最新精编高中人教版高中物理高考必备知识点磁场对运动电荷的作用力

合集下载

四、磁场对运动电荷的作用-人教版选修1-1教案

四、磁场对运动电荷的作用-人教版选修1-1教案

四、磁场对运动电荷的作用-人教版选修1-1教案一、磁场的基本概念磁场是由带电粒子运动产生的一种物理场。

如果把电荷看作是一个个微小的电流元,那么,这些电流元产生的磁场就是磁场的直接来源。

二、磁场对电荷的作用在磁场中运动的电荷,将会受到一系列的力的作用。

这些力包括:1. 磁场力磁场力是指在磁场中运动的电荷所受到的力,它的大小和方向由洛伦兹力定律决定。

当电荷在磁场中运动时,它所带的电荷量q会受到磁场B的作用,从而受到一个垂直于磁场B和运动方向v的力F,F=qv×B。

需要注意的是,磁场力的大小和方向都与电荷的速度和运动方向有关。

2. 离心力离心力是指在磁场中运动的电荷所受到的离心力,它是由洛伦兹力导致的。

当电荷运动的轨迹处于磁场中的垂直方向时,其运动方向与磁场方向呈90度,此时洛伦兹力就只产生垂直于速度和磁场的方向上的力,从而将电荷的运动轨迹改变,使其偏离原来的运动轨迹,这个力就是离心力。

