2018各省中考数学试卷(含答案解析) (1)

合集下载

2018年陕西省中考数学试卷(带解析答案)

2018年陕西省中考数学试卷(带解析答案)

【解答】解:∵
t = =,
∴S1= S△AOB,S2= S△BOC. ∵点 O 是▱ ABCD 的对称中心, ∴S△AOB=S△BOC= S▱ ABCD,
t = =, hh
∴ = =.
即 S1 与 S2 之间的等量关系是 = . 故答案为 = .
三、解答题(共 11 小题,计 78 分。解答应写出过程)
∴AD= AC=4 . 在 Rt△ADB 中,AD=4 ,∠ABD=60°,
∴BD= AD= . ∵BE 平分∠ABC, ∴∠EBD=30°.
在 Rt△EBD 中,BD= ,∠EBD=30°,
∴DE= BD= ,
∴AE=AD﹣DE= . 故选:C.
第 3页(共 18页)
7.(3 分)若直线 l1 经过点(0,4),l2 经过点(3,2),且 l1 与 l2 关于 x 轴对称, 则 l1 与 l2 的交点坐标为( ) A.(﹣2,0) B.(2,0) C.(﹣6,0) D.(6,0)
第 8页(共 18页)
∴△DPA∽△ABM.
18.(5 分)如图,AB∥CD,E、F 分别为 AB、CD 上的点,且 EC∥BF,连接 AD, 分别与 EC、BF 相交于点 G,H,若 AB=CD,求证:AG=DH.
【解答】证明:∵AB∥CD、EC∥BF, ∴四边形 BFCE 是平行四边形,∠A=∠D, ∴∠BEC=∠BFC,BE=CF, ∴∠AEG=∠DFH, ∵AB=CD, ∴AE=DF, 在△AEG 和△DFH 中,
A.15° B.35° C.25° D.45° 【解答】解:∵AB=AC、∠BCA=65°, ∴∠CBA=∠BCA=65°,∠A=50°, ∵CD∥AB, ∴∠ACD=∠A=50°, 又∵∠ABD=∠ACD=50°, ∴∠DBC=∠CBA﹣∠ABD=15°, 故选:A.

浙江省舟山市2018年中考数学真题试题(含解析)(1)

浙江省舟山市2018年中考数学真题试题(含解析)(1)

浙江省舟山市2018年中考数学真题试题一、选择题目1.下列几何体中,俯视图为三角形的是()A. B.C. D.2.2018年5月25日,中国探月工程的“桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1500000km.数1500000用科学记数法表示为()A. 15×105B. 1.5×106C. 0.15×107D. 1.5×1053.2018年1-4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A. 1月份销量为2.2万辆B. 从2月到3月的月销量增长最快C. 4月份销量比3月份增加了1万辆D. 1-4月新能源乘用车销量逐月增加4.不等式1-x≥2的解在数轴上表示正确的是()A. B.C. D.5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. B. C. D.6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内7.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是;画Rt△ABC,使∠ACB=90°,BC= ,AC=b,再在斜边AB上截取BD= 。

则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长8.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A. B.C. D.9.如图,点C在反比例函数(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A. 1B. 2C. 3D. 410.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙,丙、丁四队分别获得第一,二,三,四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁二、填空题目11.分解因式m2-3m=________。

2018年河北省中考数学试卷及解析

2018年河北省中考数学试卷及解析

2018年河北省中考数学试卷及解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.(3.00分)下列图形具有稳定性的是()A.B.C.D.2.(3.00分)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.103.(3.00分)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l44.(3.00分)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.525.(3.00分)图中三视图对应的几何体是()A.B.C.D.6.(3.00分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7.(3.00分)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.8.(3.00分)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C9.(3.00分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:==13,==15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁10.(3.00分)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个 B.3个 C.4个 D.5个11.(2.00分)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°12.(2.00分)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm13.(2.00分)若2n+2n+2n+2n=2,则n=()A.﹣1 B.﹣2 C.0 D.14.(2.00分)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁15.(2.00分)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.216.(2.00分)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(3.00分)计算:=.18.(3.00分)若a,b互为相反数,则a2﹣b2=.19.(6.00分)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而=45是360°(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题共7小题,共计66分)20.(8.00分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(9.00分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22.(9.00分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(9.00分)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A 重合)的任意点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.24.(10.00分)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k 的值.25.(10.00分)如图,点A在数轴上对应的数为26,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为13π,求∠AOP的度数及x的值;(2)求x的最小值,并指出此时直线l与所在圆的位置关系;(3)若线段PQ的长为12.5,直接写出这时x的值.26.(11.00分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;米/秒.当甲距(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.2018年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.【解答】解:三角形具有稳定性.故选:A.2.【解答】解:∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选:B.3.【解答】解:该图形的对称轴是直线l3,故选:C.4.【解答】解:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选:C.5.【解答】解:观察图象可知选项C符合三视图的要求,故选:C.6.【解答】解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.7.【解答】解:设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选:A.8.【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.9.【解答】解:∵=>=,∴乙、丁的麦苗比甲、丙要高,2=s丁2<s乙2=s丙2,∵s甲∴甲、丁麦苗的长势比乙、丙的长势整齐,综上,麦苗又高又整齐的是丁,故选:D.10.【解答】解:①﹣1的倒数是﹣1,原题错误,该同学判断正确;②|﹣3|=3,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误;④20=1,原题正确,该同学判断正确;⑤2m2÷(﹣m)=﹣2m,原题正确,该同学判断正确;故选:B.11.【解答】解:如图,AP∥BC,∴∠2=∠1=50°.∠3=∠4﹣∠2=80°﹣50°=30°,此时的航行方向为北偏东30°,故选:A.12.【解答】解:∵原正方形的周长为acm,∴原正方形的边长为cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.13.【解答】解:∵2n+2n+2n+2n=2,∴4•2n=2,∴2•2n=1,∴21+n=1,∴1+n=0,∴n=﹣1.故选:A.14.【解答】解:∵÷=•=•=•==,∴出现错误是在乙和丁,故选:D.15.【解答】解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选:B.16.【解答】解:把y=x+2代入y=﹣x(x﹣3)+c得:x+2=﹣x(x﹣3)+c,即x2﹣2x+2﹣c=0,所以△=(﹣2)2﹣4×1×(2﹣c)=﹣4+4c=0,解得:c=1,所以甲的结果正确;故选:A.二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.【解答】解:==2,故答案为:2.18.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0.故答案为:0.19.【解答】解:图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:=,以∠APB为内角的正多边形的边数为:,∴图案外轮廓周长是=﹣2+﹣2+﹣2=+﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时图案定为会标,则则会标的外轮廓周长是=+﹣6=21,故答案为:14,21.三、解答题(本大题共7小题,共计66分)20.【解答】解:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.21.【解答】解:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24﹣5﹣6﹣4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率==;(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.故答案为3.22.【解答】解:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.23.【解答】(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,∵,∴△APM≌△BPN;(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)解:∵△BPN的外心在该三角形的内部,∴△BPN是锐角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.24.【解答】解:(1)把C(m,4)代入一次函数y=﹣x+5,可得4=﹣m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=﹣x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC ﹣S△BOC=×10×4﹣×5×2=20﹣5=15;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣.25.【解答】解:(1)如图1中,由=13π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB==,∴OQ=,∴x=.(2)当直线PQ经过圆心O时,x的值最小最小值为0,此时直线l是⊙O的对称轴.(3)①如图2中,作OH⊥PQ于H,设OH=4k,AH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5不合题意舍弃.②如图3中,作OH⊥PQ交PQ的延长线于H.设OH=4k,QH=3k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5+3k)2,整理得:k2+3k﹣20.79=0,解得k=﹣6.3(舍弃)或3.3,∴OQ=5k=16.5,③如图4中,作OH⊥PQ于H,设OH=4k,AH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5不合题意舍弃.综上所述,满足条件的x的值为16.5.26.【解答】解:(1)由题意,点A(1,18)带入y=得:18=∴k=18设h=at2,把t=1,h=5代入∴a=5∴h=5t2(2)∵v=5,AB=1∴x=5t+1∵h=5t2,OB=18∴y=﹣5t2+18由x=5t+1则t=∴y=﹣当y=13时,13=﹣解得x=6或﹣4∵x≥1∴x=6把x=6代入y=y=3∴运动员在与正下方滑道的竖直距离是13﹣3=10(米)(3)把y=1.8代入y=﹣5t2+18得t2=解得t=1.8或﹣1.8(负值舍去)∴x=10∴甲坐标为(10,1.8)恰号落在滑道y=上此时,乙的坐标为(1+1.8v,1.8)乙由题意:1+1.8v﹣(1+5×1.8)>4.5乙∴v>7.5乙。

