求证:△EFD∽△EGA;(2)求FG的长;(3)直接写出DF+DG的最小值为.20.如图,点E在△ABC的边AB上,过点B、C、E的⊙O切AC于点C,直径CD交BE 于点F,连接BD、DE,已知∠A=∠CDE.(1)求证:∠CDB=2∠A;(2)若AC=,BD=1,求BF的长.相似三角形专项练习参考答案与试题解析一.解答题(共20小题)1.如图,△ABC中,BD平分∠ABC,E为BC上一点,∠BDE=∠BAD=90°.(1)求证:BD2=BA•BE;(2)若AB=6,BE=8,求CD的长.【解答】证明:(1)∵BD平分∠ABC,∴∠ABD=∠CBD,又∵∠BDE=∠BAD=90°,∴△ABD∽△DBE,∴,∴BD2=BA•BE;(2)∵AB=6,BE=8,BD2=BA•BE,∴BD=4,∴DE===4,∵∠BDC=∠A+∠ABD=∠BDE+∠EDC,∴∠ABD=∠CDE,∴∠CDE=∠DBC,又∵∠C=∠C,∴△BCD∽△DCE,∴,∴,∴EC=4,CD=4.2.如图,在正方形ABCD中,E是AD边的中点,AP⊥BE于点P,延长AP交CD于点F,连接CP.(1)求证:①BP=2AP;②PC=BC;(2)求的值.【解答】解:(1)证明:①∵在正方形ABCD中,E是AD边的中点,∴在Rt△EBA中,AB=2AE,∵AP⊥BE于点P,∴Rt△ABP∽Rt△EBA,∴==,∴BP=2AP.②如图,过点C作CH⊥BE于点H,则∠BCH+∠PBC=90°,又∠ABP+∠PBC=90°,∴∠BCH=∠ABP,又BC=AB,∴Rt△BCH≌Rt△ABP(AAS),∴BH=AP,又BP=2AP,∴BH=PH,又CH⊥BE,∴PC=BC.(2)如图,同(1)②可证:Rt△AFD≌Rt△BEA,∴AF=BE,在Rt△BEA中,若设AE=1,则AB=2,BE=,∵AP⊥BE于点P,∴AP•BE=AB•AE,∴AP==,则PF=AF﹣AP=BE﹣AP=﹣=,∴=.3.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若△MBN与△ABC相似,求t的值.(2)当t为何值时,四边形ACNM的面积最小?并求出最小值.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,AC=5,∠BAC=60°,∴∠B=30°,∴AB=2AC=10,BC=5.分两种情况:①当△MBN∽△ABC时,则,即,解得:t=.②当△NBM∽△ABC时,同理可得:t=,综上所述:当t=或时,△MBN与△ABC相似;(2)过M作MD⊥BC于点D,则MD∥AC,∴△BMD∽△BAC,∴,即=,解得:MD=t.设四边形ACNM的面积为y,y=×5×5﹣(5﹣t)t=(t﹣2.5)2+.根据二次函数的性质可知,当t=2.5时,y的值最小值为.4.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)判定△ABP与△PCD是否相似,说明理由;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.【解答】解:(1)△BAP∽△CPD,理由如下:∵AB=AC,∴∠ABC=∠ACB,∵∠APC=∠ABC+∠BAP,∴∠APD+∠DPC=∠ABC+∠BAP,又∵∠APD=∠B,∴∠DPC=∠BAP,∴△BAP∽△CPD;(2)∵PD∥AB,∴∠APD=∠BAP,又∵∠APD=∠B,∴∠BAP=∠B=∠C,又∵∠B=∠B,∴△ABC∽△PBA,∴,∴,∴BP=.5.如图,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若=3,求的值.【解答】解:如图,过点E作EH∥AB交BG于点H,则有△ABF∽△EHF,∴,∴AB=3EH.∵四边形ABCD是平行四边形,∴AB∥CD,又∵EH∥AB,∴EH∥CD,CD=AB=3HE,又∵E为BC中点,∴EH为△BCG的中位线,∴CG=2EH,∴==.6.如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD、BC交于点E,连接AC、BD.(1)求证:AB=AE;(2)若AB=5,DE=2,求线段CE的长.