运放参数的详细解释和分析2

合集下载

运算放大器参数详解(二)

运算放大器参数详解(二)

运算放大器参数详解(二)运算放大器参数详解1. 引言运算放大器(Operational Amplifier,简称Op-Amp)是电子电路中最常用的集成电路之一,具有高增益、高输入阻抗和低输出阻抗等特点。

本文将详细解释运算放大器的几个重要参数。

2. 增益增益是运算放大器最重要的性能指标之一,通常用电压增益表示。

它可以分为三个级别:•开环增益:即放大器内部的增益,通常非常大,可以达到几十万或更高。

•差模输入电压增益:当放大器的两个输入端有差异时,输出的增益。

•单端输入电压增益:当放大器的一个输入端和参考电位有差异时,输出的增益。

3. 带宽带宽是指运算放大器能正常工作的频率范围。

一般来说,带宽越大越好。

带宽的计算公式为:[ = ]4. 输入电阻和输出阻抗输入电阻是指放大器的输入端对电压信号的阻抗,输出阻抗是指输出端对负载的阻抗。

一般来说,输入电阻越大越好,输出阻抗越小越好。

它们可以影响放大器的稳定性和性能。

5. 器件参数器件参数是指运算放大器本身的特性参数,如偏置电流、输入偏置电流和漂移、噪声等。

这些参数对放大器的性能和稳定性有重要影响,需要根据具体应用进行选择。

•偏置电流:放大器输入端的直流电流。

•输入偏置电流和漂移:输入端电流和漂移对放大器的性能和稳定性有影响。

•噪声:放大器的噪声对信号的清晰度和精度有直接影响。

6. 综合性能指标基于以上参数和特点,可以综合评估运算放大器的性能,如稳定性、线性度、精度和动态性能等。

这些指标可以帮助选择合适的运放器件,以满足具体应用的需求。

结论运算放大器是电子电路中不可或缺的重要元件,准确了解和理解运算放大器的参数对于正确设计和选择放大器至关重要。

只有综合考虑各项参数,才能选择适合自己应用的运放器件,并获得理想的性能。

运算放大器参数详解

运算放大器参数详解

运算放大器参数详解运算放大器(通常简称为运放)是一种广泛应用于模拟信号处理领域的电子器件。

它被广泛应用于各种不同的电子设备中,包括音频放大器、模拟电路、数字电路等。

以下是对运算放大器参数的详细解释:1. 带宽增益乘积:这是运算放大器的一个重要指标,它等于开环带宽与开环增益的乘积。

这个参数可以用来估算运放在高频应用中的性能。

2. 开环增益:开环增益是运算放大器在没有反馈的情况下,输入电压与输出电压之比。

这是一个衡量运放放大能力的参数。

3. 最大差模输入电压:这是指运放可以接受的最大差分输入电压。

超过这个电压,运放可能会被损坏。

4. 最大共模输入电压:这是指运放可以接受的最大共模输入电压。

超过这个电压,运放可能会被损坏。

5. 最大输出电压:这是指运放在安全工作范围内可以输出的最大电压。

超过这个电压,运放可能会被损坏。

6. 电源电压范围:这是指运放正常工作所需的最小和最大电源电压。

低于最小电压,运放可能无法正常工作;高于最大电压,运放可能会被损坏。

7. 功耗:这是指运放在正常工作条件下消耗的功率。

这是一个重要的环保指标,因为电子设备的功耗直接影响到其热量产生和能源消耗。

8. 输入阻抗:这是指运放在没有反馈的情况下,输入端的电阻抗。

这个参数可以影响运放在特定应用中的性能。

9. 输出阻抗:这是指运放在没有反馈的情况下,输出端的电阻抗。

这个参数可以影响运放在特定应用中的性能。

10. 带宽增益乘积与最大带宽:带宽增益乘积是指运算放大器在特定频率下达到特定增益所需的带宽,通常以Hz为单位表示。

最大带宽是指运放在不失真的情况下可以处理的最高频率信号。

这两个参数共同决定了运算放大器处理高频信号的能力。

11. 建立时间:这是指运算放大器从启动到达到最终输出值所需的时间。

这个参数对于需要快速响应的电路设计来说非常重要。

12. 失调电压:这是指运算放大器在没有输入信号的情况下,输出端的直流偏置电压。

