向心力习题课
向心力习题课_绳杆模型

要点三
碰撞过程中的动量守恒
对于弹性碰撞,动量守恒定律表述为“系统总动量在碰撞前后保持不变”。
要点一
要点二
碰撞过程中的能量守恒
对于完全弹性碰撞,能量守恒定律表述为“系统总动能等于碰撞前各物体动能之和”。
碰撞过程中绳杆模型的特点
涉及到多个物体之间的碰撞,需要分析物体之间的相互作用力和运动状态,得到碰撞后绳杆模型的状态。
03
建筑结构风振分析
通过建立建筑物的绳杆模型,可以模拟建筑物在风力作用下的振动情况,有助于评估建筑物的稳定性和安全性。
绳杆模型的应用场景
01
车辆悬挂系统设计
通过建立绳杆模型来模拟车辆悬挂系统的运动和受力情况,有助于优化车辆的操控性能和乘坐舒适度。
02
机器人操作臂分析
在机器人操作臂的设计和分析过程中,可以使用绳杆模型来简化操作臂的运动和动力学问题,提高计算效率。
详细描述
火车转弯问题
总结词
绳杆模型在电梯升降问题中也非常实用,通过分析电梯升降时的受力情况,可以解决许多实际问题。
详细描述
首先需要明确电梯的运动轨迹是直线,因此需要使用直线运动的规律进行分析。其次,需要分析电梯在升降时受到的力,包括重力、支持力和摩擦力。根据这些力的关系,可以得出电梯升降所需的加速度和速度。在具体问题中,可以通过分析电梯的质量和升降速度来得到电梯所需的最大加速度和功率。
详细描述
绳杆模型的扩展研究
04
绳杆模型在复合运动中的扩展应用
转动惯量的计算
角速度和角动量的关系
绳杆模型在复合运动中的应用
绳杆模型在机械能守恒定律中的应用
机械能守恒定律的表述
机械能守恒定律表述为“系统机械能总量保持不变”,涉及到动能、势能和内能的转化和守恒。
第二章第二节、向心力(习题课)

θ
F向 = f静
F向 = F合=mg•tanθ
(2)汽车过桥
v
N
N
mg
N=m g
mg
F向 =mg – N
N<mg
N
mg
F向 = N–mg
N>mg
• 几个典型的圆周运动
1、 物体相对转盘静止,随盘做匀速圆周运动 FN
F静
G F向=F合=f静
如图所示的圆锥摆中,小球的质量m=50g,绳子与竖直方 向的夹角为60度,小球做匀速运动的半径r=m,求: (1)绳对小球的拉力大小。 (2)小球运动的角速度及周期。
力由重力和拉力的合力来提供
F向
T2
mg
m
v22 r
T
T2
m
v2 2 r
mg
45 N
G
分析:小球做匀速圆周运动,合外力 提供向心力,因此先进行受力分析。
600
F拉
G G cos 600
F拉
F拉
G cos600
0.0510 1
N
1N
2
F拉
600
F合
G
3、如图6所示,一质量为0.5kg的小球,用0.4m长的 细线拴住在竖直面内作圆周运动,(g=10m/s2)求:
(1)当小球在圆上最高点速度为4m/s时,细线的拉力是多少?