【解答】证明:(1)∵C为的中点,∴=,∴∠BAC=∠CAD,∵AB是直径,∴∠BCA=90°=∠ACE,∴∠E=∠ABC,∴AB=AE;(2)∵AB=AE=5,∠ACB=90°,∴CE=BC=EB,∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,又∵∠ADC+∠EDC=180°,∴∠EDC=∠ABC,又∵∠E=∠E,∴△EDC∽△EBA,∴,∴,∴EC=.7.如图,在平行四边形ABCD中,过点A作AE垂直BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=6,AD=8,AF=4,求AE的长.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,AD=BC,∴∠ADE=∠DEC,∠B+∠C=180°,∵∠AFB=∠B,∠AFE+∠AFD=180°,∴∠C=∠AFD,∴△ADF∽△DEC;(2)∵△ADF∽△DEC,∴,∴,∴DE=12,∵AE2=DE2﹣AD2=144﹣64=80,∴AE=4.8.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s速度向点c移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t 秒.(1)根据题意知:CQ=t cm,CP=(4﹣2t)cm;(用含t的代数式表示)(2)t为何值时,△CPQ与△ABC相似.【解答】解:(1)经过t秒后,CQ=t,CP=4﹣2t,故答案为:t;(4﹣2t).(2)设经过t秒后两三角形相似,则可分下列两种情况进行求解,①若Rt△ABC∽Rt△QPC则,即,解得t=1.2;②若Rt△ABC∽Rt△PQC则,即,解得t=;由P点在BC边上的运动速度为2cm/s,Q点在AC边上的速度为1cm/s,可求出t的取值范围应该为0<t<2,验证可知①②两种情况下所求的t均满足条件.答:要使△CPQ与△CBA相似,运动的时间为1.2或秒.9.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,在△ABP和△ADP中,,∴△ABP≌△ADP(SAS);(2)∵△ABP≌△ADP,∴PB=PD,∠ADP=∠ABP,∵AD∥BC,∴∠ADP=∠E,∴∠E=∠ABP,又∵∠FPB=∠EPB,∴△EPB∽△BPF,∴,∴PB2=PE•PF,∴PD2=PE•PF.10.如图,已知∠DAB=∠ECB,∠ABD=∠CBE.求证:△ABC∽△DBE.【解答】证明:∵∠DAB=∠ECB,∠ABD=∠CBE,∴△ABD∽△CBE,∴=,即,∵∠ABC=∠ABD+∠DBC,∠DBE=∠DBC+CBE,∵,∠ABC=∠DBE,∴△ABC∽△DBE.11.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.【解答】(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴,∵,BC=3,∴,∴BC=.12.已知:如图,BF、CE分别是△ABC的边AC、AB上的高,BF与CE相交于点O,AN 是∠BAC的角平分线,交EF于点M,交BC于点N.(1)求证;△ABF∽△ACE;(2)求证:=.【解答】解:(1)证明:∵BF、CE分别是△ABC的边AC、AB上的高,∴BF⊥AC,CE⊥AB,∴∠AFB=∠AEC=90°,又∵∠CAE=∠BAF,∴△ABF∽△ACE;(2)证明:∵△ABF∽△ACE,∴=,∴=,又∵∠EAF=∠CAB,∴△EAF∽△CAB,∴=①,∠AEF=∠ACB,∵AN是∠BAC的角平分线,∴∠EAM=∠CAN,∴△EAM∽△CAN,∴=②,由①②可得:=.13.如图,在△ABC中,∠ABC=90°,F是AC的中点,过AC上一点D作DE∥AB,交BF的延长线于点E,AG⊥BE,垂足是G,连接BD,AE.(1)求证:△ABC∽△BGA;(2)若AF=5,AB=8,求FG的长;【解答】解:(1)∵∠ABC=90°,F是AC的中点,∴BF=AC=AF,∴∠F AB=∠FBA,∵AG⊥BE,∴∠AGB=90°,∴∠ABC=∠AGB,∴△ABC∽△BGA;(2)∵AF=5,∴AC=2AF=10,BF=5,∵△ABC∽△BGA,∴=,∴BG==,∴FG=BG﹣BF=﹣5=.14.如图,△ABC中,D为BC边上的一点,E在AD上,过点E作直线l分别和AB、AC 两边交于点P和点Q,且EP=EQ.(1)当点P和点B重合的时候,求证:;(2)当P、Q不与A、B、C三点重合时,求证:.