2018年中考数学模拟试题各地真题331
(完整word版)2018中考数学模拟试题含答案(精选5套)

2018年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 1圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第7题图)12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)3121--+x x ≤1, ……① 解不等式组:3(x -1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2018年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2018年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、 数1,5,0,2-中最大的数是( ) A 、1- B 、5 C 、0 D 、22、9的立方根是( )A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=( )A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( )A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2018年中考模拟考试数学试卷(有答案)

1 12 b c ),则 3a a b c 24 且 2a a b c 24
【解答】设三角形三边长为 a, b, c ( a
8 a 12 ,所以 a 的可能取值为 8,9,10,11 ,满足题意得数组 (a, b, c ) 可能为 (8,8,8) , (9,9,6) ,(9, 8,7) ,(10,10,4) ,(10,9,5) ,(10,8,6) ,(10,7,7) ,(11,11,2) , ,(11,9,4) , (11,10,3) (11,8,5) , (11,7,6) 共 12 组,其中为直角三角形三边长的只有 (10,8,6) ,所以所求概率为
数学试卷 第 2页 (共 4 页)
1 2 x bx c 的顶点为 P ,与 x 轴的正半轴交于 A( x1 ,0) 、 B( x2 ,0) 6 3 ) ,若 ( x1 x2 )两点,与 y 轴交于点 C , PA 是 ABC 的外接圆的切线,设 M (0, 2 AM // BC ,求抛物线的解析式.
2018 年数学试卷
(每小题 6 分, 共 48 分。 从每小题四个选项中选出一项符合题目要求的答案。 ) 一、 选择题 1.若实数 a,b 满足 A . a 2
1 a ab b 2 2 0 ,则 a 的取值范围是( 2
B. a 4 C. a 2 或 a 4
) D. 2 a 4 )
2 2
B.没有实根 D.方程的根有可能取值 a, b, c
4.若 ab 1 ,且有 5a 2018a 9 0 和 9b 2018b 5 0 ,则 A.
9 5
B.
2
5 9
C.
2018 5
2018年中考数学模拟试卷及答案解析

又∵PM≤PC+CM,即PM≤3,
∴PM的最大值为3(此时P、C、M共线).
故选B.
12.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是( )
18.如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y=(x>0)与△ABC总有公共点,则k的取值范围是.
三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)
19.(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;
(2)先化简,在求值:(﹣)+,其中a=﹣2+.
【解答】解:从左边看是三个矩形,中间矩形的左右两边是虚线,
故选:B.
4.下列二次根式中,最简二次根式是( )
A.B.C.D.
【考点】74:最简二次根式.
【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;
A.2B.3C.4D.5
【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.
【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.
2018年中考数学模拟试卷及答案

2018年中考数学模拟试卷及答案2018年中考数学模拟试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)-3的相反数是()A.-1 B.3 C.1 D.-32.(3分)下列运算中,正确的是()A.2x+2y=2xyB.(xy)2÷(xy)3=x-yC.D.2xy-3yx=xy(x2y3)2=x4y53.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱4.(3分)口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球5.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移36.