高中物理磁场知识点总结+例题
(高中物理)知识全解24磁场的基本性质

高中物理知识全解 2.4 磁场的根本性质注意:左手生力,右手生电生磁。
根底知识:1、磁场:磁体或电流周围存在一种特殊物质,能够传递磁体与磁体之间、磁体与电流之间、电流与电流之间的相互作用,这种特殊的物质叫磁场。
2、磁场的根本性质:对放入其中的磁极、电流或运动电荷产生力的作用。
3、磁场的产生I、永磁体周围存在磁场。
II、电流周围存在磁场—电流的磁效应注意:结合安培右手定那么及楞次定律判定磁场的方向。
4、磁场决定磁场强度的客观性,磁场强度是由磁场所决定的客观物理量。
【例题】由公式F sinB qυθ=洛可知,在磁场中的同一点〔〕磁场强度B与F洛成正比,与sinqυθ成反比。
无论带电粒子所带电量如何变化,F sinqυθ洛始终不变。
磁场中某点的磁场强度为零,那么带电粒子在该点所受的磁场力一定为零。
如果磁场中有静止的带电粒子,那么该带电粒子不受磁场力。
假设带电粒子在某点不受磁场力,那么说明该点磁场强度为零。
磁场中的运动电荷不一定受磁场力。
答案:BCDF5、磁现象I、磁性:物质具有吸引铁、钴、镍等物质的性质。
II、磁体:具有磁性的物体叫磁体。
【磁体可分为:永磁体〔即硬磁体〕和软磁体两大类】III、磁极:磁体的各局部磁性强弱不同,磁性最强的区域叫磁极。
任何磁铁都有两个磁极,一个叫南极(S极),一个叫北极(N极)。
IV、磁极间的相互作用:同名磁极相互排斥,异名磁极相互吸引。
6、电流的磁效应I、电流对小磁针的作用。
奥斯特实验:奥斯特发现,电流能使磁针偏转,如以下列图所示。
II、磁体对通电导线的作用磁体对通电导线产生力的作用,使悬挂在蹄形磁铁两极间的通电导线发生移动。
如以下列图所示。
III、电流和电流间的相互作用相互平行且距离较近的两条导线,当导线中分别通以方向相同的电流时,两导线相互吸引;当导线中通以方向相反的电流时,两导线相互排斥,如以下列图所示。
总结:不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。
高中物理竞赛讲义-磁场典型例题解析精选全文完整版

可编辑修改精选全文完整版磁场典型例题解析一、磁场与安培力的计算【例题1】两根无限长的平行直导线a 、b 相距40cm ,通过电流的大小都是3.0A ,方向相反。
试求位于两根导线之间且在两导线所在平面内的、与a 导线相距10cm 的P 点的磁感强度。
【解说】这是一个关于毕萨定律的简单应用。
解题过程从略。
【答案】大小为×10−6T ,方向在图9-9中垂直纸面向外。
【例题2】半径为R ,通有电流I 的圆形线圈,放在磁感强度大小为B 、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。
【解说】本题有两种解法。
方法一:隔离一小段弧,对应圆心角θ ,则弧长L = θR 。
因为θ → 0(在图9-10中,为了说明问题,θ被夸大了),弧形导体可视为直导体,其受到的安培力F = BIL ,其两端受到的张力设为T ,则T 的合力ΣT = 2Tsin 2θ再根据平衡方程和极限xxsin lim0x →= 0 ,即可求解T 。
方法二:隔离线圈的一半,根据弯曲导体求安培力的定式和平衡方程即可求解…【答案】BIR 。
〖说明〗如果安培力不是背离圆心而是指向圆心,内张力的方向也随之反向,但大小不会变。
〖学员思考〗如果圆环的电流是由于环上的带正电物质顺时针旋转而成(磁场仍然是进去的),且已知单位长度的电量为λ、环的角速度ω、环的总质量为M ,其它条件不变,再求环的内张力。
〖提示〗此时环的张力由两部分引起:①安培力,②离心力。
前者的计算上面已经得出(此处I = ωπλ•π/2R 2 = ωλR ),T 1 = B ωλR 2 ;后者的计算必须..应用图9-10的思想,只是F 变成了离心力,方程 2T 2 sin 2θ =πθ2M ω2R ,即T 2 =πω2R M 2 。
〖答〗B ωλR 2 + πω2R M 2 。
【例题3】如图9-11所示,半径为R 的圆形线圈共N 匝,处在方向竖直的、磁感强度为B 的匀强磁场中,线圈可绕其水平直径(绝缘)轴OO ′转动。
【单元练】高中物理必修3第十章【静电磁场中的能量】知识点总结(1)

一、选择题1.如图所示,带箭头的实线表示某电场的电场线,虚线表示该电场的等势面。
其中A 、B 、C 三点的电场强度大小分别为E A 、E B 、E C ,电势分别为A ϕ、B ϕ、C ϕ。
关于这三点的电场强度大小和电势高低的关系,下列说法中正确的是( )A .E A =E BB .E A >EC C .A B ϕϕ=D .B C ϕϕ> B解析:BAB .电场线的疏密程度反映场强的大小,A 点处电场线最密场强最大,则有E A >E B ,E A >E C ,A 错误,B 正确;CD .沿电场线方向电势降低,则知φA <φB ,B 、C 两点在同一等势面上,电势相等,即φB =φC ,CD 错误。
故选B 。
2.如图所示,虚线a 、b 、c 代表电场中的三个等势面,相邻等势面之间的电势差相等,即U ab =U bc ,实线为一带负电的质点仅在电场力作用下通过该区域时的运动轨迹,P 、R 、Q 是这条轨迹上的三点,R 同时在等势面b 上,据此可知( )A .三个等势面中,a 的电势最高B .带电质点在P 点的电势能比在Q 点的小C .带电质点在P 点的加速度比在Q 的加速度大D .带电质点在P 点的动能与电势能之和比在Q 点的小C解析:CA .质点的运动轨迹向下弯曲,则其合外力向下,所以负电荷的电场力向下,则电场强度方向向上,电场线方向由高等势面指向低等势面,所以三个等势面中,a 的电势最低,A 错误;B .带电质点从P 点到Q 点,电场力做正功,动能增大,电势能减小,所以在P 点的电势能比在Q 点的大,B 错误;C .等势面越密的地方电场强度越大,所以P 点的电场力大于Q 点的电场力,则带电质点在P 点的加速度比在Q 的加速度大,C 正确;D .因为只有电场力做功,只有动能与势能的相互转换,由能量守恒定律有,带电质点在P 点的动能与电势能之和等于在Q 点的,D 错误。
故选C 。
高中物理【磁场】专题分类典型题(带解析)