3. 感应电动势和涡流当导体在磁场中运动时,它有可能产生感应电动势和涡流。

感应电动势是指磁场磁通量的变化所引起的电动势,而涡流则是由感应电动势引起的电流。

三、磁场的应用磁场是一种非常有用的物理现象,它在生活、工作和科研中都有广泛的应用。

1. 电动机电动机是磁场应用的一个重要领域,它利用磁场力使电荷产生旋转运动,从而驱动机械运动。

2. 电磁铁电磁铁是一种应用于磁场的设备,它的原理是利用电流产生磁场,从而吸附铁质物体或者产生力的作用。

3. 磁共振成像磁共振成像是一种利用磁场获得人体内部结构影像的技术,它在医学领域中有着广泛应用。

4. 感应加热感应加热是一种利用电磁感应产生的涡流焦耳热使材料发热的方法,它在工业生产中有着重要的应用。

四、本节课的关键知识点•磁场力是指在磁场中运动的电荷所受到的力,它的大小和方向由洛伦兹力定律决定。

•离心力是指在磁场中运动的电荷所受到的离心力,它是由洛伦兹力导致的。

•磁场的应用包括电动机、电磁铁、磁共振成像、感应加热等。

高中物理高考 磁场知识点

高中物理高考 磁场知识点

高中物理高考磁场知识点高中物理高考:磁场知识点磁场是在高中物理中非常重要的一个章节,它涉及到电磁感应、电动力学等多个领域的内容。

在高考中,磁场知识点通常是考试的重点和难点之一。

本文将对高中物理高考中的磁场知识点进行深入探讨,帮助同学们更好地理解和掌握这方面的内容。

一、磁场的定义和特性磁场是由磁体所固有的磁性所产生的一种物理现象。

磁场具有方向性,其方向可以用一个矢量表示,称为磁感应强度矢量B。

磁感应强度的SI单位是特斯拉(T)。

磁场有势,磁场与电流和电荷均有关系,遵循安培定理和毕奥萨伐尔定律。

磁场的数值可以用磁感应强度、磁感应力等进行度量。

二、磁场与电流的关系电流是由带电粒子运动所产生的,而电流激发出的磁场可以相互作用。

根据安培定理,电流元在空间中产生的磁场对通过该电流元磁力的总和为零。

利用这个定理,可以推导出电流元周围的磁场分布情况。

三、磁场与导线的相互作用当导线带有电流时,会产生磁场,这个磁场会与外部磁场相互作用。

根据左手定则,我们可以确定导线所受的磁力方向。

同时,根据在导线中的安培力定律,我们可以计算出导线所受的磁力大小。

磁场也会导致导线上感应出电动势,这就是电磁感应。

四、磁场与磁感应强度磁感应强度是磁场强度的一个重要参数,它描述了磁场的空间分布情况。

磁感应强度的方向是垂直于磁场线的方向。

当磁感应强度大小相等的磁场线密集时,说明磁场强度较大。

磁感应强度与磁场的关系可以用安培环路定理来确定。

五、磁场与磁感应力磁场中的磁感应力可以使运动带电粒子受到力的作用。

根据磁感应力的计算公式,我们可以知道力的大小与电流、磁感应强度以及带电粒子速度的关系。

同时,根据洛伦兹力定律,磁场还会对带电粒子产生力矩的作用。

六、磁场与电磁感应电磁感应是指通过磁感应强度的变化而产生的感应电动势。

根据法拉第定律,磁通量的变化率与感应电动势成正比。

利用这条定律,我们可以计算出磁场变化时产生的感应电动势,进而用于解决磁场中的电磁感应问题。

最新人教版高中物理选择性必修二第一章安培力与洛伦兹力第2节磁场对运动电荷的作用力

最新人教版高中物理选择性必修二第一章安培力与洛伦兹力第2节磁场对运动电荷的作用力

【问题探究】 (1)导线中的电流是多少?导线在磁场中所受安培力多大? 提示:导线中的电流I =nqvS。 导线在磁场中所受安培力F安=BIL=nqvSLB。 (2)长为L的导线中含有的自由电荷数为多少?每个自由电荷所受洛伦兹力多大? 提示:导线中自由电荷数N=nSL。
F安 每个自由电荷所受洛伦兹力F= N =qvB。
课堂合作探究
主题一 洛伦兹力的方向 任务 探究洛伦兹力的方向 【实验情境】 如图所示,给阴极射线管两极加上电压,使阴极射线管工作起来,就能观察到电 子束沿直线运动。把射线管放置在蹄形磁铁两极之间观察电子束在磁场作用下的 偏转情况;改变磁场方向,观察力的变化。
【问题探究】 (1)给阴极射线管加上磁场后观察到什么现象?该现象说明了什么? 提示:加上磁场后电子束发生了偏转。说明磁场对电子束(运动电荷)有力的作用 (洛伦兹力);磁场方向不同,偏转方向也不同。说明洛伦兹力的方向与磁场方向 有关。
3.洛伦兹力的大小 (1)公式:F=_q_v_B__s_in__θ_,其中θ为速度方向与磁感应强度方向的夹角。 (2)当v⊥B时,F=_q_v_B_。 (3)当v∥B时,F=0__。
4.电子束的磁偏转 (1)电视显像管应用了电子束_磁__偏__转__的原理。 (2)扫描:在偏转区的水平方向和竖直方向都有偏转磁场,其方向、强弱都在 _不__断__变__化__,使得电子束打在荧光屏上的光点不断移动。 (3)偏转线圈:产生使电子束偏转的_磁__场__。
【结论生成】 1.洛伦兹力的四点说明 (1)三个决定洛伦兹力方向的因素:电荷的电性(正、负)、速度方向、磁感应强度 的方向。当电荷电性一定时,其他两个因素决定洛伦兹力的方向,如果只让一个 因素相反,则洛伦兹力方向必定相反;如果同时让两个因素相反,则洛伦兹力方 向不变。

高考物理复习课件:磁场对运动电荷的作用

高考物理复习课件:磁场对运动电荷的作用

实验装置:质谱仪,包括磁场、电 场、粒子源等
添加标题
添加标题
添加标题
添加标题
实验原理:利用磁场对运动电荷的 作用,使带电粒子在磁场中做圆周 运动
实验步骤:将带电粒子源放入磁场 中,观察粒子的运动轨迹,记录数 据,分析结果
实验目的:研 究带电粒子在 磁场中的运动
规律
实验原理:利 用磁场对运动 电荷的作用, 使带电粒子在 磁场中做回旋
安培力:磁场对电 流的作用力
安培力大小:与电 流、磁场、导体长 度、导体横截面积 有关
安培力公式: F=BILsinθ
安培力方向:与磁 场、电流方向有关 ,遵循左手定则
电磁感应:电 流通过磁场产 生感应电动势
电磁驱动:利 用安培力驱动 电动机、电磁
阀等设备
电磁制动:利 用安培力实现 电磁制动,如 汽车、电梯等
安培力公式:F=BILsinθ
其中,F为安培力,B为磁场强度,I为电流强度,L为导线长度,θ为导线与磁场方向的 夹角
安培力方向:与磁场方向和电流方向垂直,遵循左手定则
安培力方向与电流方向和磁场方 向有关
安培力方向与电流方向垂直,与 磁场方向平行
安培力方向可以用左手定则判断
左手定则:伸开左手,四指指向 电流方向,大拇指指向磁场方向, 四指弯曲的方向就是安培力方向
运动轨迹:带电粒子在非匀强 磁场中的运动轨迹
磁场强度:非匀强磁场的磁场 强度分布
运动方程:带电粒子在非匀强 磁场中的运动方程
带电粒子在磁场中的运动:受到洛伦兹力的作用,运动方向与磁场方向垂直
带电粒子在电场中的运动:受到电场力的作用,运动方向与电场方向相同
带电粒子在组合场中的运动:受到洛伦兹力和电场力的共同作用,运动方向取决于两个 力的合成