(3分)如果多项式p=a2+2b2+2a+4b+5,则p的最小值是()A.1二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)9的平方根是38.(3分)若∠α=32°22′,则∠α的余角的度数为57°38′9.(3分)化简:-3的结果是310.(3分)一组数据2、-2、4、1、的方差是5.511.(3分)若关于x的一元二次方程ax2-bx+2=0(a≠0)的一个解是x=1,则3-a+b的值是412.(3分)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°13.(3分)圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为40√5 cm2.14.(3分)如图,⊙O的内接四边形ABCD中,∠A=105°,则∠BOD等于75°15.(3分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,若AD=BC,则sin∠A=3/516.(3分)抛物线y=mx2-2mx+m-3(m>0)在-1<x<3位于x轴下方,在3<x<4位于x轴上方,则m的值为2三、解答题17.1) $-2+|3\tan30^\circ-1|-(\pi-3)^\circ$2+|\frac{3}{\sqrt{3}}-1|-(\pi-3)^\circ$2+|\sqrt{3}-1|-(\pi-3)^\circ$2+\sqrt{3}-1-(\pi-3)^\circ$2-\sqrt{3}-\pi^\circ$2) $x^2-3x+2=0$x=1$或$x=2$所以方程的解为$x=1$或$x=2$。
2018年中考数学模拟试题及答案(共五套)

中考模拟试卷数学卷一、仔细选一选。
(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.下列四个运算中,结果最小的是( ). A 、2017的相反数 B 、2017的绝对值 C 、2017的0次幂 D 、2017的立方根 2.已知∠α=23°45′,则∠α的余角=( ).A .66°55′B .156°15′C .66°15′D .156°55′3.若代数式x 2+bx 可以分解因式,则常数b 不可以是( ). A .﹣1B .0C .1D .24.在代数式x ﹣y, 4a, y+,,yz, ,中有( ).A .5个整式B .3个单项式,4个多项式C .6个整式,4个单项式D .单项式与多项式的个数相同5.下图是小方送给她外婆的生日蛋糕,则下面关于三种视图判断正确的( ).A.主视图、俯视图、左视图都正确B.主视图、俯视图、左视图都错误C.主视图、左视图正确、俯视图错误D. 左视图、俯视图正确、主视图错误 6.已知⎩⎨⎧>≤-,,a xb x 则的值( ).A.大于0B.小于0C.大于或等于0D.小于或等于07.某超市举办促销活动,促销方式是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该超市促销方式的是( ).A. 原价减去10元后再打8折B. 原价打8折后再减去10元C. 原价减去10元后再打2折D. 原价打2折后再减去10元8.如图为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( ).(第8题图) A .△ACD 的外心 B .△ABC 的外心C .△ACD 的内心 D .△ABC 的内心9.在同一直角坐标系中,对于以下四个函数①y=-x-1;②y=x+1;③y=-x+1; ④y=-2(x+1)的图像。
2018年中考数学模拟试题与答案

(试卷满分 120 分,考试时间 120 分钟)
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是
符合题目要求的. )
1.﹣ 7 的绝对值是(
)
A. 7 B .﹣ 7
1
C.
7
1
D .-
7
2.9 的平方根是(
)
A. 3
置的小正方体的个数,则这个几何体的主视图是(
)
A.
B.
C.
D.
6.函数 y=
中自变量 x 的取值范围在数轴上表示正确的是(
)
A.
B
.
C.
D
.
7.把 a2﹣ 4a 多项式分解因式,结果正确的是(
)
A. a( a﹣4) B .( a+2)(a﹣ 2) C . a(a+2)( a﹣ 2)
D.( a﹣ 2) 2﹣ 4
、
是旋转过程中 A、 C的运动轨迹,则图中阴影部分的面积为(
)
A. 4π +2
B . π﹣2
C . π +2
D .4π
12. 如图,点 P 是 ?ABCD边上一动点,沿 A→D→C→B 的路径移动,设 P 点经过的路径长为 x,△ BAP
的面积是 y,则下列能大致反映 y 与 x 的函数关系的图象是(
)
B
.﹣ 3
C .± 3 D . 81
3. 下列命题正确的是 ( )
A. 内错角相等
B.
-1 是无理数
C.1 的立方根是± 1
D.
两角及一边对应相等的两个三角形全等
4. 下列计算,正确的是(
2018中考数学模拟试题及答案

2018中考数学模拟试题及答案work Information Technology Company.2020YEAR2018 年 初 中 升 学 模 拟 考 试(一)九 年 数 学 试 卷题 号 一 二 三 四 五 六 七 八 总 分 得 分(考试时间:120分钟;试卷满分:150分)温馨提示:请考生把所有的答案都写在答题卡上,写在试卷上不给分,答题要求见答题卡。