【解答】证明:(1)如图,过点Q作QF∥BC交AD于F,∴△FQE∽△DPE,∴=,又∵QE=EP,∴BD=FQ,EF=DE,∵QF∥CD,∴△AFQ∽△ADC,∴,∴,∴;(2)如图,过点Q作QF∥BC交AD于F,过点P作PH∥BC交AD于H,∴QF∥PH,∴△FQE∽△HPE,∴,又∵QE=EP,∴PH=FQ,EF=HE,∵FQ∥BC,∴△AQF∽△ACD,∴,∵PH∥BC,∴△APH∽△ABD,∴,∴===.15.如图,△ADE∽△ABC,且=,点D在△ABC内部,连结BD、CD、CE.(1)求证:△ABD∽△ACE.(2)若CD=CE,BD=3,且∠ABD+∠ACD=90°,求DE的长.【解答】证明:(1)∵△ADE∽△ABC,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△ABD∽△ACE;(2)∵△ABD∽△ACE,∴,∠ABD=∠ACE,又∵BD=3,∴CE=2,∴CD=CE=2,∵∠ABD+∠ACD=90°,∴∠ACD+∠ACE=90°,∴∠DCE=90°,∴DE=CD=2.16.如图,⊙O中的弦AC、BD相交于点E.(1)求证:AE•CE=BE•DE;(2)若AE=4,CE=3,BD=8,求线段BE的长.【解答】(1)证明:由圆周角定理得,∠A=∠B,∠D=∠C,∴△ADE∽△BCE,∴=,∴AE•CE=BE•DE;(2)解:由(1)得,AE•CE=BE•DE,则4×3=BE×(8﹣BE),解得,BE1=2,BE2=6,即线段BE的长为2或6.17.如图,已知点D为△ABC内一点,点E为△ABC外一点,且满足.(1)求证:△ABD∽△ACE;(2)联结CD,如果∠ADB=90°,∠BAD=∠ACD=30°,BC=,AC=4,求CD 的长.【解答】证明:(1)∵,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,又∵,∴△ABD∽△ACE;(2)如图,∵△ABD∽△ACE,∴∠ADB=∠AEC=90°,∠BAD=∠CAE=30°,∴CE=AC=2,AE=CE=2,∠ACE=60°,∴∠DCE=∠ACD+∠ACE=90°,∵,∴=,∴DE=3,∴CD===.18.如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为2.(1)求证:△CDE∽△CBA;(2)求DE的长.【解答】(1)证明:∵∠ADE+∠B=180°,∠ADE+∠CDE=180°,∴∠CDE=∠B,而∠DCE=∠BCA,∴△CDE∽△CBA;(2)连接BD,如图,∵AB为直径,∵∠BDC=90°,∠C=60°,∴BC=2CD,∵△CDE∽△CBA;∴==,∴DE=AB=×4=2.19.如图,在矩形ABCD中,AB=4,BC=4,点E是AB上动点,以DE为直径的圆交对角线AC于F,EG⊥AC垂足为G.(1)求证:△EFD∽△EGA;(2)求FG的长;(3)直接写出DF+DG的最小值为2.【解答】解:(1)∵以DE为直径的圆交对角线AC于F,∴∠EAG=∠EDF,∠EFD=90°,∵EG⊥AC垂足为G,∴∠EGA=90°=∠EFD,∴△EFD∽△EGA;(2)∵在矩形ABCD中,AB=4,BC=4,∴∠EAD=90°=∠EFD,∴tan∠EAG===,∴在三角形EGA中,sin∠EAG==,∵∠EGF=∠EAD=90°,∵DE为圆的直径,∴∠GFE=∠ADE,∴△EGF∽△EAD,∴==,∵DA=BC=4,∴FG=2;(3)过点G作GM⊥AD于点M,如下图所示:设AE=2x,∵∠EAG=30°,∴∠GAM=60°,∴EG=x,GA=x,∴在直角三角形GAM中,AM=x,GM=x,∵AD=BC=4,∴MD=4﹣x,∴在直角三角形GMD中,GD2=GM2+MD2,∴GD2=x2+16+x2﹣4x=3x2﹣4x+16,∵在直角三角形AED中,直径ED=,∵在直角三角形EFD中,∠EDF=∠EAG=30°,∴DF=×ED,∴DF2=3x2+12,∵当DF=DG时,DF+DG取最小值,∴3x2﹣4x+16=3x2+12,∴x=,∴DF=,DG=,∴DF+DG取最小值为2.故答案为:2.20.如图,点E在△ABC的边AB上,过点B、C、E的⊙O切AC于点C,直径CD交BE 于点F,连接BD、DE,已知∠A=∠CDE.(1)求证:∠CDB=2∠A;(2)若AC=,BD=1,求BF的长.