粤教版高一必修二
第二章第二节、向心力习题课
线速度、角速度、周期的关系
线速度 角速度
v 2r
T
2
T v r
转速
n 1 T
单位:m/s
单位:rad/s(弧度每秒)
单位:r/s(转每秒)
向心力与向心加速度
F向
1-2、向心力习题课教案

第二节向心力习题课一、教学目标(一)知识与技能1.理解向心力是物体做圆周运动的合外力.2.知道大小与哪些因素有关.理解的含义,并能用来进行计算.3.理解向心加速度的概念.结合牛顿第二运动定律,得出向心加速度的公式.4.知道在变速圆周运动中,可用公式求质点在圆周上某一点的向心力和向心加速度的大小.(二)过程与方法1.通过实验,让学生感受做匀速圆周运动的物体需要向心力,并且对向心力大小与线速度大小的关系建立初步的印象.2.通过实验、探究与有关的因素.(三)情感态度与价值观1.经历观察与思考、实验与探究、讨论与交流等学习活动,培养学生尊重客观事实、实事求是的科学态度.2.通过亲身感悟,使学生获得成功的愉悦,培养学生参与物理学习活动的兴趣.3.联系实际,注重应用,培养学生理论联系实际的意识.二、教学重难点1.向心加速度的概念.2.掌握向心力公式,用公式求质点在圆周上某一点的向心力和向心加速度的大小.三、教学方法讨论法、讲授练习法相结合四、教学过程【例题1】如图,已知A、B、C三点到转轴的中心的距离之比RA:RB:RC=1:2:1。
皮带传动装置转动后,求皮带上A、B、C三点的线速度和角速度之比。
【例题2】有甲、乙、丙三个物体,甲放在广州,乙放在上海,丙放在北京.当它们随着地球一起转动时,下面哪句话是正确的:()A.它们的周期相等,甲的角速度最大B.丙的角速度最小,甲的线速度最大C.它们的角速度和线速度均相等D.它们的角速度相等,丙的线速度最小【例题3】物体做离心运动时,运动轨迹()A.一定是直线B.一定是曲线C.可能是直线,也可能是曲线D.可能是圆【例题4】下列哪些现象是为了防止物体产生离心运动的?( )A.汽车转弯时要限制速度;B.转速很高的砂轮半径不能做得太大;C.在修筑铁路时,转弯处轨道的内轨要低于外轨;D.离心水泵工作时.【例题5】由于地球自转,地球上的物体都随地球一起转动,以下说法正确的是:( )A.在北京和上海的物体具有相同的角速度B.地球上所有物体的向心加速度都指向圆周运动的中心——地心C.在上海的物体比在北京的物体的线速度大D.质量相同的物体,在北京比在上海所需的向心力大【例题6】如图所示的一段圆弧为某运动物体的速度--时间图线,由图可知,物体是做下列哪种运动? ()A.圆周运动B.匀速直线运动C.减速直线运动D.曲线运动【例题7】如图质量相等的小球A、B,分别用等长的同样细线悬于轻杆两端,并支于O点,处于平衡状态,今将球A作圆锥摆运动并处于稳定状态时,下列说法中正确的有()A.轻杆平衡被破坏,且左边下降,右边上升B.左边绳子的拉力增大C.轻杆仍处于平衡状态D.轻杆两端绕O轴上下运动【例题8】甲、乙两球都做匀速圆周运动, 甲球的质量是乙球的3倍,甲球在半径为25cm 的圆周上运动, 乙球在半径为16cm 的圆周上运动, 在一分钟内甲球转了30次, 乙球转了75次, 则甲、乙两球所受向心力之比为 ( ) A. 4:3 B. 3:4 C. 2:1 D. 1:2 【例题9】质量均为m 的三个小球,A 、B 、C 分别固定在长为3L 的轻质细杆上, OA=AB=BC=L ,杆绕O 点以角速度ω在水平面上旋转,则杆上OA 、AB 、BC 每段张力的大小为 ( )【例题10】如图, 圆盘半径为R, 当圆盘绕竖直轴作匀速转动, 盘边缘所悬物体“飞起”,悬线长为L, 悬线与竖直方向夹角为α, 则圆盘的角速度ω为 ( )【例题11】汽车以15m/s 的速度通过R=40m 的凸形桥,轮与桥面间的静摩擦因数μ=0.6,则汽车在最高点时的水平加速度为 m/s2.(保留2位小数)【例题12】将一小硬币放在唱机唱片上, 离转轴7.0cm 远处A 点, 当转速从零逐渐增大时, 在转速达到每分钟60转时, 硬币开始往外滑, 如果硬币放在离转轴12.0cm 处的B 点, 则开始出现滑动时的转速为______r/min.【今日作业】印发的练习卷【教学反思】222222222222.23 .234.345 .653A m L m L m L B m L m L m L C m L m L m L D m L m L m Lωωωωωωωωωωωω、、、、、、、、A B C D。
向心力习题课

小结
向心力定义:做匀速圆周运动的物体具有向心加速度,根据牛顿第二定 律, 产生向心加速度的原因一定是物体受到了指向圆心的合力。这个合力叫做向 心力。 特点:(1)方向:向心力总是指向圆心与速度方向垂直 (2)作用效果: 只改变速度的方向,不改变速度大小
公式:
变速圆周运动定义:同时具有向心力加速度和切向加速度的圆周运动就是变 速圆周运动 一般曲线运动定义:运动轨迹即不是直线也不是圆周的曲线运动可以称为一 般曲线运动
g R
图6-29
高一物理
5
一个做匀速圆周运动的物体,如果轨 道半径不变,转速变为原来的3倍, 所需的向心就比原来的向心力大40N, 那么物体原来的向心力大小为多少? 5N
高一物理
6
甲、乙两名溜冰运动员,m甲=80kg,m 乙=40kg,面对面拉着弹簧,绕弹簧某点做 圆周运动的溜冰表演,如图6-24所示,两 人相距0.9m,弹簧秤的示数为9.2N,求: A.甲乙两人运动所需向心力之比 1:1 B.甲乙两人的角速度之比 1:1 C.甲乙两人的运动半径之比 1 : 2 D.甲乙两人的线速度之比 1 : 2
高一物理
曲 线 运 动
5·6 向心力
张宁宁
高一物理
知识回顾
向心力定义:做匀速圆周运动的物体具有向心加速度,根据牛顿 第二定 律,产生向心加速度的原因一定是物体受到了指向圆心的 合力。这个合力叫做向心力。 方向:始终指向圆心 公式:
作用效果:只改变速度的方向,不改变速度大小
高一物理
匀速圆周运动实例
C ;
D .