这个参数可能会对电路的直流性能产生影响。

运算放大器参数说明及选型指南

运算放大器参数说明及选型指南

运算放大器参数说明及选型指南一、运放的参数说明:1.增益:运算放大器的增益是指输出信号与输入信号之间的比值,通常用V/V表示。

增益可以是固定的,也可以是可调的。

增益决定了输出信号相对于输入信号的放大程度。

2.带宽:运算放大器的带宽是指在其增益达到-3dB时的频率范围。

带宽决定了运放的工作频率范围,对于高频应用,需要选择具有宽带宽的运放。

3.输入偏置电压:输入偏置电压是指在无输入信号时,运放输入端的直流偏置电压。

输入偏置电压可能会引入偏置误差,对于精密测量电路,需要选择输入偏置电压尽可能小的运放。

4.输入偏置电流:输入偏置电流是指在无输入信号时,运放输入端的直流偏置电流。

输入偏置电流可能会引起输入端的电平漂移,对于高精度应用,需要选择输入偏置电流尽可能小的运放。

5.输入偏置电流温漂:输入偏置电流温漂是指输入偏置电流随温度变化的比例。

输入偏置电流温漂可能会导致运放的工作点发生变化,对于温度变化较大的应用,需要选择输入偏置电流温漂较小的运放。

6.输入噪声:输入噪声是指在无输入信号时,运放输入端产生的噪声。

输入噪声可能会影响信号的纯净度,对于低噪声应用,需要选择输入噪声较低的运放。

7.输出电流:输出电流是指运放输出端提供的最大电流。

输出电流决定了运放的输出能力,在驱动负载电流较大的应用中,需要选择输出电流较大的运放。

8.输出电压:输出电压是指运放输出端能够提供的最大电压。

输出电压决定了运放的输出范围,在需要大幅度信号放大的应用中,需要选择输出电压较大的运放。

二、选型指南:1.确定应用需求:根据实际应用需求确定所需的放大倍数、带宽、输入/输出电压等参数。

例如,对于音频放大器,需要考虑音频频率范围、输出功率等因素。

2.选择性能指标:根据应用需求选择合适的性能指标。

不同应用对各个参数的要求可能会有所差异,需根据实际情况进行权衡与选择。

3.查询产品手册:查询供应商的产品手册或网站,获取相关产品的详细参数信息。

产品手册通常会提供各项参数的典型值和极限值,可以用于评估是否满足需求。

运算放大器的参数

运算放大器的参数

运算放大器的参数运算放大器(Op-amp)是一种电子元件,具有高放大度、高输入阻抗和低输出阻抗等特性。

它的性质可以通过一系列参数来描述,这些参数包括:放大倍数、输入电阻、输出电阻、共模抑制比、带宽等,下面我们将逐一介绍它们的意义和作用。

1、放大倍数放大倍数是指在没有反馈的情况下,运算放大器输出电压与输入电压之间的比值。

放大倍数可以表示为Av,其单位为V/V(伏特/伏特)。

一个典型的运算放大器的放大倍数可以高达10万倍,相比之下,普通的放大器通常只有100-1000倍的放大倍数。

放大倍数在运算放大器的设计和使用中起着至关重要的作用,它决定了运算放大器的放大能力。

因此,放大倍数也是评价运算放大器性能的重要参数之一。

2、输入电阻输入电阻是运算放大器输入端的电阻。

在使用运算放大器时,有时需要对电路输入信号进行一些特殊的处理,如滤波、放大等等。

此时输入电阻就是一个很关键的参数,它决定了输入信号是否能够准确地被引入运算放大器中。

输入电阻通常用Rin表示,其单位为欧姆(Ω),一般情况下,运算放大器的输入电阻在百万至千万的范围内,因此,它的输入阻抗非常高,对于输入信号来说,它的影响非常小。

所以,输入电阻也被称为“高阻输入”。

3、输出电阻输出电阻是运算放大器输出端的电阻。

输出电阻可以理解为运算放大器内部电路的内部电阻。

输出端电阻通常用Ro表示,单位为欧姆(Ω)。

运算放大器的输出电阻对于电路的使用有着重要的意义,它决定了能否输出一个强有力的信号。

当负载电路阻值很大的时候,输出电阻才能够填补电路的空隙,否则,信号源的输出电平无法被放大到期望的水平4、共模抑制比共模抑制比是衡量运算放大器对共模干扰的抑制能力的参数。