【解答】解:(1)证明:∵AC是⊙O的切线,∴AC⊥CF,∴∠ACF=90°,∴∠A+∠AFC=90°,∴∠A+∠BCD+∠ABC=90°,又∠CDE=∠ABC,∠A=∠CDE,∴2∠A+∠BCD=90°,∵CD是⊙O的直径,∴∠CBD=90°,∴∠BCD+∠CDB=90°,∴∠CDB=2∠A;(2)过C作CH⊥AB于H,交BD的延长线于G,如图:∵∠DCH+∠ACH=90°,∠A+∠ACH=90°,∴∠DCH=∠A,又∵∠CDB=2∠A;∴∠CDB=2∠DCH,∴∠G=∠DCH,∴CD=DG.∵BD=1,BC=,在Rt△BCD中,CD=,∴DG=3,∴BG=BD+DG=4,CG=,∴cos∠G=,∴cos∠A=,又cos∠A=,∴AH=AC•cos∠A=,AF=,∵∠A=∠CDE,∠ABC=∠CDE,∴∠A=∠ABC,∴AC=BC,∴AB=2AH=,∴BF=AB﹣AF=.。
数学相似三角形(竞赛题专页)

几何:2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)· GAO DB EC Q P NM · O Q PBDEC N M · A OD BFAECP P ADCB4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.1.∠ABC 的顶点B 在⊙O 外,BA 、BC 均与⊙O 相交,过BA 与圆的交点K 引∠ABC 平分线的垂线,交⊙O 于P ,交BC 于M 。
求证:线段PM 为圆心到∠ABC 平分线距离的2倍。
EDCBA2.在△ABC中,AP为∠A的平分线,AM为BC边上的中线,过B作BH⊥AP于H,AM的延长线交BH于Q,求证:PQ∥AB。
3.菱形ABCD的内切圆O与各边分别切于E、F、G、H,在EF与GH上分别作⊙O的切线交AB于M,交BC于N,交CD于P,交DA于Q。
求证:MQ∥NP。
4.ABCD是圆内接四边形,其对角线交于P,M、N分别是AD、BC的中点,过M、N分别作BD、AC的垂线交于K。
求证:KP⊥AB。
5.以△ABC的边BC为直径作半圆,与AB、AC分别交于点D、E。
(完整版)初中数学竞赛相似三角形专题

初二竞赛专题:相似三角形1.如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明:111AB CD EF+=.2.如图,在梯形ABCD 中,AB CD ∥, 129AB CD ==,,过对角线交点O 作EF CD ∥交AD BC ,于E F ,,求EF 的长.3.如图,在梯形ABCD 中,AD BC ∥,396AD BC AB ===,,,4CD =,若EF BC ∥,且梯形AEFD 与梯形EBCF 的周长相等,求EF 的长.两个常见模型:如图,已知直线EF BC ∥,直线EF 分别与直线AB 、AC 、AD 相交于E 、F 、G 点, 则BD EGDC FG=.OFE DCBA FEDCBA F E DCBAG FE DCB A BDAEG FC4.一条直线与三角形ABC的三边BC,CA,AB(或其延长线)分别交于D,E,F(如图2-68所示).求证:5.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.6.如图,边长为1的等边ABC△,BC边上有一点D,13BD=,AC上有一点E ,60ADE∠=o,求EC的长.7.已知,B是AC中点,D、E在AC的同侧,且ADB EBC∠=∠,DAB BCE∠=∠,证明:BDE ADB∠=∠.ED CBADEB CA8.如图,在ABC △中,60BAC ∠=o ,点P 是ABC △内一点,且APB BPC CPA ∠=∠=∠,若8PA =,6PC =,求PB 的长.9.如图,在锐角ABC △中,AD 、CE 分别为BC 、AB 边上的高,ABC △和BDE △的面积分别等于18和2,22DE =,求点B 到AC 的距离.10.如图所示,已知3个边长相等的正方形相邻并排,求EBF EBG ∠+∠.11.如图,在ABC △中,AD 平分BAC ∠,AD 的垂直平分线交AD 于E ,交BC 的延长线于F ,求证:2FD FB FC =⋅.ED CABPCBAHGBA12.已知ABC △,向外作正方形ABPQ 和正方形ACMN .若BC PM ∥,求证:AB AC =.13.如图,在等腰直角三角形ABC 中,90C ∠=o ,AC BC =,BE ED CF ==,求CEF CAD ∠+∠.14.已知,如图,锐角△ABC 中,AD△BC 于D ,H 为垂心(三角形三条高线的交点);在AD 上有一点P ,且△BPC 为直角。