一、选择题(每小题3分,共30分) 1.-12的倒数是( ) A .2B .12C .-12D .-22.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.000 000 000 22米,将0.000 000 000 22用科学记数法表示为 ( ) A .0.22×l0-9 B .2.2×l0-10 C .22×l0-11 D .0.22×l0-8 3.如图是某几何体的三视图,该几何体是 ( ) A .正方体 B .三棱锥 C .圆柱 D .圆锥第3题图 笫4题图4.如图是根据某地某段时间的每天最低温度绘成的折线图,那么这段时间最低温度的中位数,众数分别是 ( ) A .4℃,4℃ B .4℃,5℃ C .4.5℃,5℃ D .4.5C ,4℃ 5.不等式组x 1x+12⎧⎨-⎩≤,>的解集在数轴上可表示为( )6.下列计算,正确的是( )A .2a 2+a =3a 2B .2a -1=12a(a ≠0) C .(-a 2)3÷a 4=-aD .2a 2·3a 3=6a 57.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90º时,它是矩形 D .当AC =BD 时,它是正方形8.小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示: 移植棵数(n) 成活数(m)成活率(m/n) 移植棵数(n) 成活数(m) 成活率(m/n) 50 47 0.940 1500 1335 0.890 270 235 0.870 3500 3203 0.915 400 369 0.923 7000 6335 0.905 7506620.88314000126280.902①随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;②当移植的棵数是1500时,表格记录成活数是1335,所以这种树苗成活的概率是0.890;③若小张移植10000棵这种树苗,则可能成活9000棵;④若小张移植20000棵这种树苗,则一定成活18000棵.其中合理的是( ) A .①③B .①④C .②③D .②④9.如图,将矩形ABCD 沿着直线BD 折叠,使点C 落在C ′处,P 为对角线BD 上一点(不与点B ,D 重合),PM ⊥BC ′于点M ,PN ⊥AD 于点N 。
2018年九年级数学模拟试卷及答案

2018年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算│-4+1│的结果是( ▲ )A .-5B .-3C .3D .52.计算(-xy 2)3的结果是( ▲ )A .x 3y 6B .-x 3y 6C .-x 4y 5D . x 4y 5 3.与17 最接近的整数为( ▲ )A .2B .3C .4D .54.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH =2,HB =1,BC =5,则 DEEF 的值为( ▲ )A .23B .25C .13D .355. 若一组数据2,4,6,8,x 的方差比另一组数据5,7,9,11,13的方差大,则 x 的值可以为( ▲ )A .12B .10C .2D .06.如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,若CD=4,AC=12,则△ABC 的面积 为( ▲ )A .48B .50C .54D .60(第4题) A BCD (第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.9的平方根是 ▲ ;9的立方根是 ▲ . 8.使x +1 有意义的x 的取值范围是 ▲ .9.2016年南京全市完成全社会固定资产投资约55000000万元,将55000000用科学记数法表示为 ▲ . 10.分解因式x 3+6x 2+9x 的结果是 ▲ . 11.计算 33-13的结果是 ▲ . 12.已知关于x 的方程x 2-3x +m =0的一个根是2,则它的另一个根是 ▲ ,m 的值是 ▲ . 13.如图,∠A =∠C ,只需补充一个条件 ▲ ,就可得△ABD ≌△CDB .14. 如图,在△ABC 中,AB 、AC 的垂直平分线l 1、l 2相交于点O ,若∠BAC 等于82°,则∠OBC = ▲ °.15.已知点A (-1,-2)在反比例函数y =kx 的图像上,则当x >1时,y 的取值范围是 ▲ .16.如图,在半径为2的⊙O 中,弦AB =2,⊙O 上存在点C ,使得弦AC =22,则∠BOC = ▲ °. 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧ x +1≥ 0, x -12<x 3.,并写出它的整数解.18.(7分)化简:( 2m m 2-4- 1 m +2 )÷1 m 2-2m .(第14题)A BD(第13题)(第16题)19.(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下两幅统计图.请根据相关信息,解答下列问题:(1)扇形统计图中a = ▲ ,初赛成绩为1.70m 所在扇形图形的圆心角为 ▲ °; (2)补全条形统计图;(3)这组初赛成绩的众数是 ▲ m ,中位数是 ▲ m ; (4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m 的运动员杨强能否进入复赛?