2018年中考数学真题(附答案解析)

2018年中考数学真题(附答案解析)

2018年初中毕业生升学考试数学真题一、选择题 (本大题12个小题,每小题4分,共48分。

)1.2的相反数是( ) A .2-B .12-C .12D .22.下列图形中一定是轴对称图形的是A.B.C.D.3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( ) A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .185.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( ) A. 3cm B. 4cm C. 4.5cmD. 5cm6.下列命题正确的是A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.估计()1230246-⋅的值应在( ) A. 1和2之间 B.2和3之间 C.3和4之间 D.4和5之间8.按如图所示的运算程序,能使输出的结果为12的是( )40°直角三角形四边形平行四边形矩形A.3,3==y xB.2,4-=-=y xC.4,2==y xD.2,4==y x9.如图,已知AB 是O 的直径,点P 在BA 的延长线上,PD 与O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若O 的半径为4,6BC =,则PA 的长为( ) A .4B .23C .3D .2.510.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角58AED ∠=︒,升旗台底部到教学楼底部的距离7DE =米,升旗台坡面CD 的坡度1:0.75i =,坡长2CD =米,若旗杆底部到坡面CD 的水平距离1BC =米,则旗杆AB 的高度约为( )(参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.6︒≈) A .12.6米 B .13.1米 C .14.7米 D .16.3米11.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .512.若数a 使关于x 的不等式组112352x xx x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,且使关于y 的方程2211y a ay y++=--的解为非负数,则符合条件的所有整数a 的和为( ) A .3- B .2- C .1 D .2二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:02(3)π-+-=______________.14.如图,在矩形ABCD 中,3AB =,2AD =,以点A 为圆心,AD 长为半径画弧,交AB 于点E ,图中阴影部分的面积是___________(结果保留π).15. 春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为 。

2018年江西省中考数学试卷(含答案解析版)

2018年江西省中考数学试卷(含答案解析版)

2018年江西省中考数学试卷一、选择题(本大共6分,每小题3分,共18分。

每小题只有一个正确选项)1.(3.00分)(2018•江西)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3.00分)(2018•江西)计算(﹣a)2•的结果为()A.b B.﹣b C.ab D.3.(3.00分)(2018•江西)如图所示的几何体的左视图为()A.B.C.D.4.(3.00分)(2018•江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%5.(3.00分)(2018•江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个6.(3.00分)(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2二、填空题(本大题共6小题,每小题3分,共18分)7.(3.00分)(2018•江西)若分式有意义,则x的取值范围为.8.(3.00分)(2018•江西)2018年5月13口,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为.9.(3.00分)(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为.10.(3.00分)(2018•江西)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=FF,则AB的长为.11.(3.00分)(2018•江西)一元二次方程x2﹣4x+2=0的两根为x1,x2.则x12﹣4x1+2x1x2的值为.12.(3.00分)(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为.三、(本大题共5小题,每小题6分,共30分)13.(6.00分)(2018•江西)(1)计算:(a+1)(a﹣1)﹣(a﹣2)2;(2)解不等式:x﹣1≥+3.14.(6.00分)(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD 交AC于点E,求AE的长.15.(6.00分)(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.16.(6.00分)(2018•江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(6.00分)(2018•江西)如图,反比例函数y=(k ≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.四、(本大题共3小题,每小题8分,共24分)18.(8.00分)(2018•江西)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人漱养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(8.00分)(2018•江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60m,点B固定,当点C在AB上左右运动时,OC与OB的长度不变.(所有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈0.77.cos50°≈0.64,tan50°≈1.19,π取3.14.20.(8.00分)(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC 相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.五、(本大题共2小题,每小题9分,共18分)21.(9.00分)(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(9.00分)(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD 的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.六、(本大题共12分23.(12.00分)(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).2018年江西省中考数学试卷参考答案与试题解析一、选择题(本大共6分,每小题3分,共18分。