高三一轮复习----磁场对运动电荷的作用

高三一轮复习----磁场对运动电荷的作用

一轮复习----磁场对运动电荷的作用
一、磁场对运动电荷的作用力----(洛伦兹力)
1、定义:
2、大小:
3、方向:
4、特点:
5、当电荷垂直射入匀强磁场时,在洛伦兹力作用下,电荷作匀速圆周运动。

推导半径公式和周期公式:
二、带电粒子在匀强磁场中的运动(解题步骤:画轨迹、找联系、用规律)
如何确定圆心
例题1:如图所示,两电子沿MN方向从M点射入两平行平面间的匀强磁场中,分别以v1、v2的速率射出磁场,射出方向如图。

则v1:v2=________,它们在磁场中的运动时间之比t1:t2=_______。

例题2:在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸里,磁感应强度为B.一带负电的粒子(质量为m、电荷量为q)以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ.求:该粒子射出磁场的位置坐标(粒子所受重力不计)
三、带电粒子在有界匀强磁场中的临界问题
例题3:长为L,间距也为L的两平行金属板间有垂直于纸面向里的匀强磁场,磁感应强度为B,今有质量为m、带电量为q的正离子从平行板左端中点以平行于金属板的方向射入磁场。

欲使离子不打在极板上,入射离子的速度大小应满足的条件是?
作业:小练习
一个质量为m,电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x 正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。

求:
匀强磁场的磁感应强度B和射出点的坐标。

【人教版】高中物理选修1-1:《磁场对运动电荷的作用》精品ppt课件

【人教版】高中物理选修1-1:《磁场对运动电荷的作用》精品ppt课件
第四节
磁场对运动电荷 的作用
1
一、磁场对运动电荷的作用—洛仑兹力
1.洛仑兹力
v
仑兹电力量:为fLq电q荷v 在 B磁 场中受到的洛 q


B
大小: fL qvBsin
方向:
q

0,
f L
//
v

B

fL
q 0,
垂直由 v
fL //(v) B 和 B 构成的平面。
dF
B
1.内容
安培定 律:一个电流元在磁场中所受磁场力为电流
元 Id l与磁感应强度 B的矢量积。
用矢量式表示: dF Idl B
大小:dF IdlBsin

dF
B

Id l
方向:从

Idl右 旋到B ,大拇指指向
dF 垂直由Idl和 B 构成的平面。7Βιβλιοθήκη 平行放置另一长为L的载流直导线

I2 ,两根导线相距为 a,求导线 I2
所受到的安培力。
解:由于电流 I2 上各点到电流 I1
I1
距离相同,I2 各点处的 B 相同,
I2 受到的安培力方向如图所示,
F
I2 L a
B1
安培力大小:F I 2LB 1 sin
其中
B1