高中物理磁场专题分类题型一、【磁场的描述 磁场对电流的作用】典型题1.如图所示,带负电的金属环绕轴OO ′以角速度ω匀速旋转,在环左侧轴线上的小磁针最后平衡时的位置是( )A .N 极竖直向上B .N 极竖直向下C .N 极沿轴线向左D .N 极沿轴线向右解析:选C .负电荷匀速转动,会产生与旋转方向反向的环形电流,由安培定则知,在磁针处磁场的方向沿轴OO ′向左.由于磁针N 极指向为磁场方向,可知选项C 正确.2.磁场中某区域的磁感线如图所示,则( )A .a 、b 两处的磁感应强度的大小不等,B a >B bB .a 、b 两处的磁感应强度的大小不等,B a <B bC .同一通电导线放在a 处受力一定比放在b 处受力大D .同一通电导线放在a 处受力一定比放在b 处受力小解析:选A .磁感线的疏密程度表示磁感应强度的大小,由a 、b 两处磁感线的疏密程度可判断出B a >B b ,所以A 正确,B 错误;安培力的大小跟该处的磁感应强度的大小B 、电流大小I 、导线长度L 和导线放置的方向与磁感应强度的方向的夹角有关,故C 、D 错误.3.将长为L 的导线弯成六分之一圆弧,固定于垂直纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图所示.若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( )A .ILB ,水平向左B .ILB ,水平向右C .3ILB π,水平向右D .3ILB π,水平向左解析:选D .弧长为L ,圆心角为60°,则弦长AC =3L π,导线受到的安培力F =BIl =3ILB π,由左手定则可知,导线受到的安培力方向水平向左.4.如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,∠MOP =60°,在M 、N 处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O 点的磁感应强度大小为B 1.若将M 处长直导线移至P 处,则O 点的磁感应强度大小为B 2,那么B 2与B 1之比为( )A .3∶1B .3∶2C .1∶1D .1∶2解析:选B .如图所示,当通有电流的长直导线在M 、N 两处时,根据安培定则可知:二者在圆心O 处产生的磁感应强度大小都为B 12;当将M 处长直导线移到P 处时,两直导线在圆心O 处产生的磁感应强度大小也为B 12,做平行四边形,由图中的几何关系,可得B 2B 1=B 22B 12=cos 30°=32,故选项B 正确.5.阿明有一个磁浮玩具,其原理是利用电磁铁产生磁性,让具有磁性的玩偶稳定地飘浮起来,其构造如图所示.若图中电源的电压固定,可变电阻为一可以随意改变电阻大小的装置,则下列叙述正确的是( )A .电路中的电源必须是交流电源B .电路中的a 端点须连接直流电源的负极C .若增加环绕软铁的线圈匝数,可增加玩偶飘浮的最大高度D .若将可变电阻的电阻值调大,可增加玩偶飘浮的最大高度解析:选C .电磁铁产生磁性,使玩偶稳定地飘浮起来,电路中的电源必须是直流电源,电路中的a 端点须连接直流电源的正极,选项A 、B 错误;若增加环绕软铁的线圈匝数,电磁铁产生的磁性更强,电磁铁对玩偶的磁力增强,可增加玩偶飘浮的最大高度,选项C 正确;若将可变电阻的电阻值调大,电磁铁中电流减小,产生的磁性变弱,则降低玩偶飘浮的最大高度,选项D 错误.6.一通电直导线与x 轴平行放置,匀强磁场的方向与xOy 坐标平面平行,导线受到的安培力为F .若将该导线做成34圆环,放置在xOy 坐标平面内,如图所示,并保持通电的电流不变,两端点ab 连线也与x 轴平行,则圆环受到的安培力大小为( )A .FB .23πFC .223πFD .32π3F 解析:选C .根据安培力公式,安培力F 与导线长度L 成正比;若将该导线做成34圆环,由L =34×2πR ,解得圆环的半径R =2L 3π,34圆环ab 两点之间的距离L ′=2R =22L 3π.由F L =F ′L ′解得:F ′=223πF ,选项C 正确. 7.在绝缘圆柱体上a 、b 两个位置固定有两个金属圆环,当两环通有如图所示电流时,b 处金属圆环受到的安培力为F 1;若将b 处金属圆环移动到位置c ,则通有电流为I 2的金属圆环受到的安培力为F 2.今保持b 处金属圆环原来位置不变,在位置c 再放置一个同样的金属圆环,并通有与a 处金属圆环同向、大小为I 2的电流,则在a 位置的金属圆环受到的安培力( )A .大小为|F 1-F 2|,方向向左B .大小为|F 1-F 2|,方向向右C .大小为|F 1+F 2|,方向向左D .大小为|F 1+F 2|,方向向右解析:选A .c 金属圆环对a 金属圆环的作用力大小为F 2,根据同方向的电流相互吸引,可知方向向右,b金属圆环对a金属圆环的作用力大小为F1,根据反方向的电流相互排斥,可知方向向左,所以a金属圆环所受的安培力大小|F1-F2|,由于a、b间的距离小于a、c 间距离,所以两合力的方向向左.8.如图,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同解析:选C.由安培定则可知,两导线中的电流在O点产生的磁场均竖直向下,合磁感应强度一定不为零,选项A错;由安培定则知,两导线中的电流在a、b两点处产生的磁场的方向均竖直向下,由于对称性,M中电流在a处产生的磁场的磁感应强度等于N中电流在b处产生的磁场的磁感应强度,同时M中电流在b处产生的磁场的磁感应强度等于N 中电流在a处产生的磁场的磁感应强度,所以a、b两点处磁感应强度大小相等,方向相同,选项B错;根据安培定则,两导线中的电流在c、d两点处产生的磁场垂直c、d两点与导线的连线方向向下,且产生的磁场的磁感应强度大小相等,由平行四边形定则可知,c、d 两点处的磁感应强度大小相等,方向相同,选项C正确;a、c两点处磁感应强度的方向均竖直向下,选项D错.9. (多选)如图所示,金属细棒质量为m,用两根相同轻弹簧吊放在水平方向的匀强磁场中,弹簧的劲度系数为k,棒ab中通有恒定电流,棒处于平衡状态,并且弹簧的弹力恰好为零.若电流大小不变而方向反向,则()A .每根弹簧弹力的大小为mgB .每根弹簧弹力的大小为2mgC .弹簧形变量为mg kD .弹簧形变量为2mg k解析:选AC .电流方向改变前,对棒受力分析,根据平衡条件可知,棒受到的安培力竖直向上,大小等于mg ;电流方向改变后,棒受到的安培力竖直向下,大小等于mg ,对棒受力分析,根据平衡条件可知,每根弹簧弹力的大小为mg ,弹簧形变量为mg k,选项A 、C 正确.10.