共模抑制比可以理解为运算放大器内部电路在处理共模信号时,处理能力与处理差分信号时的处理能力之比。

在运算放大器的工作中,由于接触共模信号所产生的电荷、辐射和传导噪声、地线反射等引起的共模干扰是不可避免的。

而共模抑制比可以有效地抑制这些噪声干扰,使得运算放大器输出的信号不会因为共模信号干扰而失真。

运放参数的详细解释和分析

运放参数的详细解释和分析

运放参数的详细解释和分析我始终觉得运放的压摆率(SR)是与运放的增益带宽积GBW同等重要的一个参数。

但它却常常被人们所忽略。

说它重要的原因是运入的增益带宽积GBW是在小信号条件下测试的。

而运放处理的信号往往是幅值非常大的信号,这更需要关注运放的压摆率。

压摆率可以理解为,当输入运放一个阶跃信号时,运放输出信号的最大变化速度,如下图所示它的数学表达式为:因此在运放的数据手册中查到的压摆率的单位是V/us.下表就是运放datasheet中标出的运放的压摆率。

我在实验室里测过OPA333对阶跃信号响应的波形如下图所示。

希望能让大家看的更直观:讨论完定义和现象,我们来看一下压摆率SR的来源。

先看一下运放的内部结构:这个图有点眼熟,是的,运放的SR主要限制在内部第二级的Cc 电容上。

这个电容同时也决定着运放的带宽。

那运放的压摆率,主要是由于对第二级的密勒电容充电过程的快慢所决定的。

再深究一下,这个电容的大小会影响到运放的压摆率,同时充电电流的大小也会影响到充电的快慢。

这也就解释了,为什么一般超低功耗的运放压摆率都不会太高。

好比水流流速小,池子又大。

只能花更长的时间充满池子。

下表是一些常用到TI运放的压摆率和静态电流:上面简单说了一个影响压摆率SR的因素。

下面该说SR对放大电路的影响了。

它的直接影响,就是使输出信号的上升时间或下降时间过慢,从而引起失真。

下图是测试的OPA333增益G=10时波形。

由于OPA333的增益带宽积为350kHz,理论上增益为10的时候的带宽为35kHz。

但下图是24kHz时测试的结果。

显然输出波形已经失真,原因就是压摆率不够了。

带宽也变成了27kHz左右。

运放参数详解超详细

运放参数详解超详细

运放参数详解超详细运放,全称为运算放大器,是一种主要用于电子设备中的放大电路。

它能够接收输入信号并在输出端放大,以达到放大信号的效果。

运放广泛应用于放大、滤波、积分、微分、求和、差分等电路中,是现代电子电路中不可或缺的元件之一在使用运放时,需要了解一些重要的参数,这些参数将影响到运放的性能和应用。