2018陕西省中考数学试卷(附答案解析版)

2018陕西省中考数学试卷(附答案解析版)

2018年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分。

每小题只有一个选项是符合题意的)1.(3.00分)(2018•陕西)﹣711的倒数是()A.711B.−711C.117D.−1172.(3.00分)(2018•陕西)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥3.(3.00分)(2018•陕西)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个 B.2个 C.3个 D.4个4.(3.00分)(2018•陕西)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.−12B.12C.﹣2 D.25.(3.00分)(2018•陕西)下列计算正确的是()A.a2•a2=2a4 B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2 D.(a﹣2)2=a2﹣46.(3.00分)(2018•陕西)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC 的平分线交AD于点E,则AE的长为()A.43√2B.2√2 C.83√2 D.3√27.(3.00分)(2018•陕西)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0)C.(﹣6,0)D.(6,0)8.(3.00分)(2018•陕西)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是()A.AB=√2EF B.AB=2EF C.AB=√3EF D.AB=√5EF 9.(3.00分)(2018•陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°10.(3.00分)(2018•陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共4小题,每小题3分,计12分)11.(3.00分)(2018•陕西)比较大小:3 √10(填“>”、“<”或“=”).中,AC 与BE 相交于点F ,则∠AFE 的度数为 .13.(3.00分)(2018•陕西)若一个反比例函数的图象经过点A (m ,m )和B (2m ,﹣1),则这个反比例函数的表达式为 .14.(3.00分)(2018•陕西)如图,点O 是▱ABCD 的对称中心,AD >AB ,E 、F 是AB 边上的点,且EF=12AB ;G 、H 是BC 边上的点,且GH=13BC ,若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是 .三、解答题(共11小题,计78分。

山东省济南市2018年中考数学试卷(含答案解析)

山东省济南市2018年中考数学试卷(含答案解析)

山东省济南市2018年中考数学试卷一、选择题1.4的算术平方根为( )A. 2B. -2C. ±2D. 162.如图,点O在直线AB上,若∠1=40°,则∠2的度数是()A. 50°B. 60°C. 140°D. 150°3.下列运算中,结果是的是( )A. B. a10÷a2 C. (a2)3 D. (-a)54.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约为3700千克,3700用科学记数法表示为()A. 3.7×102B. 3.7×103C. 37×102D. 0.37×1045.下列图案既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A. 从前面看到的形状图的面积为5B. 从左面看到的形状图的面积为3C. 从上面看到的形状图的面积为3D. 三种视图的面积都是47.化简的结果是()A. B. C. D.8.下列命题中,真命题是()A. 两对角线相等的四边形是矩形B. 两对角线互相平分的四边形是平行四边形C. 两对角线互相垂直的四边形是菱形D. 两对角线相等的四边形是等腰梯形9.若一次函数的函数值随的增大而增大,则()A. B. C. D.10.在▱ABCD中,延长AB到E,使BE=AB,连结DE交BC于F,则下列结论不一定成立的是( )A. ∠E=∠CDFB. EF=DFC. AD=2BFD. BE=2CF11.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A. B. C. D.12.如图,直线与x轴、y轴分别交于A、B两点,把△AOB沿直线AB翻折后得到△AO′B,则点O′的坐标是()A. (,3)B. (,)C. (2,)D. (,4)13.如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A. 2B.C.D.14.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A. (1,2,1,2,2)B. (2,2,2,3,3)C. (1,1,2,2,3)D. (1,2,1,1,2)15.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A. t≥﹣1B. ﹣1≤t<3C. ﹣1≤t<8D. 3<t<8二、填空题16.|﹣7﹣3|=________.17.分解因式:x2+2x+1=________18.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为________.19.若和的值相等,则________.20.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.21.如图,和都是等腰直角三角形,,反比例函数在第一象限的图象经过点B,若,则的值为________.三、解答题22.(1)化简:(a+3)(a-3)+a(4-a)(2)解不等式组:.23.(1)如图,在四边形ABCD是矩形,点E是AD的中点,求证:EB=EC.(2)如图,AB与相切于C,,⊙O的半径为6,AB=16,求OA的长.24. 2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?25.在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:(1)统计表中的x=________,y=________;(2)被调查同学劳动时间的中位数是________时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.26.如图1,反比例函数的图象经过点A(,1),射线AB与反比例函数图象交与另一点B(1,),射线AC与轴交于点C,轴,垂足为D.(1)求和a的值;(2)直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线轴,与AC相交于N,连接CM,求面积的最大值.27.如图1,有一组平行线,正方形的四个顶点分别在上,过点D且垂直于于点E,分别交于点F,G,.(1)AE=________,正方形ABCD的边长=________;(2)如图2,将绕点A顺时针旋转得到,旋转角为,点在直线上,以为边在的左侧作菱形,使点分别在直线上.①写出与的函数关系并给出证明;②若=30°,求菱形的边长.28.如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积 ;(2)如图2,直线AB 与 轴相交于点P ,点M 为线段OA 上一动点, 为直角,边MN 与AP 相交于点N ,设 ,试探求: ① 为何值时为等腰三角形;② 为何值时线段PN 的长度最小,最小长度是多少.答案解析部分一、选择题1.【答案】A【解析】【解答】解:4的平方根是±2,所以4的算术平方根是2.【分析】一个正数有两个平方根,其中正的平方根是算术平方根。