如图所示,两平行光滑金属导轨CD 、EF 间距为L ,与电动势为E 0的电源相连,质量为m 、电阻为R 的金属棒ab 垂直于导轨放置构成闭合回路,回路平面与水平面成θ角,回路其余电阻不计.为使ab 棒静止,需在空间施加的匀强磁场磁感应强度的最小值及其方向分别为( )A .mgR E 0L,水平向右 B .mgR cos θE 0L,垂直于回路平面向上 C .mgR tan θE 0L,竖直向下 D .mgR sin θE 0L,垂直于回路平面向下 解析:选D .对金属棒受力分析,受重力、支持力和安培力,如图所示;从图可以看出,当安培力沿斜面向上时,安培力最小,故安培力的最小值为:F A =mg sin θ,故磁感应强度的最小值为B =F A IL =mg sin θIL ,根据欧姆定律,有E 0=IR ,故B =mgR sin θE 0L,故D 正确.11.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比.现有平行放置的三根长直通电导线,分别通过一个直角三角形△ABC的三个顶点且与三角形所在平面垂直,如图所示,∠ACB=60°,O为斜边的中点.已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,则关于O点的磁感应强度,下列说法正确的是()A.大小为2B,方向垂直AB向左B.大小为23B,方向垂直AB向左C.大小为2B,方向垂直AB向右D.大小为23B,方向垂直AB向右解析:选B.导线周围的磁场的磁感线,是围绕导线形成的同心圆,空间某点的磁场沿该点的切线方向,即与该点和导线的连线垂直,根据右手螺旋定则,可知三根导线在O点的磁感应强度的方向如图所示.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比,已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,O点到三根导线的距离相等,可知B3=B2=B,B1=2B,由几何关系可知三根导线在平行于AB方向的合磁场为零,垂直于AB方向的合磁场为23B.综上可得,O点的磁感应强度大小为23B,方向垂直于AB向左.故B正确,A、C、D 错误.12.(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g=10 m/s2,则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J解析:选AB.导体棒向右沿圆弧摆动,说明受到向右的安培力,由左手定则知该磁场方向一定竖直向下,A项正确;导体棒摆动过程中只有安培力和重力做功,由动能定理知BIL·L sin θ-mgL(1-cos θ)=0,代入数值得导体棒中的电流为I=3 A,由E=IR得电源电动势E=3.0 V,B项正确;由F=BIL得导体棒在摆动过程中所受安培力F=0.3 N,C项错误;由能量守恒定律知电源提供的电能W等于电路中产生的焦耳热Q和导体棒重力势能的增加量ΔE的和,即W=Q+ΔE,而ΔE=mgL(1-cos θ)=0.048 J,D项错误.13.(多选)某同学自制的简易电动机示意图如图所示.矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将()A.左、右转轴下侧的绝缘漆都刮掉B.左、右转轴上下两侧的绝缘漆都刮掉C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉解析:选AD.若将左、右转轴下侧的绝缘漆都刮掉,这样当线圈在图示位置时,线圈的上下边受到水平方向的安培力而转动,转过一周后再次受到同样的安培力而使其连续转动,选项A正确;若将左、右转轴上下两侧的绝缘漆都刮掉,则当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后再次受到相反方向的安培力而使其停止转动,选项B 错误;左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉,电路不能接通,故不能转起来,选项C 错误;若将左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉,这样当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后电路不导通,转过一周后再次受到同样的安培力而使其连续转动,选项D 正确.14.光滑的金属轨道分水平段和圆弧段两部分,O 点为圆弧的圆心.两金属轨道之间的宽度为0.5 m ,匀强磁场方向如图所示,大小为0.5 T .质量为0.05 kg 、长为0.5 m 的金属细杆置于金属水平轨道上的M 点.当在金属细杆内通以电流强度为2 A 的恒定电流时,金属细杆可以沿轨道由静止开始向右运动.已知MN =OP =1 m ,则下列说法中正确的是( )A .金属细杆开始运动时的加速度大小为5 m/s 2B .金属细杆运动到P 点时的速度大小为5 m/sC .金属细杆运动到P 点时的向心加速度大小为10 m/s 2D .金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N解析:选D .金属细杆在水平方向受到安培力作用,安培力大小F 安=BIL =0.5×2×0.5 N =0.5 N ,金属细杆开始运动时的加速度大小为a =F 安m=10 m/s 2,选项A 错误;对金属细杆从M 点到P 点的运动过程,安培力做功W 安=F 安·(MN +OP )=1 J ,重力做功W G =-mg ·ON =-0.5 J ,由动能定理得W 安+W G =12m v 2,解得金属细杆运动到P 点时的速度大小为v =20 m/s ,选项B 错误;金属细杆运动到P 点时的向心加速度大小为a ′=v 2r=20 m/s 2,选项C 错误;在P 点金属细杆受到轨道水平向左的作用力F 和水平向右的安培力F 安,由牛顿第二定律得F -F 安=m v 2r,解得F =1.5 N ,每一条轨道对金属细杆的作用力大小为0.75 N ,由牛顿第三定律可知金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N ,选项D 正确.