详解运放的参数和选择

合集下载

运算放大器的参数选择

运算放大器的参数选择

运算放大器的参数指标1. 开环电压增益Avd开环电压增益(差模增益)为运算放大器处于开环状态下,对小于200Hz 的交流输入信号的放大倍数,即输出电压与输入差模电压之比。

它一般为104~106,因此它在电路分析时可以认为无穷大。

2. 闭环增益A F闭环增益是运算放大器闭环应用时的电压放大倍数,其大小与放大电路的形式有关,与放大器本身的参数几乎无关,只取决于输入电组和反馈电阻值的大小。

反相比例放大器,其增益为A F =-RI RF3. 共模增益Avc 和共模抑制比当两个输入端同时加上频率小于200Hz 的电压信号Vic 时,在理想情况下,其输出电压应为零。

但由于实际上部电路失配而输出电压不为零。

此时输出电压和输入电压之比成为共模增益Avc 。

共模抑制比Kcmr=AvcAvd 共模增益运算放大器的差模增益, 通常以对数关系表示:Kcmr=20log AvcAvd 共模增益运算放大器的差模增益 共模抑制比一般在80~120Db 围,它是衡量放大器对共模信号抑制能力高低的重要指标。

这不仅是因为许多应用电路中要求抑制输入信号中夹带的共模干扰,而且因为信号从同相端输入时,其两个输入端将出现较大的共模信号而产生较大的运算误差。

4. 输入失调电压在常温(25℃)下当输入电压为零时,其输出电压不为零。

此时将其折算到输入端的电压称为输入失调电压。

它一般为±(0.2~15)mV 。

这就是说,要使放大器输出电压为零,就必须在输入端加上能抵消Vio 的差值输入电压。

5. 输入偏置电流在常温(25℃)下输入信号为零(两个输入端均接地)时,两个输入端的基极偏置电流的平均值称为输入偏置电流,即I IB =21( I IB -+ I IB+) 它一般在10nA~1uA 的围,随温度的升高而下降,是反映放大器动态输入电阻大小的重要参数。

6. 输入失调电流I IO输入失调电流可表示为I IO =︱I IB -- I IB+∣在双极晶体管输入级运算放大器中,I IO 约为(0.2~0.1)I IB -或(0.2~0.1)I IB+。

运放选型参数

运放选型参数

运放选型参数摘要:一、运放简介二、运放选型参数1.增益带宽积2.输入偏置电流3.输入偏置电压4.共模抑制比5.输出电流和电压6.电源电压范围7.功耗三、运放选型实例1.确定应用场景2.根据参数进行选型3.实际应用案例四、总结正文:运放,全称为运算放大器,是一种模拟电子器件,广泛应用于各种电子设备和系统中。