2018年河北省中考数学试卷及答案解析

2018年河北省中考数学试卷及答案解析

数学试卷 第1页(共20页)数学试卷 第2页(共20页)绝密★启用前河北省2018年初中毕业升学文化课考试数 学(考试时间120分钟,满分120分)第Ⅰ卷(选择题 共42分)一、选择题(本大题共16小题,共42分.1~10小题每小题3分,11~16小题每小题2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列图形具有稳定性的是( )A B C D 2.一个整数815550…0用科学记数法表示为108.155510⨯,则原数中“0”的个数为( ) A .4B .6C .7D .103.如图是由“○”和“□”组成的轴对称图形,该图形的对称轴是直线 ( )A .1lB .2lC .3lD .4l(第3题)4.将29.5变形正确的是 ( ) A .2229.590.5=+B .2(100.5)(109..505)=+-C .2229.5102100.50.5=-⨯⨯+D .2229.5990.50.5=+⨯+ 5.如图所示的三视图对应的几何体是( )ABCD(第5题)6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线. 如图是按上述要求,但排乱顺序的尺规作图:(第6题)则正确的配对是( )A .①—Ⅳ,②—Ⅱ,③—Ⅰ,④—Ⅲ B.①—Ⅳ,②—Ⅲ,③—Ⅱ,④—Ⅰ C.①—Ⅱ,②—Ⅳ,③—Ⅲ,④—Ⅰ D.①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ 7.有三种不同质量的物体,“”“”“”,其中,同一种物体的质量都相等.现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是 ( )ABCD8.已知,如图,点P 在线段AB 外,且PA PB =.求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不正确的是( )A .作APB ∠的平分线PC 交AB 于点CB .过点P 作PC AB ⊥于点C ,且AC BC = C .取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为点C(第8题)9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高的平均数(单位:cm)与方差分别为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,226.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页)数学试卷 第4页(共20页)10.如图所示的手机截屏内容是某同学完成的作业,他做对的题的个数是 ( )A .2B .3C .4D .5(第10题)(第11题)11.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为( )A .北偏东30B .北偏东80C .北偏西30D .北偏西5012.用一根长为cm a 的铁丝,首尾相接围成一个正方形.要将它按图所示的方式向外等距扩1cm ,得到新的正方形,则这根铁丝需增加( )A .4cmB .8cmC .(4)cm a +D .(8)cm a + (第12题) 13.若22222n n n n +++=,则n =( )A .1-B .2-C .0D .1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:(第14题)接力中,自己负责的一步出现错误的是 ( )A .只有乙B .甲和丁C .乙和丙D .乙和丁15.如图,点I 为ABC △的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I重合,则图中阴影部分的周长为 ( )A .4.5B .4C .3D .2(第15题)16.对于题目:“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确第Ⅱ卷(非选择题 共78分)二、填空题(本大题共3小题,共12分.17~18小题每小题3分;19小题有2个空,每空3分)17.计算:123-=- . 18.若a ,b 互为相反数,则22a b -= .19.如图1,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.(第19题)例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=,而90452=是360(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .数学试卷 第5页(共20页)数学试卷 第6页(共20页)三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)嘉淇准备完成题目:“化简:(2268)(652)x x x x ++-++.”发现系数“”印刷不清楚. (1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++.(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几.21.(本小题满分9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(如图1)和不完整的扇形图(如图2),其中条形图被墨迹掩盖了一部分.(第21题)(1)求条形图中被掩盖的数,并写出册数的中位数.(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率. (3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.22.(本小题满分9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着5-,2-,1,9,且任意相邻4个台阶上数的和都相等. 尝试 (1)求前4个台阶上数的和.(2)求第5个台阶上的数x .应用 求从下到上前31个台阶上数的和.发现 试用含k (k 为正整数)的式子表示出数“1”所在的台阶数.23.(本小题满分9分)如图,50A B ∠=∠=,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=. (1)求证:APM BPN △△≌. (2)当2MN BN =时,求α的度数.(3)若BPN △的外心在该三角形的内部,直接写出α的取值范围.(第23题)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)24.(本小题满分10分)如图,在直角坐标系xOy 中,一次函数152y x =-+的图象1l 分别与x 轴、y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点C (,4)m . (1)求m 的值及2l 的解析式.(2)求AOC BOC S S -△△的值.