高一物理
3
在用抡绳子来调节沙袋速度的大小的实验中(类 似链球加速情况),则: ( BC )
A 说明了向心力能够改变速度的大小 B 不能说明向心力能够改变速度的大小 此实验中绳子牵引沙袋的方向并不与沙袋运动 C 的方向垂直 此实验中用手抡绳子的力就是沙袋所受的向心 D 力。
向心力习题课绳杆模型教育知识

DB为竖直线,AC为水平线,AE为水平面,今使小球自
A点正上方某处由静止释放,且从A点进入圆形轨道运
动,通过适当调整释放点的高度,总能保证小球最终
通过最高点D,则小球在通过D点后(
)A
A.会落到水平面AE上
B.一定会再次落到圆轨道上
C.可能会落到水平面AE上
D.可能会再次落到圆轨道上
教书育人
16
二、在水平面内作圆周运动的临界问题
A球在最低点时的速度大小为4m/s,求此时B球对杆的作用力
解 ∵AB在同一个物体上同一时刻ω相同
在B通过最高点时
B
VB
ω=
VA rA
4 0.8
5(rad / s)
B
o
A
研B最高点,据牛二律
rB=0.2
rA=0.8
mg+FB= mω2rB
∴FB= mω2rB — mg
= 1×52×0.2 —1×10
[答案] 2.9 rad/s<ω<6.5 rad/s
教书育人
20
[例题5]如图所示,一个光滑的圆锥体固定在水 平桌面上,其轴线沿竖直方向,母线与轴线之间 的夹角θ=300 ,一条长为L的绳(质量不计), 一端固定在圆锥体的顶点O处,另一端拴着一个质 量为m的小物体(物体可看作质点),物体以速
率v绕圆锥体的轴线做水平匀速圆周运动。
内侧运动,经过最高点而不脱离轨道的临
界速度为v,当小球以2v的速度经过最高点
时,对轨道的压力是 ( )
A.0
B.mg
C.3mg
D.5mg
C
教书育人
8
例2、长度为L=0.5m的轻质细杆OA,A端有一质量 为m=3.0kg的小球,如图5所示,小球以O点为圆心 在竖直平面内做圆周运动,通过最高点时小球的速 率是2.0m/s,g取10m/s2,则此时细杆OA受到 (B )
新人教版高中物理必修二《5.5 向心力和向心加速度习题课》课件

L R
v g(RLsin)tan
T=2π (R+L sinθ)/gtan θ
例6、如图:物体与圆筒壁的滑动摩擦系数为μ,圆筒 的半径为R,若要物体不滑下,圆筒转动的角速度至少 为多少?