作为核心组件,运放的选择至关重要,其中运放选型参数是重要的参考依据。

本文将详细介绍运放选型参数,并以实际案例进行说明。

首先,我们来了解一下运放的增益带宽积。

增益带宽积是运放的一个重要参数,表示运放能够处理信号的最大增益和带宽。

在选择运放时,应根据所需信号的增益和带宽来选取合适的增益带宽积。

输入偏置电流和输入偏置电压是衡量运放输入性能的重要参数。

输入偏置电流是指输入端电流的差值,输入偏置电压是指输入端电压的差值。

这两个参数对运放的输入阻抗和共模抑制比产生影响,需要根据实际应用场景进行选择。

共模抑制比是运放抑制共模信号的能力,它影响了运放在实际应用中的抗干扰性能。

在选择运放时,应根据共模抑制比来选取能够满足抗干扰要求的运放。

输出电流和电压是运放输出性能的重要参数。

输出电流表示运放能够驱动负载的最大电流,输出电压表示运放能够输出的最大电压。

在选择运放时,应根据实际应用中负载的电流和电压需求来选取合适的输出电流和电压。

电源电压范围和功耗是运放的两个重要电气参数。

电源电压范围表示运放能够正常工作的电源电压范围,功耗表示运放在工作过程中的能量消耗。

在选择运放时,应根据实际应用场景的电源电压和功耗要求来选取合适的运放。

下面通过一个实际应用案例来说明如何进行运放选型。

某智能家居系统需要一个用于信号放大的运放,信号增益需求为100倍,信号带宽为10kHz。

根据这些参数,我们可以选择一个增益带宽积大于100kHz的运放。

接下来,我们需要考虑运放的输入性能,输入偏置电流和输入偏置电压应满足系统对输入阻抗和共模抑制比的要求。

运算放大器参数说明及选型指南

运算放大器参数说明及选型指南

运算放大器参数说明及选型指南一、运放的参数说明:1.增益:运算放大器的增益是指输出信号与输入信号之间的比值,通常用V/V表示。

增益可以是固定的,也可以是可调的。

增益决定了输出信号相对于输入信号的放大程度。

2.带宽:运算放大器的带宽是指在其增益达到-3dB时的频率范围。

带宽决定了运放的工作频率范围,对于高频应用,需要选择具有宽带宽的运放。

3.输入偏置电压:输入偏置电压是指在无输入信号时,运放输入端的直流偏置电压。

输入偏置电压可能会引入偏置误差,对于精密测量电路,需要选择输入偏置电压尽可能小的运放。

4.输入偏置电流:输入偏置电流是指在无输入信号时,运放输入端的直流偏置电流。

输入偏置电流可能会引起输入端的电平漂移,对于高精度应用,需要选择输入偏置电流尽可能小的运放。

5.输入偏置电流温漂:输入偏置电流温漂是指输入偏置电流随温度变化的比例。

输入偏置电流温漂可能会导致运放的工作点发生变化,对于温度变化较大的应用,需要选择输入偏置电流温漂较小的运放。

6.输入噪声:输入噪声是指在无输入信号时,运放输入端产生的噪声。

输入噪声可能会影响信号的纯净度,对于低噪声应用,需要选择输入噪声较低的运放。

7.输出电流:输出电流是指运放输出端提供的最大电流。

输出电流决定了运放的输出能力,在驱动负载电流较大的应用中,需要选择输出电流较大的运放。

8.输出电压:输出电压是指运放输出端能够提供的最大电压。

输出电压决定了运放的输出范围,在需要大幅度信号放大的应用中,需要选择输出电压较大的运放。

二、选型指南:1.确定应用需求:根据实际应用需求确定所需的放大倍数、带宽、输入/输出电压等参数。

例如,对于音频放大器,需要考虑音频频率范围、输出功率等因素。

2.选择性能指标:根据应用需求选择合适的性能指标。

不同应用对各个参数的要求可能会有所差异,需根据实际情况进行权衡与选择。

3.查询产品手册:查询供应商的产品手册或网站,获取相关产品的详细参数信息。

产品手册通常会提供各项参数的典型值和极限值,可以用于评估是否满足需求。

如何选择适合的运放

如何选择适合的运放

如何选择适合的运放在电子设备中,运放(Operational Amplifier,简称Op Amp)是一种重要的电子器件,广泛应用于信号放大、滤波、波形整形等电路中。

正确选择适合的运放对于电路性能的稳定与提高至关重要。

本文将介绍如何选择适合的运放。

一、了解运放的基本参数运放有许多基本参数需要了解,以下是几个重要的参数:1. 增益带宽积(Gain Bandwidth Product,GBW):表示运放的增益与频率的乘积,通常以MHz为单位。

选择运放时,应根据电路所需的最大增益和工作频率来确定适合的GBW值。

2. 输入失调电压(Input Offset Voltage,Vos):表示在两个输入端之间存在的微小电压差,会对输出结果产生影响。

通常以mV为单位,应尽量选择Vos较小的运放。

3. 输入失调电流(Input Offset Current,Ios):表示运放两个输入端之间的电流差异,也会对输出结果产生影响。

通常以nA为单位,应尽量选择Ios较小的运放。

4. 输入偏置电流(Input Bias Current,Ib):表示运放两个输入端的总电流,同样会对输出结果产生影响。

通常以nA为单位,应选择Ib较小的运放。

二、考虑电源电压范围运放通常需要工作在一定的电源电压范围内,过高或过低的电源电压都会影响运放的性能。

因此,在选择运放时,要根据实际应用的电源电压范围来确定适合的运放。

三、确定功耗要求功耗是选择运放时需要考虑的一个重要指标,如果对设备的功耗要求较高,应选择低功耗的运放。

四、选择合适的封装类型运放有多种封装类型,如DIP、SOP、SSOP等。

选择封装类型时,应根据实际使用环境和电路布局来确定合适的封装类型。

五、参考应用案例和厂商手册了解同类产品的应用案例和厂商手册中的参数说明是选择适合运放的有效方法。

可以参考厂商手册中的参数表,并与实际应用需求进行对比和分析。

选择适合的运放是一项重要而复杂的任务,需要结合实际需求和对运放性能的了解。

运放如何选型

运放如何选型

运放参数解释及常用运放选型集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。

本文以NE5532为例,分别对各指标作简单解释。

下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。

极限参数主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下:直流指标运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。