(3)一次函数1y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,直接写出k 的值.(第24题)25.(本小题满分12分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在点O 右下方,且4tan 3AOB ∠=.在优弧AB 上任取一点P ,且能过P 作直线l OB ∥交数轴于点Q ,设点Q 在数轴上对应的数为x ,连接OP . (1)若优弧AB 上一段AP 的长为13π,求AOP ∠的度数及x 的值. (2)求x 的最小值,并指出此时直线l 与优弧AB 所在圆的位置关系. (3)若线段PQ 的长为12.5,直接写出这时x 的值.(第25题)26.(本小题满分11分)如图是轮滑场地的截面示意图,平台AB 距x 轴(水平)18m ,与y 轴交于点B ,与滑道(1)ky x x =≥交于点A ,且1m AB =.运动员(看成点)在BA 方向获得速度m/s v 后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:点M ,A 的竖直距离(m)h 与飞出时间(s)t 的平方成正比,且1t =时,5h =;点M ,A 的水平距离是m vt . (1)求k ,并用t 表示h .(2)设5m/s v =.用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 之间的关系式(不写x 的取值范围),及13y =时,运动员与正下方滑道的竖直距离.(3)若运动员甲、乙同时从A 处飞出,速度分别是5m/s 、m/s v 乙,当甲距x 轴1.8m ,且乙位于甲右侧超过4.5m 的位置时,直接写出t 的值及v 乙的范围.(第26题)河北省2018年初中毕业文化课考试数学答案解析 第Ⅰ卷一、选择题1.【答案】A【解析】A 项是三角形,具有稳定性,故A 项正确.B 项是四边形,C 项有四边形D 项是六边形,均不具有稳定性.【考点】三角形具有稳定性,四边形和其他多边形不具有稳定性.2.【答案】B【解析】∵108.155510⨯表示的原数为81555000000,∴原数中“0”的个数为6,故选:B.【考点】科学记数法.3.【答案】C【解析】该图形的对称轴是直线3l,故选:C.【考点】轴对称图形的概念和性质.4.【答案】C【解析】22229.5(100.5)102100.50.5=-=⨯⨯+-,故选:C.【考点】完全平方公式和平方差公式的运用.5.【答案】C【解析】A项,俯视图不符合题意.B项,主视图和左视图均不符合题意.C项,正确.D项,俯视图不符合题意.【考点】立体图形与三视图的关系.6.【答案】D【解析】Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.【考点】基本的尺规作图.7.【答案】A【解析】设的质量为x,的质量为y,的质量为a,假设A正确,则 1.5x y=,此时B,C,D选项中都是2x y=,故A选项错误,符合题意.故选:A.【考点】等式的性质.8.【答案】B【解析】A、利用SAS判断出PCA PCB△≌△,∴CA CB=,90PCA PCB∠=∠=,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出PCA PCB△≌△,∴CA CB=,90PCA PCB∠=∠=,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出PCA PCB△≌△,∴CA CB=,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.【考点】等腰三角形的三线合一.9.【答案】D【解析】∵1513>,∴乙和丁的麦苗较高.∵3.6 6.3<,∴甲和丁的麦苗较整齐.∴麦苗又高又整齐的是丁.【考点】平均数和方差的概念及应用.10.【答案】B【解析】①1-的倒数是1-,原题错误,该同学判断正确;②|33|-=,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误;④021=,原题正确,该同学判断正确;⑤22()2m m m÷-=-,原题正确,该同学判断正确;数学试卷第9页(共20页)数学试卷第10页(共20页)数学试卷 第11页(共20页) 数学试卷 第12页(共20页)故选:B .【考点】倒数、绝对值和众数的概念及整式运算. 11.【答案】A 【解析】如图,AP BC ∥,∴2150∠=∠=.342805030∠=∠-∠=-=,此时的航行方向为北偏东30, 故选:A .【考点】平行线的性质和方位角. 12.【答案】B【解析】∵原正方形的周长为cm a ,∴原正方形的边长为 cm 4a,∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(2)cm 4a+,则新正方形的周长为4(2)(a 8)cm4a +=+,因此需要增加的长度为88cm a a +-=. 故选:B .【考点】正方形的周长和整式的加减运算. 13.【答案】A【解析】∵22222n n n n +++=,∴422n =,∴221n =,∴121n +=,∴10n +=,∴1n =-.故选:A .【考点】整式的加减及乘方运算. 14.【答案】D【解析】甲负责的一步正确.乙负责的一步错误,错在将第二个分式的分子1x -直接变为1x -,与原式相差一个负号.丙负责的一步正确.丁负责的一步错误,错在第一个分式的分子x 与第二个分式的分母2x 约分后分母应为x ,不是2. 【考点】分式的乘除法. 15.【答案】B【解析】连接AI 、BI ,∵点I 为ABC △的内心, ∴AI 平分CAB ∠,∴CAI BAI ∠=∠, 由平移得:AC DI ∥, ∴CAI AID ∠=∠, ∴BAI AID ∠=∠, ∴AD DI =, 同理可得:BE EI =,∴DIE △的周长4DE DI EI DE AD BE AB =++=++==, 即图中阴影部分的周长为4, 故选:B .【考点】三角形的内心及平行线的性质.16.【答案】D【解析】∵抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点,数学试卷 第13页(共20页) 数学试卷 第14页(共20页)∴①如图1,抛物线与直线相切, 联立解析式(3)2y x x cy x =--+⎧⎨=+⎩得2220xx c -+-=2(2)4(2)0c ∆=---=解得1c =②如图2,抛物线与直线不相切,但在03x ≤≤上只有一个交点,此时两个临界值分别为(0,2)和(3,5)在抛物线上, ∴min 2c =,但取不到,max 5c =,能取到 ∴25c <≤ 又∵c 为整数 ∴3,4,5c = 综上,1,3,4,5c = 故选:D .【考点】二次函数和一次函数的图象及性质.第Ⅱ卷二、填空题 17.【答案】22,故答案为:2. 【考点】二次根式的化简. 18.【答案】0【解析】∵a ,b 互为相反数,∴0a b +=,∴22()()0a b a b a b -=+-=. 故答案为:0. 【考点】因式分解. 19.【答案】1421【解析】题中图2图案的外轮廓周长为(82)2214-⨯+=.当60BPC ∠=时,中间为等比三角形,而60302=是360的112,这样就恰好可以作出两个边长均为1的正十二边形,填充花纹后得到一个符合要求的图案,此时的图案外轮廓周长最大,周长为(122)2121-⨯+=.