0I1 , 2a

在 B’ 中作圆周运动的轨道半
径为:R mv qB '
(2)同位素
EB
-
-Fe

+
fL+

速 度 选 择
-
v +器
有相同的质子数和电子数,

人教版高中物理选择性必修第2册 第一章 安培力与洛伦兹力 2 磁场对运动电荷的作用力

人教版高中物理选择性必修第2册 第一章 安培力与洛伦兹力 2 磁场对运动电荷的作用力
洛伦兹力的特点 洛伦兹力总与运动方向垂直,故洛伦兹力永不做功,它只改变电荷运动方向,不改变 电荷速度大小。
洛伦兹力与安培力的区别和联系
区别
联系
①洛伦兹力是指单个运动电荷所受到的磁场 ①安培力是洛伦兹力的宏观表现,洛伦兹力是
力,安培力是指电流(即大量定向移动的电荷)所 安培力的微观解释;
受到的磁场力;
决定洛伦兹力方向的三个因素 电荷的电性(正、负)、速度方向、磁感应强度的方向。三个因素决定洛伦兹力的 方向,如果只让一个因素相反,则洛伦兹力方向必定相反;如果同时让两个因素相反, 则洛伦兹力方向将不变。
F、B、v三者方向间的关系 电荷运动方向和磁场方向间没有因果关系,两者关系是不确定的。电荷运动方向 和磁场方向确定洛伦兹力方向,F⊥B,F⊥v,即F垂直于B和v所决定的平面。
B
同,也可沿直线穿出右侧的小孔S2,而其他速度的粒子要么上偏,要么下偏,无法穿出 S2。因此利用这个装置可以达到选择某一速度带电粒子的目的,故称为速度选择 器。
磁流体发电机 如图甲所示,将一束等离子体(即高温下电离的气体,含有大量带正电和带负电的粒 子,从整体上来说呈电中性)喷射入匀强磁场,磁场中有两块金属板A、B,则高速射 入的粒子在洛伦兹力的作用下向A、B两板聚集,使两板间产生电势差。若平行金 属板间距为d,匀强磁场的磁感应强度为B,等离子体流速为v,气体从一侧垂直磁场 射入板间,不计气体电阻,外电路电阻为R,运动的带电粒子在磁场中受洛伦兹力作 用发生偏转,正、负粒子分别到达B、A极板(B为电源正极,故电流方向从b到a), 使A、B板间产生匀强电场,在电场力的作用下偏转逐渐减弱,当等离子体不发生偏 转即匀速穿过时,如图乙所示,有qvB=qE,所以此时两极板间最大电压U=Ed=Bdv,据 闭合电路欧姆定律可得最大电流I= Bdv 。

高考必考磁场知识点

高考必考磁场知识点

高考必考磁场知识点磁场是一个在空间内产生磁力的区域,磁场是磁力的载体。

在高考物理考试中,磁场是必考的知识点之一。

本文将介绍高考物理中与磁场相关的重要概念和公式,以帮助考生更好地复习和应对高考。

一、磁感线和磁感应强度磁感线是用来描述磁场分布的线条,在磁场中,磁感线由南极指向北极,密集表示磁感应强度大,稀疏表示磁感应强度小。

磁感应强度是一个矢量量,用符号B表示,单位是特斯拉(T)。

二、磁场中的磁力在磁场中,物体所受到的磁力可以通过洛伦兹力定律来计算。

洛伦兹力定律表示磁力F等于电荷q在磁场中运动时的速度v与磁感应强度B的乘积,即F=qvB。

利用洛伦兹力定律,我们可以计算磁场中物体所受到的力的大小和方向。

三、电流产生的磁场根据奥伦尼克定律,电流会在周围产生磁场。

电流所产生的磁场可以通过安培环路定理来计算。

安培环路定理表示沿着闭合曲线的磁场强度B乘以环路的长度L等于该曲线围绕的电流I的代数和,即B×L=μ0I。

其中μ0是真空中的磁导率,其值约为4π×10^-7 T·m/A。

四、磁力对流体和电荷运动的影响在磁场中,磁力不仅会作用于物体,也会对电荷和流体运动产生影响。

当电荷以速度v进入磁场区域,将受到洛伦兹力的作用,其大小为F=qvB,方向垂直于速度和磁感应强度的平面。

当带电粒子在磁场中作圆周运动时,圆周半径可以通过运动方程r=mv/(eB)计算。

五、磁场中的电磁感应磁场变化时,会产生感应电动势。

根据法拉第电磁感应定律,感应电动势的大小等于磁通量Φ对时间的变化率的负值,即ε=-dΦ/dt。

磁通量Φ等于磁感应强度B与垂直于磁感应强度的面积A的乘积,即Φ=BA。

根据楞次定律,感应电流的方向使得产生的磁场抵消原磁场变化。

六、匀强磁场中的运动粒子在匀强磁场中,带电粒子将会受到洛伦兹力的作用,其方向垂直于速度和磁感应强度的平面。

这种情况下,带电粒子将作匀速圆周运动。

匀强磁场中的运动粒子可以通过运动方程qBv=mv^2/r计算圆周半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(人教版)2012届高三物一轮复习讲义:磁场对运动电荷的作用力(一)一、内容概述本周我们复习磁场对运动电荷的作用力。