下面将详细介绍一些常见的运放参数:1.增益:增益指的是输入信号经过运放放大后的输出信号与输入信号之间的比例关系。

增益可以是小信号增益,即输入信号幅度相对较小的情况下的增益;也可以是大信号增益,即输入信号幅度较大的情况下的增益。

通常使用dB(分贝)来表示增益大小。

2.带宽:带宽是指运放能够正确放大的频率范围。

在带宽之外的信号将会被放大产生失真。

带宽通常以Hz(赫兹)表示,常见的运放带宽为几百kHz到几GHz。

3.输入电阻:输入电阻指的是运放输入端的电阻阻抗。

输入电阻越大,表示输入信号的损耗越小,输出信号与输入信号之间的电压差会更小。

输入电阻一般以欧姆(Ω)表示。

4.输出电阻:输出电阻指的是运放输出端的电阻阻抗。

输出电阻越小,表示运放输出信号的能力越强,能够驱动更大的负载。

输出电阻一般以欧姆(Ω)表示。

5.失调电流:失调电流是指运放输入端的两个输入电流之间的差异。

失调电流越小,表示运放的两个输入端能够更好地匹配,从而减小了对输入信号的失真。

失调电流一般以安培(A)表示。

6.偏置电压:偏置电压是指运放两个输入端相对于公共模式电压的偏差。

偏置电压越小,表示运放能够更好地接近理想运算放大器模型,减小了对输入信号的失真。

偏置电压一般以伏特(V)表示。

7.输出偏置电压:输出偏置电压是指运放输出端相对于公共模式电压的偏差。

输出偏置电压越小,表示运放输出信号更加准确,能够更好地匹配输入信号。

输出偏置电压一般以伏特(V)表示。

8.运放噪声:运放噪声是指运放输出信号中存在的由运放本身引起的随机噪声。

运放噪声分为输入噪声和输出噪声,通常以nV/√Hz(纳伏特/根赫兹)表示。

运放 参数

运放 参数

运放参数1. 什么是运放运放(Operational Amplifier),又称作放大器,是一种专门用于放大信号的电子元件。

它是现代电子技术中最重要的基本元器件之一,被广泛应用于模拟电路中。

运放具有高增益、宽带宽、低输入阻抗和高输入阻抗等特点。

2. 运放的工作原理运放的工作原理基于反馈机制。

它由一个差分输入级和一个差动输出级组成。

通过调整反馈电阻的值,可以使运放处于线性放大区域,从而实现对输入信号的放大。

运放具有两个输入端和一个输出端。

其中,非反相输入端(+)和反相输入端(-)之间的输入差值称为差分模式输入电压,反相输入端与地之间的电压称为共模输入电压。

3. 运放的主要参数运放具有许多重要的参数,下面将介绍其中一些常见的参数:(1)增益(Gain)增益是指运放对输入信号放大的程度。

运放的增益通常用一个倍数表示,如20倍、100倍等。

增益可以是正增益或负增益,也可以是可调节的。

增益决定了输出信号与输入信号之间的比例关系。

(2)带宽(Bandwidth)带宽是指运放能够放大的频率范围。

运放的带宽定义为增益下降3dB(-3dB)的频率。

带宽越宽,运放在高频信号放大方面的性能就越好。

(3)输入偏置电压(Input Offset Voltage)输入偏置电压是指运放的输入端之间的电压差,当没有输入信号时,输出电压也不为零。

输入偏置电压的存在会引起输出误差。

(4)输入偏置电流(Input Bias Current)输入偏置电流是指运放输入端的电流偏置,通常以纳安安(nA)为单位。

它会引起输入电压漂移。

(5)输入失调电流(Input Offset Current)输入失调电流指运放输入端的电流不对称性,也以纳安安(nA)为单位。

它和输入偏置电流一样,会引起输入电压漂移。

(6)共模抑制比(Common Mode Rejection Ratio)共模抑制比是指运放对共模信号(即输入信号中相同部分)的抑制能力。

它通常以分贝(dB)为单位表示。

运放参数介绍

运放参数介绍

运放参数介绍1.1主要直流指标输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。

输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。

输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。

输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。

对于精密运放,输入失调电压一般在1mV以下。

输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。

所以对于精密运放是一个极为重要的指标。

输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。

这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。

一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。

输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。

输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

输入失调电流IIO:输入失调电流定义为当运放的输出直流电压为零时,其两输入端偏置电流的差值。

输入失调电流同样反映了运放内部的电路对称性,对称性越好,输入失调电流越小。

输入失调电流是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。

输入失调电流大约是输入偏置电流的百分之一到十分之一。

输入失调电流对于小信号精密放大或是直流放大有重要影响,特别是运放外部采用较大的电阻(例如10k欧姆或更大时),输入失调电流对精度的影响可能超过输入失调电压对精度的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运放参数的详细解释和分析-part3,输入失调电压Vos及温漂(建议置顶)

作者Wayne Xu
发表于 2013-3-26 11:53

∙进士5791分
∙在运放的应用中,不可避免的会碰到运放的输入失调电压Vos问题,尤其对直流信号进行放大时,由于输入失调电压Vos的存在,放大电路的输出端总会叠加我们不期望的误差。