二、【磁场对运动电荷的作用】典型题1.如图所示,a 、b 、c 、d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A .向上B .向下C .向左D .向右解析:选B .根据安培定则及磁感应强度的矢量叠加,可得O 点处的磁场方向水平向左,再根据左手定则判断可知,带电粒子受到的洛伦兹力方向向下,B 正确.2.如图,半径为R 的圆形区域内有垂直于纸面的匀强磁场,半径OC 与OB 夹角为60°.甲电子以速率v 从A 点沿直径AB 方向射入磁场,从C 点射出.乙电子以速率v 3从B 点沿BA 方向射入磁场,从D 点(图中未画出)射出,则( )A .C 、D 两点间的距离为2RB .C 、D 两点间的距离为3RC .甲在磁场中运动的时间是乙的2倍D .甲在磁场中运动的时间是乙的3倍解析:选B .洛伦兹力提供向心力,q v B =m v 2r 得r =m v qB,由几何关系求得r 1=R tan 60°=3R ,由于质子乙的速度是v 3,其轨道半径r 2=r 13=33R ,它们在磁场中的偏转角分别为60°和120°,根据几何知识可得BC =R ,BD =2r 2tan 60°=R ,所以CD =2R sin 60°=3R ,故A 错误,B 正确;粒子在磁场中运动的时间为t =θ2πT =θ2π·2πm qB,所以两粒子的运动时间之比等于偏转角之比,即为1∶2,即甲在磁场中运动的时间是乙的12倍,故C 、D 错误. 3. (多选)如图所示,一轨道由两等长的光滑斜面AB 和BC 组成,两斜面在B 处用一光滑小圆弧相连接,P 是BC 的中点,竖直线BD 右侧存在垂直纸面向里的匀强磁场,B 处可认为处在磁场中,一带电小球从A 点由静止释放后能沿轨道来回运动,C 点为小球在BD 右侧运动的最高点,则下列说法正确的是( )A .C 点与A 点在同一水平线上B .小球向右或向左滑过B 点时,对轨道压力相等C .小球向上或向下滑过P 点时,其所受洛伦兹力相同D .小球从A 到B 的时间是从C 到P 时间的2倍解析:选AD .小球在运动过程中受重力、洛伦兹力和轨道支持力作用,因洛伦兹力永不做功,支持力始终与小球运动方向垂直,也不做功,即只有重力做功,满足机械能守恒,因此C 点与A 点等高,在同一水平线上,选项A 正确;小球向右或向左滑过B 点时速度等大反向,即洛伦兹力等大反向,小球对轨道的压力不等,选项B 错误;同理小球向上或向下滑过P 点时,洛伦兹力也等大反向,选项C 错误;因洛伦兹力始终垂直BC ,小球在AB 段和BC 段(设斜面倾角均为θ)的加速度均由重力沿斜面的分力产生,大小为g sin θ,由x =12at 2得小球从A 到B 的时间是从C 到P 的时间的2倍,选项D 正确. 4.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M 点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角;该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.已知磁场Ⅰ、Ⅱ的磁感应强度大小分别为B 1、B 2,则B 1与B 2的比值为( )A .2cos θB .sin θC .cos θD .tan θ解析:选C .设有界磁场Ⅰ宽度为d ,则粒子在磁场Ⅰ和磁场Ⅱ中的运动轨迹分别如图1、图2所示,由洛伦兹力提供向心力知Bq v =m v 2r ,得B =m v rq,由几何关系知d =r 1sin θ,d =r 2tan θ,联立得B 1B 2=cos θ,选项C 正确.5.如图所示,正方形区域内存在垂直纸面的匀强磁场.一带电粒子垂直磁场边界从a 点射入,从b 点射出.下列说法正确的是( )A .粒子带正电B .粒子在b 点速率大于在a 点速率C .若仅减小磁感应强度,则粒子可能从b 点右侧射出D .若仅减小入射速率,则粒子在磁场中运动时间变短解析:选C .由左手定则知,粒子带负电,A 错.由于洛伦兹力不做功,粒子速率不变,B 错.由R =m vqB , 若仅减小磁感应强度B ,R 变大,则粒子可能从b 点右侧射出,C 对.由R =m v qB ,若仅减小入射速率v, 则R 变小,粒子在磁场中的偏转角θ变大.由t =θ2πT ,T =2πm qB 知,运动时间变长,D 错.6.如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B .圆心O 处有一放射源,放出粒子的质量为m 、带电量为q ,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场后第一次通过A 点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?解析:(1)如图甲所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得R 1=3r3又q v 1B =m v 21R 1得v 1=3Bqr3m.(2)如图乙所示,设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R 2,则由几何关系有(2r -R 2)2=R 22+r 2可得R 2=3r 4,又q v 2B =m v 22R 2,可得v 2=3Bqr 4m故要使粒子不穿出环形区域,粒子的初速度不能超过3Bqr4m. 答案:(1)3Bqr 3m (2)3Bqr4m7. (多选)如图所示为一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中.现给圆环向右初速度v 0,在以后的运动过程中,圆环运动的v -t 图象可能是下图中的( )解析:选BC .当q v B =mg 时,圆环做匀速直线运动,此时图象为B ,故B 正确;当q v B >mg 时,F N =q v B -mg ,此时:μF N =ma ,所以圆环做加速度逐渐减小的减速运动,直到q v B =mg 时,圆环开始做匀速运动,故C 正确;当q v B <mg 时,F N =mg -q v B ,此时:μF N =ma ,所以圆环做加速度逐渐增大的减速运动,直至停止,所以其v -t 图象的斜率应该逐渐增大,故A 、D 错误.8.