运动电荷在磁场中所受洛伦兹力的大小与哪些因素有关系,及其方向的判断是这一节的重点。

洛伦兹力对运动电荷不做功是它的一个重要特点,习时要正确解。

二、重、难点知识归纳与讲解1、洛伦兹力是磁场对运动电荷的作用,它是安培力的微观本质。

安培力是洛伦兹力的宏观表现。

[]2、洛伦兹力的大小(1)当电荷速度方向垂直于磁场的方向时,磁场对运动电荷的作用力,等于电荷量、速率、磁感应强度三者的乘积,即F=qvB(2)当电荷速度方向平行磁场方向时,洛伦兹力F=0。

(3)当电荷速度方向与磁场方向成θ角时,可以把速度分解为平行磁场方向和垂直磁场方向处,此时受洛伦兹力F=qvBθ。

3、洛伦兹力的方向安培力的方向可以用左手定则判断,洛伦兹力的方向也可用左手定则判断:伸开左手,使大拇指跟其余四个手指垂直,且处于同一平面内,把手放入磁场,让磁感线穿过手心,对于正电荷,四指指向电荷的运动方向,对于负电荷,四指的指向与电荷的运动方向相反,大拇指所指的方向就是洛伦兹力的方向。

由此可见洛伦兹力方向总是垂直速度方向和磁场方向,即垂直速度方向和磁场方向决定的平面。

4、洛伦兹力的特点因为洛伦兹力始终与电荷的运动方向垂直,所以洛伦兹力对运动电荷不做功。

它只改变运动电荷速度的方向,而不改变速度的大小。

三、重、难点知识剖析1、洛伦兹力与电场力的比较(1)与带电粒子运动状态的关系带电粒子在电场中所受到的电场力的大小和方向,与其运动状态无关。

但洛伦兹力的大小和方向,则与带电粒子本身运动的速度紧密相关。

(2)决定大小的有关因素电荷在电场中所受到的电场力F=qE,与两个因素有关:本身电量的多少和电场的强弱。

运动电荷在磁场中所受的磁场力,与四个因素有关;本身电量的多少、运动速度v的大小、速度v的方向与磁感应强度B方向间的关系、磁场的磁感应强度B。

(3)方向的区别电荷所受电场力的方向,一定与电场方向在同一条直线上(正电荷同向,负电荷反向),但洛伦兹力的方向则与磁感应强度的方向垂直。

2、解决在洛伦兹力等多力作用下电荷运动问题的注意问题:(1)正确分析受力情况是解决电荷运动问题的关键。

要在详细分析问题给出的物过程的基础上,认清洛伦兹力是怎么变的。

伴随着洛伦兹力的变,物体的受力情况又发生了什么样的变。

(2)受力变演变,出现了什么新运动情况,电荷从什么运动状态过渡到什么运动状态。

(3)寻找关键状态各物量之间的量关系,选择合适的物规律去求解,这些常常就是解题的关键之所在。

3、带电粒子做匀速圆周运动的圆心、半径及运动时间的确定:,画出粒子运动轨迹(1)圆心的确定.因为洛伦兹力指向圆心,根据F洛⊥v的方向,其延长线的交点即为中任意两点(一般是射入和射出磁场的两点)的F洛圆心.(2)半径的确定和计算.半径的计算一般是利用几何知识,常用解三角形的方法.(3)在磁场中运动时间的确定.利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角θ的大小,由公式可求出运动时间.四、典型例题例1、如图所示,一只阴极射线管,左侧不断有电子射出,若在管的正下方放一通电直导线AB时,发现射线的径迹向下偏,则()A.导线中的电流从A流向BB.导线中的电流从B流向A.若要使电子束的径迹向上偏,可以通过改变AB中的电流方向实现D.电子束的径迹与AB中的电流方向无关例2、如甲图所示,OA是一光滑、绝缘斜面,倾角为θ,一质量为的带电体从斜面上的A点由静止开始下滑,如果物体的带电量为+q,整个装置处于垂直纸面向里的磁感应强度的大小为B的匀强磁场中,试求当物体离开斜面时,物体运动的速率及其沿斜面下滑的距离?(斜面足够长)例3、如图所示,在竖直放置的绝缘直棒上套一个小环,其质量为01g,环带有电量为q=4×10-4的正电荷,环与棒之间的动摩擦因为μ=02,棒所在的空间分布有正交的匀强电场和匀强磁场,电场的场强为E=10V/,磁场的磁感应强度为B=05T,现让环从静止开始下滑,求:(1)环在下滑过程中的最大加速度;[](2)环在下滑过程中的最大速度。