【考点】正多边形的外角和等于360,每个外角等于360n.三、解答题20.【答案】(1)原式22236865226x x x x x =++---=-+. (2)设方框内的数字为a ,则原式22268652(5)6ax x x x a x =++---=-+. ∵结果为常数,∴50a -=,解得5a =.【解析】(1)原式去括号、合并同类项即可得;(2)设“”是a ,将a 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a 的值. 【考点】整式的加减.21.【答案】解:(1)625%24÷=(人),245649---=(人), 则条形图中被遮盖的数为9.将读书册数按从小到大的顺序排列后,位于中间的两个数据均为5册,故册数的中位数为5册.(2)由题意,得总人数为24人,超过5册的学生人数为6410+=数学试卷 第15页(共20页) 数学试卷 第16页(共20页)(人), 故642412P +5==. (3)3【解析】(1)用读书为6册的人数除以它所占的百分比得到调查的总人数,再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,然后根据中位数的定义求册数的中位数;(2)用读书为6册和7册的人数和除以总人数得到选中读书超过5册的学生的概率;(3)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数.【考点】扇形统计图,条形统计图,中位数,概率公式. 22.【答案】解:尝试 (1)5(2)193-+-++=. (2)由题意,得(2)193x -+++=,解得5x =-. 应用 ∵31473÷=⋅⋅⋅⋅⋅⋅, ∴37(5)(2)115⨯+-+-+=.发现 找规律发现,数“1”所在的台阶数为3,7,11,15,…,∴数“1”所在的台阶数为41k -(k 为正整数). 【考点】图形的变化规律.23.【答案】(1)证明:∴P 为AB 的中点, ∴AP BP =.在APM △和BPN △中,∴,,,A B AP BP APM BPN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴APM BPN △≌△.(2)解:由(1)知,APM BPN △≌△,∴PM PN =, ∴2MN PN =.∴2MN BN =,∴BN PN =, ∴50BPN B α=∠=∠=. (3)解:4090α<<【解析】(1)根据AAS 证明:APM BPN △≌△;(2)由(1)中的全等得:2MN PN =,所以PN BN =,由等边对等角可得结论;(3)三角形的外心是外接圆的圆心,三边垂直平分线的交点,直角三角形的外心在直角顶点上,钝角三角形的外心在三角形的外部,只有锐角三角形的外心在三角形的内部,所以根据题中的要求可知:BPN △是锐角三角形,由三角形的内角和可得结论.【考点】三角形和圆的综合题. 24.【答案】解:(1)∴点(,4)C m 在1l 上, ∴1542m -+=, ∴2m =. ∴(2,4)C .设2l 的解析式为(0)y kx k =≠, ∴点(2,4)C 在2l 上,24k =, ∴2k =∴2l 的解析式为2y x =.(2)由题意可知,A ,B 两点分别是11:542l y m =-+=与x 轴、y 轴的交点, ∴(10,0),(0,5)A B , 即10,5OA OB ==. ∵111042022AOC c S OA y ==⨯⨯=△, 1152522BOCc S OB x ==⨯⨯=△,数学试卷 第17页(共20页) 数学试卷 第18页(共20页)∴15AOC BOC S S -=△△.(3)12k =-或2k =或32k =.【解析】(1)先求得点C 的坐标,再运用待定系数法即可得到2l 的解析式;(2)过C 作CD AO ⊥于D ,CE BO ⊥于E ,则4CD =,2CE =,再根据(10,0),(0,5)A B ,可得10,5OA OB ==,进而得出AOC BOC S S -△△的值; (3)分三种情况:当3l 经过点(2,4)C 时,32k =;当2l ,3l 平行时,2k =;当1l ,3l 平行时,12k =-;故k的值为32或2或12-.【考点】两条直线相交或平行问题.25.【答案】解:(1)如图1,以OA 为半径的圆的周长为2π2652π⨯=, ∴13π3609052πAOP ∠=⨯=.∵PQ OB ∥, ∴PQO AOB ∠=∠, ∴4tan tan 3PQO AOB ∠=∠=, 即2643OP OQx==,∴19.5x =.故x 的值为19.5.(2)如图2,当直线l 与优弧AB 所在圆相切于数轴下方时,x 的值最小,此时OP PQ ⊥. ∵PQ OB ∥, ∴PQO AOB ∠=∠,∴4tan tan 3PQO AOB ∠=∠=, 即43OP PQ=.设4,3OP a PQ a ==,在Rt OPQ △中,5OQ a . ∴5544OQ a OP a ==. ∵26OP =, ∴532.54OQ OP ==. 故x 的值为32.5-.(3)x 的值为31.5或16.5-或31.5-.【解析】(1)利用弧长公式求出圆心角即可解决问题; (2)如图当直线PQ 与O 相切时时,x 的值最小.(3)由于P 是优弧AB 上的任意一点,所以P 点的位置分三种情形,分别求解即可解决问题.【考点】圆综合题,平行线的性质,弧长公式,解直角三角形. 26.【答案】解:(1)根据题意,得点A 的坐标为(1,18),将其代入ky x=,得18k =.设2h mt =,当1t =时,5h =,∴5m =. ∴25h t =.(2)根据题意,得1x vt =+,当5v =时,51x t =+①. 根据题意,得18y h =-.∵25h t=,∴2185y t =-②.数学试卷 第19页(共20页) 数学试卷 第20页(共20页)由①,得15x t -=③. 将③代入②,得21185()5x y -=-. 化简,得21(1)185y x =--+. 当13y =时,即21(1)18135x --+=, 解得126,4x x ==-(舍去). 将6x =代入18y x =,得3y =. ∴13310(m)-=.∴13y =时,运动员与正下方滑道的竖直距离为10m . (3) 1.8s,7.5m /s t v =乙>.【解析】(1)用待定系数法解题即可;(2)根据题意,分别用t 表示x 、y ,再用代入消元法得出y 与x 之间的关系式;(3)求出甲距x 轴1.8米时的横坐标,根据题意求出乙位于甲右侧超过4.5米的v 乙. 【考点】二次函数和反比例函数的待定系数法,函数图象上的临界点问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年山东省德州中考数学试卷解析(德州王忠华)试卷满分:150分教材版本:人教版一、选择题:本大题共12小题,每小题4分,共48分. 1.(2018·德州,1,4)3的相反数是() A .3B .13C .-3D .-131.C ,2.(2018·德州,2,4)下列图形既是轴对称又是中心对称的图形是()2.B ,解析:选项A ,B 是中心对称图形,选项B ,C 是轴对称图形,选项D 既不是轴对称又不是中心对称图形.3.