如图所示,水平放置的平行板长度为L 、两板间距也为L ,两板之间存在垂直纸面向里、磁感应强度大小为B 的匀强磁场,在两板正中央P 点有一个不计重力的电子(质量为m 、电荷量为-e ),现在给电子一水平向右的瞬时初速度v 0,欲使电子不与平行板相碰撞,则( )A .v 0>eBL 2m 或v 0<eBL4mB .eBL 4m <v 0< eBL2mC .v 0>eBL2mD .v 0<eBL4m解析:选A .此题疑难点在于确定“不与平行板相碰撞”的临界条件.电子在磁场中做匀速圆周运动,半径为R =m v 0eB ,如图所示.当R 1=L 4时,电子恰好与下板相切;当R 2=L2时,电子恰好从下板边缘飞出两平行板(即飞出磁场).由R 1=m v 1eB ,解得v 1=eBL4m ,由R 2=m v 2eB ,解得v 2=eBL 2m ,所以欲使电子不与平行板相碰撞,电子初速度v 0应满足v 0>eBL 2m 或v 0<eBL4m ,故选项A 正确.9.如图所示,在x >0,y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B ,现有一质量为m 、电荷量为q 的带正电粒子,从x 轴上的某点P (不在原点)沿着与x 轴成30°角的方向射入磁场.不计重力的影响,则下列有关说法中正确的是( )A .只要粒子的速率合适,粒子就可能通过坐标原点B .粒子在磁场中运动所经历的时间一定为5 πm 3qBC .粒子在磁场中运动所经历的时间可能为πmqBD .粒子在磁场中运动所经历的时间可能为πm6qB解析:选C .利用“放缩圆法”:根据同一直线边界上粒子运动的对称性可知,粒子不可能通过坐标原点,A 项错误;粒子运动的情况有两种,一种是从y 轴边界射出,最短时间要大于2πm 3qB ,故D 项错误;对应轨迹①时,t 1=T 2=πm qB ,C 项正确,另一种是从x 轴边界飞出,如轨迹③,时间t 3=56T =5πm 3qB,此时粒子在磁场中运动时间最长,故B 项错误.10.如图所示,OM 的左侧存在范围足够大、磁感应强度大小为B 的匀强磁场,磁场方向垂直纸面向外,OM 左侧到OM 距离为L 的P 处有一个粒子源,可沿纸面向各个方向射出质量为m 、电荷量为q 的带正电粒子(重力不计),速率均为v =qBLm,则粒子在磁场中运动的最短时间为( )A .πm 2qBB .πm 3qBC .πm 4qBD .πm 6qB解析:选B .粒子进入磁场中做匀速圆周运动,洛伦兹力提供向心力,则有:q v B =m v 2r ,将题设的v 值代入得:r =L ,粒子在磁场中运动的时间最短,则粒子运动轨迹对应的弦最短,最短弦为L ,等于圆周运动的半径,根据几何关系,粒子转过的圆心角为60°,运动时间为T 6,故t min =T 6=16×2πm qB =πm 3qB,故B 正确,A 、C 、D 错误.11.(2019·高考全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A .5πm 6qBB .7πm6qBC .11πm 6qBD .13πm6qB解析:选B .带电粒子在不同磁场中做圆周运动,其速度大小不变,由r =m vqB 知,第一象限内的圆半径是第二象限内圆半径的2倍,如图所示.粒子在第二象限内运动的时间:t 1=T 14=2πm 4qB =πm 2qB ;粒子在第一象限内运动的时间:t 2=T 26=2πm ×26qB =2πm 3qB ,则粒子在磁场中运动的时间t =t 1+t 2=7πm 6qB,选项B 正确.12.如图,在直角三角形OPN 区域内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U 加速后,沿平行于x 轴的方向射入磁场;一段时间后,该粒子在OP 边上某点以垂直于x 轴的方向射出.已知O 点为坐标原点,N 点在y 轴上,OP 与x 轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d ,不计重力.求:(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x 轴的时间.解析: (1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v .由动能定理有qU =12m v 2①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有 q v B =m v 2r②由几何关系知d =2r ③ 联立①②③式得q m =4UB 2d2.④(2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为 s =πr2+r tan 30°⑤带电粒子从射入磁场到运动至x 轴的时间为t =sv ⑥联立②④⑤⑥式得t =Bd 24U ⎝⎛⎭⎫π2+33.⑦ 答案:(1)4U B 2d 2 (2)Bd 24U ⎝⎛⎭⎫π2+33三、【带电粒子在组合场中的运动】典型题1.(多选)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A .增大匀强电场间的加速电压B .增大磁场的磁感应强度C .减小狭缝间的距离D .增大D 形金属盒的半径解析:选BD .回旋加速器利用电场加速和磁场偏转来加速粒子,粒子射出时的轨道半径恰好等于D 形盒的半径,根据q v B =m v 2R 可得,v =qBR m ,因此离开回旋加速器时的动能E k =12m v 2=q 2B 2R 22m 可知,与加速电压无关,与狭缝距离无关,A 、C 错误;磁感应强度越大,D 形盒的半径越大,动能越大,B 、D 正确.2.质谱仪是一种测定带电粒子质量和分析同位素的重要工具.图中的铅盒A 中的放射源放出大量的带正电粒子(可认为初速度为零),从狭缝S 1进入电压为U 的加速电场区加速后,再通过狭缝S 2从小孔G 垂直于MN 射入偏转磁场,该偏转磁场是以直线MN 为切线、磁感应强度为B ,方向垂直于纸面向外半径为R 的圆形匀强磁场.现在MN 上的F 点(图中未画出)接收到该粒子,且GF =3R .则该粒子的比荷为(粒子的重力忽略不计)( )。
高中物理《磁场》典型题(经典推荐含答案)

高中物理《磁场》典型题(经典推荐含答案)高中物理《磁场》典型题(经典推荐)一、单项选择题1.下列说法中正确的是:A。
在静电场中电场强度为零的位置,电势也一定为零。