NE5532的直流指标如下:输入失调电压Vos输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。

输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。

输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。

输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。

对于精密运放,输入失调电压一般在1mV以下。

输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。

所以对于精密运放是一个极为重要的指标。

输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。

这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。

一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。

输入偏置电流Ios输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。

怎样选择运放

怎样选择运放

器件选型:怎样选择运放
选择运放,在选择便宜又方便买到的基础上,还需要具体需要关注以下几个参数:1、电源电压范围(VCC)
首先,确认运放的电源电压范围,以及是单电源供电,还是双电源供电。

比如,LM358既可以双电源供电,也支持单电源供电。

2、共模输入信号范围(V icm)
所有运放对输入信号的电压都有一个承受范围。

共模输入信号范围指的是输入运放反相输入端或者同相输入端信号的电压限制,若输入信号超过这个范围,运放的输出将产生截止或者其他失真。

比如,当LM358供电+V=30V时,输入到任何一个输入端的信号幅度不能超过30V-1.5V=28.5V。

3、开环增益(A ol)
开环增益是指运放的内部电压增益,等于输出电压与输入电压的比值。

开环增益在运放设计时就已经确定的,一般都可达106(120dB)。

在运放的技术手册中通常以大信号电压增益(A vd),比如LM324的
A vd=100V/mv=105(倍)=100dB。

4、共模抑制比(CMRR)
共模抑制比描述运放抑制共模信号的能力。

共模抑制比越大说明运放的质量越好。

理想的运放共模抑制比为无穷大,共模信号输入到反相输入端或者同相输入端时,输出为0。

但实际当中,共模抑制比不可能无穷大,如LM324的CMRR=80dB,LM358的CMRR=85dB等。

5、转换速率(SR)
转换速率指当输入信号出现一个跳变时,运放输出对这个跳变的响应速度。

运放参数详解超详细

运放参数详解超详细

运放参数详解超详细运放,全称为运算放大器,是一种主要用于电子设备中的放大电路。

它能够接收输入信号并在输出端放大,以达到放大信号的效果。

运放广泛应用于放大、滤波、积分、微分、求和、差分等电路中,是现代电子电路中不可或缺的元件之一在使用运放时,需要了解一些重要的参数,这些参数将影响到运放的性能和应用。