举个简单,老套,而经典的例子,由于输入失调电压的存在,会让我们的电子秤在没经调校时,还没放东西,就会有重量显示。

我们总不希望,买到的重量与实际重有差异吧,买苹果差点还没什么,要是买白金戒指时,差一克可是不少的money哦。

下面介绍一下运放的失调电压,以及它的计算。

最后再介绍一些TI的低输入失调电压运放。

不足之处,多多拍砖。

∙理想情况下,当运放两个输入端的输入电压相同时,运放的输出电压应为0V,但实际情况确是,即使两输入端的电压相同,放大电路也会有一个小的电压输出。

如下图,这就是由运放的输入失调电压引起的。


∙当然严格的定义应为,为了使运放的输出电压等于0,必需在运放两个输入端加一个小的电压。

这个需要加的小电压即为输入失调电压Vos。

注意,是为了使出电压为0,而加的输入电压,而不是输入相同时,输出失调电压除以增益(微小区别)。

∙运放的输入失调电压来源于运放差分输入级两个管子的
不匹配。

如下图。

受工艺水平的限制,这个不匹配是不可避免的。

差分输入级的不匹配是个坏孩子,它还会引起很多其他的问题,以后介绍。


∙曾经请教过资深的运放设计工程师,据他讲,两个管子的匹配度在一定范围内是与管子的面积的平方根成正比,也就是说匹配度提高为原来的两倍。

面积要增加四倍,当到达一个水平时,即使再增加面积也不会提高匹配度了。

提高面积是要增加IC的成本的哦。

所在有
一个常被使用的办法,就是在运放生产出来后,进行测试,然后再
Trim(可以理解为调校了)。

这样就能使运放的精度大在提高。

当然,测试和Trim都是需要成本的哦。

所以精密运放的价格都比较贵。

这段只
当闲聊,呵呵。

∙我们关注输入失调电压,是因为他会给放大电路带来误差。

下面就要分析它带来的误差。

在计算之前,我们再认识一个让我们不太爽的参数,失调电压的温漂,也就是说,上面提到的输入失调电压会随着温度的变化而变化。

而我们的实际电路的应用环境温度总是变化的,这又给我们带来了棘手的问题。

下表就是在OPA376 datasheet上截取下来的参数。

它温漂最大值为1uV/℃(-40℃to 85℃)。

一大批运放的Vos 是符合正态分布的,因此datasheet一般还会给出offset分布的直方图。



∙当温度变化时,输入失调电压温漂的定义为:

∙刚忘记了另一个重要的参数,就是运放输入失调电压的长期漂移,一般会给出类似uV/1000hours或uV/moth等。

有些datasheet 会给出这一参数。

∙下面举例计算一下OPA376,在85℃时的最大失调电压,主要是两部分,一部分是25度时的输入失调电压,另一部分是温度变化引起的失调电压漂移。

∙具体步聚如下图。

从结果来看似1uV/℃温漂,在乘上温度变化时,就成为了误差的主导。

因此,如果设计的电路在宽的温度范围下应用,需在特别关注温漂。


∙Vos(85℃)= 25uV+60uV=85uV.
∙如果放大电路的Gain改为100,则最大输出失调电压就为8.5mV。

这是最差的情况。

∙关于输入失调电压的测试在"运放参数的详细解释和分析
-part2,如何测量输入偏置电流Ib,失调电流Ios"中有介绍,感兴趣的话,可以去看看。

还有简单的测试方法,如下图:

∙Vos = Vout/1001
∙需要提醒的是,使用简易方法测试单电源运放的输入失调电压时,需要将输入端短路并提供一个低噪声的稳定电压偏置。

如下图。


∙TI的运放水平在全球一直处于领选地位,下面列一些TI 的低温漂运放,它们的最大漂移只有0.05uV/℃。

输入失调电压Vio最大值只有5uV。

∙OPA734
∙OPA735
∙OPA334
∙OPA335
∙还有一些温漂很小的运放,
∙OPA333,OPA188。

相关文档
最新文档