(完整word版)九年级数学相似三角形知识点及习题

相似三角形要点一、本章的两套定理第一套(比例的有关性质): b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
二、有关知识点:1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形 直角三角形 全等三角形的判定 SASSSS AAS (ASA ) HL 相似三角形的判定 两边对应成比例夹角相等 三边对应成比例 两角对应相等一条直角边与斜边对应成比例 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2三、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ X ”型。
初中数学专题复习相似三角形的判定(C)

相似三角形的判定(C)一、相似三角形的概念1.定义:对应角________,对应边_________的两个三角形叫做相似三角形.2.相似三角形的对应角________,对应边_________.3. 定义:相似三角形中,对应边的比叫做_________(或相似系数).注意:在写相似比时,必须把说在前面的三角形的边作为相似比的____项。
如图1,ΔABC与ΔA′B′C′的相似比是AB∶A′B′,而不能写成A′B′∶AB。
4.定理:在图2和图3中,如果DE∥____,那么ΔADE∽________.例1 已知:如图, ABCD中,E是BC的延长线上一点,AE交DB、DC于G、F。
(1)图中的相似三角形有哪几对?请证明你的结论。
(2)若BE∶CE=3∶1,求ΔABE与ΔFDA的相似比。
练习11.在图3中,若DE∥BC,DB∶DA=9∶4,则ΔABC与ΔADE的相似比是______.2.如图4,AD∥EF∥BC,则图中的相似三角形共有____对,若AD∶BC=4∶6,则ΔDEF与ΔDBC的相似比是______.3.ΔABC的三边长为3、4、5,ΔA/B/C/的最短边为5,若ΔABC∽ΔA/B/C/,则ΔA/B/C/的面积为________.4.已知:如图,AB∥DE,BC∥EF。
求证:ΔPAC∽ΔPDF.5.如图,在ΔABC中,DE∥BC,四边形EFGD是平行四边形,BG与CF的延长线相交于H。
求证:ΔBGD∽ΔBHA.二、相似三角形的判定定理1定理1 _____个角对应相等的两个三角形.推论:直角三角形被______边上的高分成的两个直角三角形与原三角形相似。
如图,若∠ACB=_____,且CD⊥AB于D,则ΔADC∽ΔACB∽Δ______.例2 如图,O是ΔABC的角平分线的交点,AO⊥OD。
求证:ΔOBD∽ΔCBO。
例3 如图,ΔABC中,∠BAC=900,AD⊥BC,PA=PD,BP交AC于E,EF⊥BC,FE与BA的延长线相交于G。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.如图,在等腰直角三角形 中, , , ,求 .
14.已知,如图,锐角△ABC中,AD⊥BC于D,H为垂心(三角形三条高线的交点);在AD上有一点P,且∠BPC为直角。求证: .
7.已知, 是 中点, 、 在 的同侧,且 , ,证明: .
8.如图,在 中, ,点 是 内一点,且 ,若 , ,求 的长.
9.如图,在锐角 中, 、 分别为 、 边上的高, 和 的面积分别等于18和2, ,求点 到 的距离.
10.如图所示,已知3个边长相等的正方形相邻并排,求 .
11.如图,在 中, 平分 , 的垂直平分线交 于 ,交 的延长线于 ,求证: .
初二竞赛专题:相似三角形
1.如图, , ,垂足分别为 、 , 和 相交于点 , ,垂足为 .证明: .
2.如图,在梯形 中, , ,过对角线交点 作 交 于 ,求 的长.
3.如图,在梯形 中, , , ,若 ,且梯形 与梯形 的周长相等,求 的长.
两个常见模型:如图,已知直线 ,直线
分别与直线 、 、 相交于 、 、 点,
则 .
4.பைடு நூலகம்条直线与三角形ABC的三边BC,CA,AB(或其延长线)分别交于D,E,F(如图2-68所示).求证:
5.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.
6.如图,边长为1的等边 , 边上有一点 , , 上有一点 , ,求 的长.