(2018·德州,3,4)一年之中地球与太阳的距离随时间变化而变化,1个天文单位是地球与太阳之 间的平均距离,即1.496亿km ,用科学计数法表示1.496亿是() A .1.496×107B .14.96×108C .0.1496×108D .1.496×1083.D ,解析:1.496亿=1.496×1084.(2018·德州,4,4)下列运算正确的是() A . 326a a a ⋅=B . 236()a a -=C . 752a a a ÷=D .-2mn -mn =-mn4.C ,解析:选项A .325a a a ⋅=,故错误;选项B .236()a a -=-,故错误;选项C 正确;选项D .-2mn -mn =-3mn ,故错误.5.(2018·德州,5,4)已知一级数据:6,2,8,x ,7,它们的平均数是6,则这组数据的中位数是() A .7B .6C .5D .45.A ,解析:∵6+2+8+x +7=5×6,解得x =7.所以这组数按从小到大排列为:2,6,7,7,8,故中位数为7.6.(2018·德州,6,4)如图,将一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A . 图①B .图②C .图③D .图④6.A ,解析:选项A .∠α+∠β=90°,故符合题意;选项B .∠α=∠β,故不合题意;选项C .∠α=∠β,故不合题意; 选项D .∠α+∠β=180°,故不合题意.7.(2018·德州,7,4)如图,函数y =ax 2-2x +1和y =ax -a (a 是常数,且a ≠0)在同一平面直角坐标系的图象可能是()7.B ,解析:抛物线y =ax 2-2x +1过点(0,1),对称轴为x =1a.当a >0时,选项A 与B 符合题意,此时直线y =ax -a 过一,三象限,故选项B符合题意;当a<0时,选项D不合题意. 8.(2018·德州,8,4)分式方程311(1)(2)x x x x -=--+的解为() A .x =1B .x =2C .x =-1D .无解8.D ,解析:方程两边同乘以(x -1)(x +2)得x (x -2)-,(x -1)(x +2)=3,解得x =1.经检验x =1不是原分式方程的解,故原方程无解.9.(2018·德州,9,4)如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A .22m π B 2m C .2m π D .22m π9.A ,解析:连接AC ,∵∠B =90°,∴AC 是⊙O 的直径,∵AB =BC ,∴AB =BC==,∴此扇形的面积为22111442AB πππ⋅=⨯=. 10.(2018·德州,10,4)给出下列函数:①y =-3x +2;②y =3x;③y =2x 2;④y =3x .上述函数中符合条件”当x >1时,函数值y 随自变量x 的增大而增大”的是() A .①③B .③④C .②④D .②③10.B ,解析:∵x >1>0,y =2x 2的对称轴是y 轴,开口向上,∴y =3x 和y =2x 2的函数值y 随自变量x 的增大而增大,故③④符合题意.11.(2018·德州,11,4)我国南宋数学家杨辉所著的《详解九章算术》一书中,用下面的三角形解释二项式()na b +的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”一个计算8()a b +的展开式中从左起第四项的系数为() A .84B .56C .35D .2811.B ,解析:依规律,8()a b +…展开式共7项,各项的系数分别是1,8,28,56,70,56,28,8,1.故选B .12.(2018·德州,12,4)如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,∠FOG =120°,绕点O 旋转∠FOG ,分别交线段AB ,BC 于D ,E 两点,连接DE ,给出下列四个结论:①OD =OE ;②ODEBDE SS=;③四边形ODBE ;④△BDE 的周长的最小值为6.上述结论正确的个数是()A .1B .2C .3D .412.C ,解析:连接OB ,OC .∵O 是△ABC 的中心,∴OB =OC ,∠OBA =∠OCB =30°,∠BOC =120°.∵∠FOG =120°,∴∠DOB =∠EOC ,∴△DOB ≌△EOC ,∴OD =OE ,故①正解;四边ODBE 的面积=△OBC 的面积=1114332ABCS =⨯⨯⨯=,故③正确;当D ,E 分别是AB ,BC 边中点时,ODEBDESS≠,DE 不能平分四边ODBE 的面积,故②不正确;∵△DOB ≌△EOC ,∴BD =CE ,∴△BDE的周长=BD +DE +EB =CE +DE +EB =BC +DE ,∴当DE 最小时,△BDE 的周长取得最小值,当CE 越小时,DE 越接近于BC 长,当D ,E 分别是AB ,BC 边中点时,DE 取得最小,此时△BDE 的周长是6,故④正确.二、填空题:本大题共6小题,每小题4分,共24分.不需写出解答过程,请把最后结果填在题中横线上. 13.(2018·德州,13,4)计算23-+=. 13.1 解析:|-2+3|=|1|=1.14.(2018·德州,14,4)若12,x x 是一元二次方程2220x x +-=的两个实数根,1212x x x x ++=.14.解析:-3,解析:∵x 1,x 2是一元二次方程x 2+x -2=0的两个实数根,∴x 1+x 2=-1,x 1·x 2=-2, ∴1212x x x x ++=-1+(-2)=-3.15.(2018·德州,15,4)如图,OC 为∠AOB 的平分线,CM ⊥OB ,OC =5,OM =4,则点C 到射线OA 的距离为.15.3,解析:如图,过点C 作CN ⊥OA ,垂足为N , ∵OC 平分∠AOB ,CM ⊥OB ,∴CN =CM ,∵在Rt △COM 中,CM 3,∴CN =3,即点C 到OA 为3.16.(2018·德州,16,4)如图,在4×4的正方形方格中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则∠BAC 的正弦值是.16.5,解析:由勾股定理可得,AB 2=32+42=25,BC 2=12+22=5,AC 2=22+42=20, ∴AB 2=BC 2+AC 2,∴∠ACB =90°,∴sin ∠ACB =BC AB17.(2018·德州,17,4)对于实数a ,b 定义运算“◇”:a ◇b=,,.a b ab a b ≥⎪⎩<例如,4◇3,因为4>3,所以4◇35=.若x ,y 满足方程组48229x y x y -=⎧⎨+=⎩,则x ◇y =.17.60 解析:解方程组得:x=5y=12⎧⎨⎩,∵5<12,∴x ◇y =5×12=60.18.(2018·德州,18,4)如图,反比例函数3y x=与一次函数y =x -2在第三象限交于点A ,点B 的坐标是(-3,0),点P 是y 轴左侧的一点,若以A 、O 、B 、P 为顶点的四边形为平行四边形,则点P 的坐标为.18.