ω
g
R
R
例7、如图:质量均为m的A、B两物体用细绳跨过固定在 圆盘中央的光滑的定滑轮,物体A与转盘摩擦系数为μ, 为使A与盘保持相对静止,则转盘ω的取值为多少? (A物离盘中心距离为R)
A、球A的线速度必定大于球B的线速度。 A
A
B、球A的角速度必定小于球B的角速度。 B
B
C、球A的运动周期必定大于球B的角速度。
θ
D、球A对筒壁的压力必定大于球B对筒壁的压力。
例2、在光滑杆上穿着两个小球m1、m2,且m1=2m2,用细线 把两小球连接起来,当架匀速转动时,两小球刚好能与杆保
持无相对滑动,如图:此时两小球到转轴的距离r1:r2之比
向心力 向心加速度 习题课
一、向心力 二、向心加速度 三、例题解析
处理匀速圆周运动问题的一般步骤
(1)明确对象,找出圆周平面,确定圆心和半径;
(2)进行受力分析,画出受力分析图;
(3)求出在半径方向的合力,即向心力;
(4)用牛顿第二定律
F合
mamv2 r
结合
匀速圆周运的特点列方程求解。
例1、一个内壁光滑的圆锥筒的轴线垂直与水平面,圆 锥筒固定不动,有两个ቤተ መጻሕፍቲ ባይዱ量相同的小球A和B紧贴着内 壁分别在图中所示的水平面内作匀速圆周运动,则 ( ABC )
R
AA
ω BB
gR(1-μ)≤ω ≤
(1gR+μ)
例8:如图中小球用长为L的细绳悬与O点,使之在竖直 平面内做圆周运动,当小球通过最低点时的速率为V1, 在最高点的速率为V2,则: ①、小球在最低点,最高点的细绳张力大小分别为多少?
向心力习题课_绳杆模型

应用:可用于分析天体运动、机械装置中的圆周 运动等问题。
在接下来的课程中,我们将利用绳杆模型来解析 各种与向心力相关的问题,并通过实例来提高解 题能力。希望大家能够通过本课程,更深入地理 解和掌握向心力的概念及应用。
02
绳杆模型的理论基础
圆周运动与向心力
拓展资源
推荐学生阅读相关物理教材或专业文 献,如《基础物理学》中的圆周运动 章节。
实践项目
鼓励学生设计并制作自己的绳杆模型 ,通过实际操作感受向心力的变化。
参加学术竞赛
推荐学生参加物理学术竞赛,通过与 同龄人交流,进一步提升自己的物理 水平。
THANKS
感谢观看
安全注意事项
在实验过程中,确保实验人员的 安全。例如,避免砝码从高处落 下砸伤人员,注意防止绳子断裂
等安全隐患。
实验数据与结果分析
01
数据记录
详细记录实验过程中的各项数据,如砝码的质量、位置,轻杆的初始角
度,绳子的长度等。这些数据对于后续的结果分析至关重要。
02
数据处理
对实验数据进行整理、计算和分析,如计算轻杆的旋转速度,绘制轻杆
学生易错点讨论
忽视绳杆模型的特点
绳杆模型中,绳只能提供拉力,而杆可以提供拉力或支持力。学 生在解题时容易忽视这一点,导致受力分析错误。
向心力来源不清
在向心力问题中,向心力的来源可能有多种,如重力、弹力、摩擦 力等。学生容易混淆这些力的来源,导致解题思路混乱。
不会运用牛顿第二定律
在向心力问题中,牛顿第二定律的应用至关重要。学生应明确在圆 周运动的各点,如何运用牛顿第二定律建立方程求解。
03
绳杆模型的实践应用
高中物理《向心力》课后练习题

第2节向心力1.向心力(1)定义:做匀速圆周运动的物体所受的总□01指向圆心的合力。
(2)方向:始终指向□02圆心,与□03线速度方向垂直。
(3)对于做匀速圆周运动的物体,物体的速度大小□04不发生改变,因此,所受合力只改变速度的□05方向。
(4)效果力:向心力由某个力或者几个力的合力提供,是根据力的□06作用效果命名的。
2.向心力的大小(1)在探究向心力大小的表达式的实验中,为了研究向心力大小与物体的质量、速度和轨道半径的关系,运用的实验方法是□07控制变量法;现将小球分别放在两边的槽内,为探究小球受到的向心力大小与角速度大小的关系,做法是:在小球运动半径□08相等(填“相等”或“不相等”)的情况下,用质量□09相同(填“相同”或“不相同”)的钢球做实验。
(2)向心力大小的表达式:F n=□10mωr或F n=□11m v2r。
3.变速圆周运动和一般曲线运动的受力特点(1)变速圆周运动变速圆周运动所受合力并不指向□12运动轨迹的圆心,合力一般产生两个方面的效果:①合力F跟圆周相切的分力F t,改变线速度的□13大小,F t与v同向时,线速度□14越来越大,反向时线速度□15越来越小。
②合力F指向圆心的分力F n,提供物体做圆周运动所需的□16向心力,改变线速度的□17方向。