为什么?20.(8分)在一个不透明袋子中有1个红球、1 个绿球和n 个白球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀,不断重复该试验.发现摸到白球的频率稳定在0.75,则n 的值为 ▲ ;(2)当n =2时,把袋中的球搅匀后任意摸出2个球,求摸出的2个球颜色不同的概率.21.(8分)如图,将矩形ABCD 绕点C 旋转得到矩形FECG ,点E 在AD 上,延长ED 交FG 于点H . (1)求证:△EDC ≌△HFE ; (2)连接BE 、CH .①四边形BEHC 是怎样的特殊四边形?证明你的结论. ②当AB 与BC 的比值为 ▲ 时,四边形BEHC 为菱形.(第21题)ACDGFEH22.(8分)据大数据统计显示,某省2014年公民出境旅游人数约100万人次,2015年与2016年两年公民出境旅游总人数约264万人次. 若这两年公民出境旅游总人数逐年递增,请解答下列问题: (1)求这两年该省公民出境旅游人数的年平均增长率;(2)如果2017年仍保持相同的年平均增长率,请你预测2017年该省公民出境旅游人数约多少万人次?23.(8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离. (参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)24.(8分)已知二次函数y =x 2-2m x +m 2+m +1的图像与x 轴交于A 、B 两点,点C 为顶点. (1)求m 的取值范围;(2)若将二次函数的图像关于x 轴翻折,所得图像的顶点为D ,若CD =8.求四边形ACBD 的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省邵阳市2017年初中毕业学业考试试题卷数 学温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分.(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上. (3)请你在答题卡...上作答,答在本试题卷上无效. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中只有一项是符合题目要求的.缜密思考,找准选项.) 1.2-的倒数是( ) A .12B .12-C .2D .2-2.计算23(2)x -的结果是( ) A .68x -B .66x -C .58x -D .56x -3.据《湖南日报》2017年5月25日讯,截至5月24日下午3时,湖南省赈灾募捐办公室统计,全省向四川地震灾区捐赠款物共计75137.13万元,请用科学记数法表示这个数,结果为(保留四位有效数字)( ) A .87.51310⨯7元 B .87.51410⨯元 C .90.751410⨯元D .90.751310⨯元4.如图(一),直角梯形ABCD 中,AB DC ∥,90A ∠=.将直角梯形ABCD 绕边AD 旋转一周,所得几何体的俯视图是( )5.若反比例函数ky x=的图象经过点(12)-,,则这个函数的图象一定经过点( ) A .(12),B .(21),C .(12)-,D .(12)--, 6.如图(二),将ABCD沿AE 翻折,使点B 恰好落在AD 上的点F 处,则下列结论不一定成立.....的是( ) A .AF EF = B .AB EF =C .AE AF =D .AF BE =7.“六·一”儿童节,某玩具超市设立了一个如图(三)所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该ABCDA .B .C .D .图(一)ADFCE B 图(二)D.转动转盘10次,一定有3次获得文具盒8.如图(四),点P是AB上任意一点,ABC ABD∠=∠,还应补充一个条件,才能推出APC APD△≌△.从下列条件中补充一个条件,不一定能....推出APC APD△≌△的是()A.BC BD=B.AC AD=C.ACB ADB∠=∠D.CAB DAB∠=∠二、填空题(本大题共有8小题,每小题3分,共24分.多动脑筋,认真填写.)9.如图(五),数轴上表示的关于x的一元一次不等式组的解集为.10.分解因式:322x x x-+=.11.某市6月2日至8日的每日最高温度如图(六)所示,则这组数据的中位数是,众数是.12.2017年奥运火炬于6月3日至5日在我省传递(传递路线为:岳阳—汩罗—长沙—湘潭—韶山).如图(七),学生小华在地图上设定汩罗市位置点的坐标为(02)-,,长沙市位置点的坐标为(04)-,,请帮助小华确定韶山市位置点的坐标为.13.如图(八),AB与CD相交于点O,OE CD⊥,54BOE∠= ,则A O C∠=.14.计算机把数据存储在磁盘上,磁盘上有一些同心圆转道.如图(九),现有一张半径为转盘图(三)CADPB图(四)图(五)图(六)图(七)A ODBEC图(八)45毫米的磁盘,磁盘的最内磁道半径为r 毫米,磁盘的最外圆周不是磁道,磁道上各磁道之间的宽度必须不小于0.3毫米,这张磁盘最多有 条磁道.15.如图(十),AB AC ,分别是O 的直径和弦,OD AC ⊥于点D ,连结BD 、BC ,5AB =,4AC =,则BD = .16.