B。
放在静电场中某点的检验电荷所带的电荷量 q 发生变化时,该检验电荷所受电场力 F 与其电荷量 q 的比值保持不变。
C。
在空间某位置放入一小段检验电流元,若这一小段检验电流元不受磁场力作用,则该位置的磁感应强度大小一定为零。
D。
磁场中某点磁感应强度的方向,由放在该点的一小段检验电流元所受磁场力方向决定。
2.物理关系式不仅反映了物理量之间的关系,也确定了单位间的关系。
如关系式 U=IR,既反映了电压、电流和电阻之间的关系,也确定了 V(伏)与 A(安)和Ω(欧)的乘积等效。
现有物理量单位:m(米)、s(秒)、N(牛)、J (焦)、W(瓦)、C(库)、F(法)、A(安)、Ω(欧)和 T(特),由他们组合成的单位都与电压单位 V(伏)等效的是:A。
J/C 和 N/CB。
C/F 和 T·m2/sC。
W/A 和 C·T·m/sD。
W·Ω 和 T·A·m3.如图所示,重力均为 G 的两条形磁铁分别用细线 A 和B 悬挂在水平的天花板上,静止时,A 线的张力为 F1,B 线的张力为 F2,则:A。
F1=2G,F2=GB。
F1=2G,F2>GC。
F1GD。
F1>2G,F2>G4.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在 1s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在 1s时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为:A。
1/2B。
1C。
2D。
45.如图所示,矩形 MNPQ 区域内有方向垂直于纸面的匀强磁场,有 5 个带电粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示,由以上信息可知,从图中 a、b、c 处进入的粒子对应表中的编号分别为:A。
史上最全高中物理磁场知识点总结

史上最全⾼中物理磁场知识点总结⼀、磁场磁体是通过磁场对铁钴镍类物质发⽣作⽤的,磁场和电场⼀样,是物质存在的另⼀种形式,是客观存在的。
⼩磁针的指南指北表明地球是⼀个⼤磁体。
磁体周围空间存在磁场;电流周围空间也存在磁场。
电流周围空间存在磁场,电流是⼤量运动电荷形成的,所以运动电荷周围空间也有磁场。
静⽌电荷周围空间没有磁场。
磁场存在于磁体、电流、运动电荷周围的空间。
磁场是物质存在的⼀种形式。
磁场对磁体、电流都有⼒的作⽤。
与⽤检验电荷检验电场存在⼀样,可以⽤⼩磁针来检验磁场的存在。
如图所⽰为证明通电导线周围有磁场存在——奥斯特实验,以及磁场对电流有⼒的作⽤实验。
1.地磁场地球本⾝是⼀个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。
2.地磁体周围的磁场分布与条形磁铁周围的磁场分布情况相似。
3.指南针放在地球周围的指南针静⽌时能够指南北,就是受到了地磁场作⽤的结果。
4.磁偏⾓地球的地理两极与地磁两极并不重合,磁针并⾮准确地指南或指北,其间有⼀个交⾓,叫地磁偏⾓,简称磁偏⾓。
说明:①地球上不同点的磁偏⾓的数值是不同的。
②磁偏⾓随地球磁极缓慢移动⽽缓慢变化。
③地磁轴和地球⾃转轴的夹⾓约为11°。
⼆、磁场的⽅向在电场中,电场⽅向是⼈们规定的,同理,⼈们也规定了磁场的⽅向。
规定:在磁场中的任意⼀点⼩磁针北极受⼒的⽅向就是那⼀点的磁场⽅向。
确定磁场⽅向的⽅法是:将⼀不受外⼒的⼩磁针放⼊磁场中需测定的位置,当⼩磁针在该位置静⽌时,⼩磁针N极的指向即为该点的磁场⽅向。
磁体磁场:可以利⽤同名磁极相斥,异名磁极相吸的⽅法来判定磁场⽅向。
电流磁场:利⽤安培定则(也叫右⼿螺旋定则)判定磁场⽅向。
三、磁感线在磁场中画出有⽅向的曲线表⽰磁感线。
磁感线特点:(1)磁感线上每⼀点切线⽅向跟该点磁场⽅向相同。
(2)磁感线的疏密反映磁场的强弱,磁感线越密的地⽅表⽰磁场越强,磁感线越疏的地⽅表⽰磁场越弱。
高中物理重点——电磁感应知识点及练习

高中物理重点——电磁感应知识点及练习一、电磁感应基本概念1. 电磁感应的基本原理2. 法拉第电磁感应定律3. 洛伦兹力的概念练习题:1. 一根长度为20 cm 的导线以10 m/s 的速度进入一个磁感应强度为0.5 T 的匀强磁场中,导线的两端产生的感应电动势为多少?答案:1 V2. 一个载流导体绕着垂直于磁场方向的轴旋转,导体两端产生的感应电动势的大小为导体长度乘以什么?答案:磁感应强度3. 当磁通量密度变化率为200 T/s 时,一个线圈内部产生的感应电动势为20 V,此时线圈中的匝数为多少?答案:100二、法拉第电磁感应定律应用1. 电动势的方向和大小2. 电磁感应的应用:感应电流和感应电磁铁3. 磁场中的动生电现象:电磁感应现象和劳埃德力练习题:1. 一个长度为25 cm 的导体被放置在一个磁感应强度为0.2 T 的匀强磁场中,且在导体的两端施加一共 2 A 的电流,求该导体受到的安培力大小为多少?答案:0.25 N2. 在一个长度为10 cm 的导体内部施加一个0.5 T 的磁场,导体稳定地保持在匀强磁场中,当导体的长度与磁场的夹角为30 度时,导体内部的自感系数为多少?答案:0.00125 H3. 一个宽度为10 cm,长度为20 cm,大约0.5 毫米厚的铜片在磁感应强度为0.1 T 的恒定磁场中以 5 m/s 的速度向下运动,求铜片两端感应的电动势大小为多少?答案:1 V三、电磁感应现象与电磁波1. 电磁波的基本特征和传播方式2. 波长和频率的关系及其应用3. 电磁波的反射、折射和衍射现象练习题:1. 某广播电台的发射频率为100 MHz,求其波长的大小为多少?答案:3 m2. 一台微波炉的工作频率为2.45 GHz,求其波长的大小为多少?答案:0.12 m3. 一个频率为500 MHz 的电磁波垂直入射到一种材质中,该材质的折射率为 1.5,求折射后的电磁波的频率为多少?答案:333.3 MHz总结:电磁感应是高中物理中的重要知识点,包括电磁感应的基本概念、法拉第电磁感应定律应用以及电磁感应现象与电磁波等内容。
高中物理选修3-1磁场 复习 提纲+例题

V2
V0
V4
2、将带电粒子在狭缝之间的运动首尾连接 起来是一个初速度为零的匀加速直线运动
3、带电粒子每经电场加速一次,回旋半径 就增大一次,每次增加的动能为⊿E =qU
K
所有各次半径之比为:
1 2∶ 3∶ ∶ ...