下面将详细介绍一些常见的运放参数:1.增益:增益指的是输入信号经过运放放大后的输出信号与输入信号之间的比例关系。

增益可以是小信号增益,即输入信号幅度相对较小的情况下的增益;也可以是大信号增益,即输入信号幅度较大的情况下的增益。

通常使用dB(分贝)来表示增益大小。

2.带宽:带宽是指运放能够正确放大的频率范围。

在带宽之外的信号将会被放大产生失真。

带宽通常以Hz(赫兹)表示,常见的运放带宽为几百kHz到几GHz。

3.输入电阻:输入电阻指的是运放输入端的电阻阻抗。

输入电阻越大,表示输入信号的损耗越小,输出信号与输入信号之间的电压差会更小。

输入电阻一般以欧姆(Ω)表示。

4.输出电阻:输出电阻指的是运放输出端的电阻阻抗。

输出电阻越小,表示运放输出信号的能力越强,能够驱动更大的负载。

输出电阻一般以欧姆(Ω)表示。

5.失调电流:失调电流是指运放输入端的两个输入电流之间的差异。

失调电流越小,表示运放的两个输入端能够更好地匹配,从而减小了对输入信号的失真。

失调电流一般以安培(A)表示。

6.偏置电压:偏置电压是指运放两个输入端相对于公共模式电压的偏差。

偏置电压越小,表示运放能够更好地接近理想运算放大器模型,减小了对输入信号的失真。

偏置电压一般以伏特(V)表示。

7.输出偏置电压:输出偏置电压是指运放输出端相对于公共模式电压的偏差。

输出偏置电压越小,表示运放输出信号更加准确,能够更好地匹配输入信号。

输出偏置电压一般以伏特(V)表示。

8.运放噪声:运放噪声是指运放输出信号中存在的由运放本身引起的随机噪声。

运放噪声分为输入噪声和输出噪声,通常以nV/√Hz(纳伏特/根赫兹)表示。

运放的条件与参数详解

运放的条件与参数详解
图3集成运放输入偏置电流等效电路图
输入偏置电流的测量
图4 偏置电流测试电路
S1闭合, ;
S2闭合,
输入偏置电流对电路的影响
输入偏置电流会流过外面的电阻网络,从而转化成运放的失调电压,再经运放话后就到了运入的输出端,造成了运放的输入误差。这也就说明了,在反向放大电路中,为什么要在运放的同相输入端连一个电阻再接地的原因。并且这个电阻要等于反向输入端的电阻和反馈电阻并联后的值。这就是为了使两个输入端偏置电流流过电阻时,形成的电压值相等,从而使它们引入的失调电压为0。这样说,太抽象了,还是看下面一组图容易理解一些。
在数据手册中,会给出在一定供电电压下运放的输出电流。运放的输出电流反映了运放的带载能力。在设计时,一定要注意这一参数。当运放输出电流不够时,通常用的解决办法是在运放输出端接一个三极管(或者是推挽电路)。(参照晶体管电路设计)
图10 增大运放输出电流的方法
8、低电平输出电流
低电平输出电流 被定义为在对 测试时所提供的、流入输出端的电流量,以安培为单位。
三是设置放大倍数的电阻产生的热噪声,可以通过经典公式计算出来。
图8运放噪声来源电路图
我们将计算得来的总噪声加在运放的正向输入端,就得到了运放的噪声模型。(注意是正向输入端,因此无论是正向运放还是反向运放,其噪声增益均为
G=1+Rf/R1);
图9 集成运放噪声模型
7、输出电流参数
输出电流参数定义为从运放输出端取出的电流量,以安培为单位。有时候 被规定为绝对最大值,但对大多数运放而言,这个参数仍然属于电特性的一部分。
图5偏置电流等效电路图
当信号源的阻抗很高时,就必须关注输入偏置电流。如果运放有很大的输入偏置电流,就会对信号源构成负载,因而会看到一个比预想要低的信号源输出电压。如果信号源阻抗很高,那么最好的方法是用一个CMOS或者JFET作为输入级的运放。我们也可以采取降低信号源输出阻抗的方法,这就是用一个缓冲器,然后用缓冲器来驱动具有很大输入偏置电流的运放。在双极输入级的情况下,可以使用对失调电流进行调零的方法。所谓调零其实就是使两个输入端看到的阻抗相配。在CMOS和JFET的情况下,失调电流一般不是问题,也就没有必要进行阻抗匹配了。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

详解运放的参数和选择
最近在使用一款PGA,在PGA输入端接地时发现输出总有个矩形波信号,放大1000倍后非常明显,怀疑是电源引起的干扰。

开始的时候在输入正负电源处都加了100uf和0.1的电容,但效果不明显,后来准备再电源输入端再串联一个电阻,一开始电阻选择的是1k,但上电后发现芯片根本都无法工作,测量芯片两端的电源电压发现才一点多v。

这时候就看了下数据手册的静态电流,发现竟然是5mA,然后这个PGA是5v供电的,如果PGA正常工作,1k电阻上的分压都能到5v。

所以后来用了个50欧的电阻配合着100uf和0.1uf构成了个低通滤波,这样一来芯片工作正常了,然后输出的波纹也小了很多。

 在选择运放时应该知道自己的设计需求是什幺?从而在运放参数表中来查找。

一般来说在设计中需要考虑的问题包括:
 1、运放供电电压大小和方式选择;
 2、运放封装选择;
 3、运放反馈方式,即是VFA (电压反馈运放)还是CFA(电流反馈运放); 4、运放带宽;
 5、偏置电压和偏置t电流选择;
 6、温漂;
 7、压摆率;
 8、运放输入阻抗选择;
 9、运放输出驱动能力大小选择;
 10、运放静态功耗,即ICC电流大小选择;
 11、运放噪声选择;。

相关文档
最新文档