例4、如图所示,一带正电的质子从O点垂直射入,两个板间存在垂直纸面向里的匀强磁场,已知两板之间距离为d,板长为d,O点是板的正中间,为使粒子能从两板间射出,试求磁感应强度B应满足的条件(已知质子的带电量为,质量为).例5、如图所示,在Oy平面上,点坐标为(0,),平面内一边界通过点和坐标原点O的圆形匀强磁场区域,磁场方向垂直纸面向里,有一电子(质量为,电量为)从点以初速度v平行轴正方向射入磁场区域,在磁场中运动,恰好在轴上的b点(未标出)射出磁场区域,此时速度方向与轴正方向夹角为60°,求:(1)磁场的磁感应强度;(2)磁场区域圆心O1的坐标;(3)电子在磁场中运动的时间.高考真题这节内容在高考试题中经常出现,并且以比较新的形式出现,同们要在掌握基本知识的基础上灵活运用。

(2006年全国卷)如图所示,在<0与>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向均垂直于纸面向里,且B1>B2.一个带负电荷的粒子从坐标原点O以速度v沿轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件?例1、解析:由于AB 中通有电流,在阴极射线管中产生磁场,电子受到洛伦兹力的作用而发生偏转,由左手定则可知,阴极射线管中的磁场方向垂直纸面向内,所以根据安培定则,AB 中的电流方向应为从B 流向A 。

当AB 中的电流方向变为从A 流向B ,则AB 上方的磁场方向变为垂直纸面向外,电子所受的洛伦兹力变为向上,电子束的径迹变为向上偏转。

所以本题的正确选项应为B 、。

答案:B例2、解析:物体刚离开斜面时,对斜面的压力为零,物体受到斜面的支持力为零,受力分析如图乙,f=G 2,以此可求速度v ,下滑时由于洛仑兹力不做功,势能转为动能,物体下降的高度可以求出,物体下滑的距离。

物体刚离开斜面时,f=Gcθ,即qvB=gcθ,所以得,[。

] 由于洛仑兹力不做功,g= ①,沿斜面下滑的距离 ②,联立①②代入v 得 。

例3、解析:要求出环在下滑过程中的最大加速度和最大速度,必须要了解环在整个下滑过程中的运动情况和受力情况。

首先应对环进行受力分析,环在下滑过程中受到竖直向下的重力、水平向左的电场力、水平向右的洛伦兹力、水平方向的弹力和竖直向上的摩擦力。

当环刚开始下滑时,环的速度很小,洛伦兹力也很小,环所受的电场力大于洛伦兹力。

所以弹力的方向水平向右,环向下做加速运动,随着环的速度增大,环所受的洛伦兹力也增大,环所受的弹力变小,滑动摩擦力也变小,环在竖直方向所受的合力增大,环做加速度变大的加速运动,当环所受的洛伦兹力等于电场力时,弹力为零,滑动摩擦力也为零,此时,环在竖直方向的合力达到最大,加速度达到最大,为重力加速度g。

随着环速度的进一步增大,环所受的洛伦兹力将大于电场力,弹力的方向变为水平向左,并随着洛伦兹力的增大而增大,环所受的滑动摩擦力增大,环在竖直方向所受的合外力变小,环做加速度变小的加速运动,当环所受的滑动摩擦力等于环的重力时,环的加速度为零,速度达到最大,接下去环将做匀速直线运动。