4、对于同一回旋加速器,其粒子的回旋的 最大半径是相同的。
mv 1 2 B2q 2 R2 由最大半径得: = R E mv qB 2 2m
D、环形线圈有扩张的趋势
1、把一重力不计的通电直导线水平放在蹄 形磁铁磁极的正上方,导线可以自由转动, 当导线通入图示方向电流I时,导线的运动 情况是(从上往下看)( C ) A.顺时针方向转动,同时下降 B.顺时针方向转动,同时上升 C.逆时针方向转动,同时下降 D.逆时针方向转动,同时上升
I
电流微元法
3、解题一般步骤: ①判断安培力方向 注意选择视图(视角) ②其它力受力分析 将立体受力图应转化成平面图 ③列力学方程:
平衡方程
牛二方程(动能定理) F=ILB ④列电学辅助方程: Q=It
u=IR ……. ⑤解方程及必要的讨论(“答”)
F=BIL中的L为有效长度
试指出下述各图中的安培力的大小。
安培力作用下物体的平衡问题 【例】在倾斜角为θ的光滑斜面上,置 一通有电流I,长为L,质 量为m的导 体棒,如图所示,在竖直向上的磁场中 静止,则磁感应强度B为 _________.
FN
θ
mg
F BIL mg tan mg tan B IL
F
B
FN
×
θ
F
mg
引申1:欲使它静止在斜面上, 外加磁场的磁感应
R
2
mV qB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁场一、基本概念1.磁场的产生⑴磁极周围有磁场。
⑵电流周围有磁场(奥斯特)。
安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。
⑶变化的电场在周围空间产生磁场(麦克斯韦)。
2.磁场的基本性质磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流可能有力的作用,当电流和磁感线平行时不受磁场力作用)。
3.磁感应强度ILF B (条件是L ⊥B;在匀强磁场中或ΔL 很小。
) 磁感应强度是矢量。
单位是特斯拉,符号为T ,1T=1N/(A∙m)=1kg/(A ∙s 2)4.磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。
磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针N 极受磁场力的方向。
磁感线的疏密表示磁场的强弱。
⑵磁感线是封闭曲线(和静电场的电场线不同)。
⑶要熟记常见的几种磁场的磁感线:地磁场的特点:两极的磁感线垂直于地面;赤道上方的磁感线平行于地面;除两极外,磁感线的水平分量总是指向北方;南半球的磁感线的竖直分量向上,北半球的磁感线的竖直分量向下。
⑷电流的磁场方向由安培定则(右手螺旋定则)确定:对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。
二、安培力 (磁场对电流的作用力)1.安培力方向的判定⑴用左手定则。
⑵用“同向电流相吸,反向电流相斥”(适用于两电流互相平行时)。
⑶可以把条形磁铁等效为长直通电螺线管(不要把长直通电螺线管等效为条形磁铁)。
例1.条形磁铁放在粗糙水平面上,其中点的正上方有一导线,在导线中通有图示方向的电流后,磁铁对水平面的压力将会______(增条形磁铁蹄形磁铁通电环行导线周围磁场通电长直螺线管内部磁场 通电直导线周围磁场大、减小还是不变?)。
水平面对磁铁的摩擦力大小为______。
解:本题有多种分析方法。
⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中下方的虚线所示),可看出两极受的磁场力的合力竖直向上。
磁铁对水平面的压力减小,但不受摩擦力。
⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中上方的虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。
⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。
例2.电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。
该时刻由里向外射出的电子流将向哪个方向偏转?解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。
电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。
2.安培力大小的计算F=BLI sin α(α为B 、L 间的夹角)高中要求会计算α=0(不受安培力)和α=90º两种情况。
例3.如图所示,光滑导轨与水平面成α角,导轨宽L 。
金属杆长也为L ,质量为m ,水平放在导轨上。
匀强磁场磁感应强度为B ,方向与金属杆垂直。
当回路总电流为I 时,金属杆正好能静止。
求:B至少多大?这时B的方向如何? 解:画出截面图如右。
导轨的重力G 和安培力F的合力与弹力平衡,因此重力和安培力的合力方向必须垂直于导轨平面向下。
由三角形定则可知,只有当安培力方向沿导轨平面向上时需要的安培力F=BI L才最小,B 也最小。
根据左手定则,这时B应垂直于导轨平面向上,大小满足:BIL =m gsi nα,B =mg sin α/IL 。
解这类题时必须画出截面图,才能使所要研究的各力画在同一平面上,从而弄清各力的大小和方向间的关系。
例4.如图所示,质量为m的铜棒搭在U 形导线框右端,棒长和框宽均为L ,磁感应强度为B的匀强磁场方向竖直向下。
电键闭合后,在磁场力作用下铜棒被平抛出去,下落h后落在水平面上,水平位移为s 。
求闭合电键后通过铜棒的电荷量Q。
解:闭合电键后的极短时间内,铜棒受安培力向右的冲量F Δt =mv 0而被平抛出去,其中F=BIL ,而瞬时电流和时间的乘积等于电荷量Q=I∙Δt ,由平抛规律可算铜棒离开导线框时的初速度h g s t s v 20==,最终可得hg BL ms Q 2=。
本题得出的一个重要方法是:利用安培力的冲量可以求电量:Ft =BIL ∙t=BL ∙Q 。
即使通电过程电流不恒定,这个结论仍然是正确的。
练习1. 如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动? 解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转F290°后平移)。
分析的关键是画出相关的磁感线。
三、洛伦兹力1.洛伦兹力的大小运动电荷在磁场中受到的磁场力叫洛伦兹力,它可以看做是安培力的微观表现。