(2)一般曲线运动①定义:运动轨迹既不是直线也不是圆周的曲线运动。
②处理方法:可以把曲线分割为许多很短的小段,质点在每小段的运动都可以看作□18圆周运动的一部分。
这样,在分析质点经过曲线上某位置的运动时,就可以采用□19圆周运动的分析方法进行处理。
典型考点一对向心力的理解1.(多选)下列关于向心力的说法中,正确的是()A.物体由于做圆周运动而产生了一个向心力B.向心力只改变做圆周运动物体的线速度的方向,不改变线速度的大小C.做匀速圆周运动物体的向心力,一定等于其所受的合力D.做匀速圆周运动物体的向心力是恒力答案BC解析力是改变物体运动状态的原因,因为有向心力物体才做圆周运动,而不是因为做圆周运动才产生向心力,故A错误;向心力始终与线速度方向垂直,只改变线速度的方向不改变线速度的大小,故B正确;在匀速圆周运动中,物体的向心力一定等于其所受的合力,但该力方向不断变化,是变力,故C正确,D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
团结合作,共创辉煌 ! 平原一中高一物理学案 第五章 曲线运动 编号:011 我努力,我成功
第 1 页
5.7 向心力 习题课
主备人:任吉亮 杜传辉 审核人:雷化滨 2010-3-7
典型例题
例1、如图所示,已知水平杆长L 1=0.1米,绳长L 2=0.2米,小球m 的质量m =0.3千克,整个装置
可绕竖直轴转动,当该装置以某一角速度转动时,绳子与竖直方向成30°角.g 取10m/s 2
,求: (1)试求此时绳的张力是多大? (2)该装置转动的角速度是多大?
例2、如图所示,在光滑水平面上有一光滑小孔O ,一根轻绳穿过小孔,一端连接质量为m=1kg
的小球A ,另一端连接质量为M=4kg 的物体B 。
(1)当小球A 沿半径r=0.1m 的圆周做匀速圆周运动,其角速度为w=10rad/s 时,物体B 对地面的压力为多大?
(2)当A 球的角速度为多大时,B 物体处于将要离开而尚未离开地面的临界状态?(g=10m/s 2)
针对练习
1.关于向心力,下列说法中正确的是 ( )
A.向心力不改变做圆周运动物体速度的大小
B.做匀速圆周运动的物体,其向心力是不变的
C.做圆周运动的物体,合外力就是向心力
D.做匀速圆周运动的物体,合外力就是向心力
2.有长短不同、材料相同的同样粗细的绳子,各拴着一个质量相同的小球在光滑水平面上做匀速圆周运动,那么( )
A.两个小球以相同的线速度运动时,长绳易断
B.两个小球以相同的角速度运动时,长绳易断
C.两个球以相同的周期运动时,短绳易断
D.不论如何,短绳易断
3.质量不计的轻质弹性杆P 部分插入桌面上小孔中,杆另一端套有质量为m 的小球,今使小球在水平面内做半径为R 、角速度为ω的匀速圆周运动,如图4-2-11所示,则杆的上端受到球对它的作用力大小为( )
A .R n 2
ω B .mg
C .R m mg 2ω+
D .2
42R g m ω+
4.在双人花样滑冰运动中,有时会看到被男运动员拉着的女运动员离开地面在空中做圆锥摆运动的精彩场面。
目测体重为G 的女运动员做圆锥摆运动时和水平冰面的夹角约为30度,重力加速度为g ,试估算该女运动员( ) A.受到的拉力为3G B.受到的合力为2G C .向心加速度为3g D. 向心加速度为2g
4.甲、乙两物体都做匀速圆周运动,其质量之比为1:2,转动半径之比为1:2,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为 ( ) A. 1:4 B.2:3 C.4:9 D.9:16
5.劲度系数k =100 N/m 的轻弹簧原长0.1 m ,一端固定一个质量为0.6 kg 的小球,另一端固定在桌
面上的O 点.使小球在光滑水平面上做匀速圆周运动,设弹簧的形变总是在弹性限度内,则当小球的角速度为10 r ad/s 时,弹簧对小球的拉力为________N.
6.如图所示,质量相等的小球A 、B 分别固定在轻杆OB 的中点及端点,当杆在光滑水平面上绕O 点匀速转动时,求杆的OA 段及AB 段对球的拉力之比?
选做7.如图所示,水平转盘的中心有个竖直小圆筒,质量为m的物体A 放在转盘上,A 到竖直筒中心的距离为r;物体A 通过轻绳、无摩擦的滑轮与物体B 相连,B 与A 质量相同;物体A 与转盘间的最大静摩擦力是正压力的μ倍,则转盘转动的角速度在什么范围内,物体A 才能随盘转动?。