开始下滑时,环的受力如图(1)所示,当弹力为零时,物体在竖直方向只受重力作用,此时环的加速度最大,由牛顿第二定律可得:g=,∴=g=10/2当环的加速度达到最大后,环受力情况如图(2)所示,当环的速度达到最大时,环所受的滑动摩擦力等于的重力,即f=g。

而由于f=μN,N=qv B-qE∴例4、解析:由于质子在O 点的速度垂直于板NP ,所以粒子在磁场中做圆周运动的圆心O′一定位于NP 所在的直线上,如果直径小于ON ,则轨迹将是圆心位于ON 之间的一个半圆弧.随着磁场B 的减弱,其半径r =逐渐增大,当半径r =ON/2时,质子恰能从N 点射出.如果B 继续减小,质子将从NM 之间的某点射出.当B 减小到某一值时,质子恰从M 点射出.如果B 再减小,质子将打在MQ 板上而不能飞出.因此质子分别从N 点和M 点射出是B 所对应的两个临界值.第一种情况是质子从N 点射出,此时质子轨迹的半个圆,半径为ON/2=d/4.所以R 1=B 1= 第二种情况是质子恰好从M 点射出,轨迹如图中所示.由平面几何知识可得:R 22=d 2+(R 2-d )2又R 2=由①②得:B 2=磁感应强度B 应满足的条件:≤B≤.【说明】求解带电粒子在磁场中做匀速圆周运动的题目时,正确地画出带电粒子的轨迹是解题的关键.作图时一定要认真、规范,不要怕在此耽误时间.否则将会增大解题的难度.造成失误。

通过本例说明(1)确定带电粒子在磁场中做圆周运动的圆心并进一步利用几何关系求半径的方法.(2)分析解决临界问题的方法.例5、解析:带电粒子在磁场中做匀速圆周运动,从点射入从b 点射出,O 、、b 均在圆形磁场区域的边界,粒子运动轨道圆心为O 2,令由题意可知,∠O2b =60°,且△O 2b 为正三角形在△OO 2b 中,R 2=(R -)2+(R60°)2而R =由①②得R =所以B =而粒子在磁场中飞行时间=由于∠Ob=90°又∠Ob 为磁场图形区域的圆周角所以b 即为磁场区域直径O 1的坐标:=O 160°=y =-O 1c60°=所以O 1坐标为(,)【说明】本题为带电粒子在有边界磁场区域中的圆周运动,解题的关键一步是找圆心,根据运动电荷在有界磁场的出入点速度方向垂线的交点,确定圆心的位置,然后作出轨迹和半径,根据几何关系找出等量关系.求解飞行时间从找轨迹所对应的圆心角的方面着手.当然带电粒子在有界磁场中做部分圆周运动,除了要运用圆周运动的规律外,还要注意各种因素的制约而形成不是惟一的解,这就要求必须深刻解题意,挖掘隐含条件,分析不确定因素,力求解答准确、完整.【设计意图】(1)巩固找圆心求半径的方法.(2)说明求时间的方法. 高考解析[][##]解析:粒子所受洛伦兹力不做功,在整个运动过程中的速度大小恒为v ,交替地在y 平面内B 1与B 2磁场区域中做匀速圆周运动,轨道都是半个圆周.设粒子的质量和电荷量的大小分别为和q ,圆周运动的半径分别为r 1和r 2,根据,有 ①②由于B 1>B 2,所以,。

粒子在B 1和B 2磁场区域中运动的轨迹如图所示。

在y 平面内,粒子先沿半径为r 1的半圆1运动至y 轴上离O 点距离为2 r 1的A 点,接着沿半径为r 2的半圆D 1运动至O 1点,此时完成一次周期性的运动。

则OO 1的距离d =2(r 2-r 1) ③此后,粒子每经历一次“回旋”(即从y 轴出发沿半径为r 1的半圆和半径为r 2的半圆运动回到原点下方的y 轴上),粒子的y 坐标就减小d .设粒子经过次回旋后与y 轴交于O 点,若OO 即d 满足:d =2r 1 ④则粒子再经过半圆+1就能经过原点O ,式中=1,2,3,…为回旋次.联立③④解得(=1,2,3,…) ⑤联立①②⑤可得B1、B2应满足的条件:(=1,2,3,…)答案:(=1,2,3,…)题型特点与命题趋向:本题考查带电粒子在磁场中的运动,测试分析综合能力。

相关文档
最新文档