计算公式的推导:如图所示,整个导线受到的磁场力(安培力)为F 安 =B IL ;其中I=nes v;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为f ,则F安=N f。
由以上四式得f=qvB 。
条件是v 与B 垂直。
(v 与B平行时洛伦兹力为零。
)2.洛伦兹力的方向在用左手定则时,四指必须指电流方向(不是速度方向),即正电荷定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。
例5.磁流体发电机原理图如右。
等离子体高速从两板间由左向右喷射,两极板间有如图方向的匀强磁场。
该发电机哪个极板为正极?两板间最大电压为多少?解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。
所以上极板为正。
正、负极板间将产生电场。
当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:qvB q d U =⋅,U=Bdv 。
当外电路断开时,这就是电动势E 。
当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子将继续发生偏转。
这时电动势仍是E=B dv ,但路端电压将小于Bdv 。
本题的重要结论有:⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反;⑵在v恒定的条件下,无论外电路是否接通,电动势Bdv 保持不变;⑶带电粒子在磁场中偏转聚集在极板上后,将新产生的电场。
例6.半导体靠自由电子(带负电)和空穴(相当于带正电的粒子)导电,分为p 型和n 型两种。
p 型半导体中空穴为多数载流子;n 型半导体中自由电子为多数载流子。
用实验可以判定半导体材料的类型:如图将材料放在匀强磁场中,通以向右的电流I ,比较上下两个表面的电势高低,若上极板电势高,就是p 型半导体;若下极板电势高,就是n 型半导体。
试分析原理。
解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指指电流方向,都向右,所以洛伦兹力方向都向上,它们都将向上偏转。
p型半导体中空穴多,上极板的电势高;n 型半导体中自由电子多,上极板电势低。
因此可以判定半导体材料的类型。
本题的重要结论有:电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,偏转方向也相同。
3.洛伦兹力的应用带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,因此有:r mv qvB 2=,由此可以推导出该圆周运动的半径公式和周期公式:Bqm T Bq mv r π2,==。
例7.如图直线MN 上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点O以与MN 成30º角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?(不考虑正、负电子间的相互作用)解:正负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距2r,由图还看出经历时间相差2T /3。
由r mv evB 2=得轨道半径r 和周期T分别为Bem T Be mv r π2,==, 因此两个射出点相距Be mv s 2=,时间差为Bqm t 34π=∆ 解题关键是画好示意图,特别注意找圆心、找半径和用对称。
4.带电粒子在匀强磁场中的偏转⑴穿过矩形磁场区。
要画好辅助线(半径、速度及延长线)。
穿越过程的偏转角由sin θ=L /R 求出。
侧移由R 2=L 2-(R-y )2解出。
经历时间由Bq m t θ=得出。
注意:这里射出速度的反向延长线与初速度延长线的交点不是宽度线段的中点,这点与带电粒子在匀强电场中的偏转结论不同!⑵穿过圆形磁场区。
画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
偏角可由R r =2tan θ求出。
经历时间由Bq m t θ=得出。
注意:由对称性,正对圆心射入的例子必然背离圆心射出。
例8.一个质量为m 电荷量为q的带电粒子从x轴上的P (a,0)点以速度v,沿与x正方向成60º的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴射出第一象限。
求匀强磁场的磁感应强度B和射出点S 的坐标。
解:射出点对应的半径在y 轴上,因此其圆心一定在y 轴上,从几何关系知半径是o 30cos a r =,由r mv qvB 2=得qB mv r =,因此aqmv B 23=。
射出点S到原点O的距离是1.5r,坐标为(0,a 3)。
四、带电粒子在混合场中的运动1.空间同时存在正交的匀强电场和匀强磁场正交的匀强磁场和匀强电场组成“速度选择器”。
带电粒子(不计重力)必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。
否则将发生偏转。
这个速度的大小可以由洛伦兹力和电场力的平衡得出:q vB=E q,B E v =。
在本图中,速度方向必须向右。
⑴这个结论与带电粒子的电性、电量都无关。
⑵若入射速度小于该速度,电场力将大于洛伦兹力,粒子向电场力方向偏转,穿越混合场过程电场力做正功,动能增大,洛伦兹力也增大,粒子的轨迹是一条复杂曲线;若入射速度大于该速度,粒子将向洛伦兹力方向偏转,穿越混合场过程电场力将做负功,动能减小,洛伦兹力也减小,轨迹也是一条复杂曲线。
x例9.某带电粒子从图中速度选择器左端由中点O 以垂直于电场和磁场的速度v 0向右射去,从右端中心a 下方的b 点以速度v 1射出;若增大磁感应强度B,该粒子将打到a点上方的c 点,且有ac =ab ,则该粒子带______电;第二次射出时的速度为_______。
解:B 增大后向上偏,说明洛伦兹力向上,所以为带正电。
由于洛伦兹力总不做功,所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的绝对值相同,因此21202222020212,21212121v v v mv mv mv mv -=∴-=- 2.带电粒子分别通过匀强电场和匀强磁场例10.如图所示,一个带电粒子两次以同样的垂直于场线的初速度v 0分别穿越匀强电场区和匀强磁场区, 场区的宽度均为L ,偏转角均为α,求E ∶B解:分别利用带电粒子的偏角公式。