如图(十一),已知ABC △中,AB AC =,AD 平分BAC ∠,点E 为AC 的中点,请你写出一个正确的结论: .三、解答题(本大题共有3小题,每小题6分,共18分.弄清算理,正确解答.) 17.计算:202|3|2008-+--18.已知分式211111xx x x ⎛⎫+÷⎪+--⎝⎭,及一组数据:2-,1-,1,2. (1)从已知数据中随机选取一个数代替x ,能使已知分式有意义的概率是多少?(2)先将已知分式化简,再从已知数据中选取一个你喜欢的,且使已知分式有意义的数代替x 求值.19.学生在讨论命题:“如图(十二),梯形ABCD 中,AD BC ∥,B C ∠=∠,则AB DC =.”的证明方法时,提出了如下三种思路.思路1:过一个顶点作另一腰的平行线,转化为等腰三角形和平行四边形; 思路2:过同一底边上的顶点作另一条底边的垂线,转化为直角三角形和矩形; 思路3:延长两腰相交于一点,转化为等腰三角形. 请你结合以上思路,用适当的方法证明该命题.图(九) A OB C D 图(十) AECD B 图(十一)ADCB图(十二)四、应用题(本大题共有4小题,每小题8分,共32分.注意建模,学以致用.)20.根据国务院“限塑令”,步步高超市自2017年6月1日起,停止免费提供一次性塑料购物袋.为了满足顾客需要,在5月1日之前该超市购进了尼龙、帆布、无纺布袋三种能重复使用的环保型袋子样品,从5月1日至5月7日在需要购物袋的顾客中进行了购买意向调查,并将调查结果绘制成了统计图,请你根据图(十三)中的信息完成下列各题:(1)求该超市调查了多少名顾;(2)计算扇形统计图中“购买帆布袋”部分所对应的圆心角的度数; (3)请你将条形统计图补充完整;(4)请你给步步高超市提供一条订购这三类环保型袋子的合理化建议.21.在四川汶川地震灾后重建中,某公司拟为灾区援建一所希望学校.公司经过调查了解:甲、乙两个工程队有能力承包建校工程,甲工程队单独完成建校工程的时间是乙工程队的1.5倍,甲、乙两队合作完成建校工程需要72天. (1)甲、乙两队单独完成建校工程各需多少天?(2)在施工过程中,该公司派一名技术人员在现场对施工质量进行全程监督,每天需要补助100元.若由甲工程队单独施工时平均每天的费用为0.8万元.现公司选择了乙工程队,要求其施工总费用不能超过甲工程队,则乙工程队单独施工时平均每天的费用最多为多少?22.王师傅开车通过邵怀高速公路雪峰山隧道(全长约为7千米)时,所走路程y (千米)与时间x (分钟)之间的函数关系的图象如图(十四)所示.请结合图象,回答下列问题: (1)求王师傅开车通过雪峰山隧道的时间;(2)王师傅说:“我开车通过隧道时,有一段连续2分钟恰好走了1.8千米”.你说有可能吗?请说明理由.图(十三)无纺布袋 购买 45% 购买帆布袋 购买 尼龙袋 30%温馨提示:总费用=平均每天的费用⨯天数+补助费图(十四)23.如图(十五),AB 、CD 是竖立在公路两侧,且架设了跨过公路的高压电线的电杆,16AB CD ==米.现在点A 处观测电杆CD 的视角为1942' ,视线AD 与AB 的夹角为59 .以点B 为坐标原点,向右的水平方向为x 轴的正方向,建立平面直角坐标系.(1)求电杆AB 、CD 之间的距离和点D 的坐标;(2)在今年年初的冰雪灾害中,高压电线由于结冰下垂近似成抛物线21100y x bx =+(b 为常数).在通电情况,高压电线周围12米内为非安全区域.请问3.2米高的车辆从高压电线下方通过时,是否有危险,并说明理由.五、规律探索题(本大题共10分.大胆实践,积极探索.)24.如图(十六),正方形111OA B C 的边长为1,以O 为圆心、1OA 为半径作扇形 1111OAC AC ,与1OB 相交于点2B ,设正方形111OA B C 与扇形11OAC 之间的阴影部分的面积为1S ;然后以2OB 为对角线作正方形222OA B C ,又以O 为圆心,、2OA 为半径作扇形22OA C , 22A C 与1OB 相交于点3B ,设正方形222OA B C 与扇形22OA C 之间的阴影部分面积为2S ;按此规律继续作下去,设正方形n n n OA B C 与扇形n n OA C 之间的阴影部分面积为n S .温馨提示:抛物线2y ax bx c =++(0a ≠)的顶点坐标2424b ac b aa⎛⎫-- ⎪⎝⎭,.tan 7842 5.00tan310.60tan11180.20''≈,≈,≈. 图(十五)路面(1)求123S S S ,,; (2)写出2008S ;(3)试猜想n S (用含n 的代数式表示,n 为正整数).六、综合题(本大题共12分.反复尝试,收获成功.)25.如图(十七),将含30角的直角三角板ABC (30B ∠=)绕其直角顶点A 逆时针旋转α解(090α<<),得到Rt ADE △,AD 与BC 相交于点M ,过点M 作MN DE∥交AE 于点N ,连结NC .设4BC BM x ==,,MNC △的面积为MNC S △,ABC △的面积为ABC S △.(1)求证:MNC △是直角三角形;(2)试求用x 表示MNC S △的函数关系式,并写出x 的取值范围; (3)以点N 为圆心,NC 为半径作N ,①当直线AD 与N 相切时,试探求MNC S △与ABC S △之间的关系; ②当MNC S △14ABC S =△时,试判断直线AD 与N 的位置关系,并说明理由.B图(十七)AE NM CDα1A 1A 2 A 3 OC C C 图(十六)。