(-4,-3),(-2,3),解析:解方程组3y=x y=x 2⎧⎪⎨⎪-⎩得:11x =3y =1⎧⎨⎩,22x =-1y =-3⎧⎨⎩, ∴A (-1,-3)如图,当点P 在y 轴左侧时,以A ,O ,B ,P 为顶点的四边形有两种情况,其中线段OP 1可视为线段AB 平移得到,∵点A (-1,-3)平移到点O (0,0),其“横坐标加1纵坐标加3”, ∴点B (-3,0)“横坐标加1纵坐标加3”得到点P 1(-2,3),同理可得,点P 2(-4,-3),∴符合条件的点P 坐标为:(-4,-3),(-2,3).三、解答题(本大题共7小题,满分78分,解答应写出文字说明、证明过程或演算步骤) 19.(2018·德州,19,8)先化简,再求值:22331(1)1211x x x x x x --÷-+-++-,其中x 是不等式组533(1),1319.22x x x x -+⎧⎪⎨--⎪⎩><的整数解.思路分析:先化简分式,注意把分式的第一部分除法变乘法进行计算,再进行分式的加减运算.求得不等式组的解集,得出其整数解,再代入化简后的分式中求值. 解答过程:23(1)(1)(1)3111111x x x x x x x x xx x x -+=⋅-+---+=---=-原式 解不等式组,得35x x ⎧⎨⎩><,∴不等式组的整数解为x =4. 把x =4代入,原式=13. 20.(2018·德州,20,10)某学校为了全校学生对电视节目的喜爱情况(新闻、体育、动画、娱乐、戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.请根据以上信息,解答下列问题: (1)这次被调查的学生共有多少人? (2)请将条形统计图补充完整;(3)若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?(4)该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).思路分析:(1)根据条形统计图中喜欢动画的人数为15人,扇形统计图中喜欢动画的占比30%,求出调查总人数;(2)用调查的总人数减去喜欢的其它电视节目的人数即可;(3)用调查中喜欢娱乐节目的占比,可以估计学校喜欢娱乐节目的总人数;(4)对甲、乙、丙、丁四名同学随机选取2名,用列表法得出所有可能的结果,再求出选中甲、乙两位同学的概率.解答过程:(1)15÷30%=50(人);(2)喜欢体育节目的人数:50-4-15-18-3=10(人),补充条形图,如图所示;(3)估计学校喜欢娱乐节目的总人数:1500×1850=540(人); (4)列表如下:所以,选中甲、乙两位同学的概率为:21 126.21.(2018·德州,21,10)如图,两座建筑物的水平距离BC为60m,从C点测得A点的仰角α为53°,从A点测得D点的俯角β为37°.求两座建筑物的高度(参考数据:sin37°≈35,cos37°≈45,tan37°≈34,sin53°≈4 5,cos53°≈35,tan53°≈43).思路分析:在Rt△ABC中,已知∠ACB=53°,BC=60,用正切函数可以求出物高AB;过点D作DE⊥AB,垂足为E,在Rt△AED中,已知∠ADE=∠β=37°,DE=BC=60,用正切函数可以求出AE的长,进而求出物高CD.解答过程:在Rt△ABC中,∵∠ACB=α=53°,BC=60,∴AB=BC·tanα=60×tan53°≈60×43=80;过点D作DE⊥AB,垂足为E,由平行线性质,得∠ADE=∠β=37°,易得,四边形BCDE是矩形,∴DE=BC=60,∴AE=BC·tanβ=60×tan37°≈60×34=45,∴CD=BE=AB-AE≈80-45=35(m).答:两座建筑物AB与CD的高度分别是80m,35m.22.(2018·德州,22,12)如图,AB是⊙O的直径,直线CD与⊙O相切于点C,且与AB的延长线交于点E,点C是BF的中点.(1)求证:AD ⊥CD ;(2)若∠CAD =30°,⊙O 的半径为3,一只蚂蚁从点B 出发,沿着BE -EC -CB 爬回至点B ,求蚂蚁爬过的路程( 3.14π≈ 1.73≈,结果保留一位小数).思路分析:(1)根据给出的条件,点C 是BF 的中点,则∠DAC =∠BAC ,只须证明∠DAC +∠DCA =90°即可,利用切线的性质,连接OC 得到∠DCO =90°,利用平行线可证;(2)蚂蚁走的线路的路程为:BE +EC +CB 的长,分别求出各段的长度即可.因为∠ECO =90°,半径OC =3,由∠CAD =30°可求出∠E =30°,∠COB =60°,进而求得BE 、EC 的长及CB 的长. 解答过程:(1)证明:连接OC , ∵点C 是BF 的中点,∴∠DAC =∠BAC . ∵直线CD 与⊙O 相切于点C ,∴∠OCD =90°. 又∵AO =CO ,∴∠OAC =∠ACO , ∴∠DAC =∠ACO , ∴AD ∥OC ,∴∠ADC =∠OCE =90°, ∴AD ⊥CD ;(2)∵∠CAD =30°,∴∠DAE =60°,∴∠COE =60°,∠E =30°. ∵OC =3,∴OE =6,∴EC OC =BE =6-3=3. ∴CB 的长为603180ππ⨯=,∴蚂蚁走的线路的路程为:BE +EC +CB 的长=3++π≈11.3.23.(2018·德州,23,12)为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系.(1)求年销售量y 与销售单价x 的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?思路分析:(1)额头待定系数法确定一次函数关系式;(2)由每台的利润×销量=总利润,列出方程,求出想获得10000万元的年利润减肥的销售单价. 解答过程:解:(1)因为该设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系. 设y =kx +b (k ≠0),把每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台两组对应值代入,得4060045550k b k b +=⎧⎨+=⎩,解得101000k b =-⎧⎨=⎩.∴该一次函数为:y =-10x +1000;(2) 因此设备的销售单价为x ,成本价为30万元,则每台的利润为(x -30)万元 由题意,得(x -30)(-10x +1000)=10000, 解得:1280,50x x ==.因为,此设备的销售单价不得高于70万元, 所以,x =50.答:该公司想获得10000万元的年利润,则该设备的销售单价应是50万元. 24.(2018·德州,24,12)再读教材: 宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美各国许多著名的建筑,为了取得最佳的视觉效果,都采用了黄金矩形的设计.下面,我们用宽为2的矩形纸片折叠黄金矩形.(提示:MN =2)第一步,在矩形纸片的一端,利用图①的方法折出一个正方形,然后把纸片展平. 第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平. 第三步,折出内侧矩形的对角线AB ,并把它折到图③中所示的AD 处.第四步,展平纸片,按照所得的D 点折出DE ,使DE ⊥ND ,则图④中就会出现黄金矩形.问题解决:(1)图③中AB=cm(保留根号);(2)如图③,判断四边形BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.实际操作:(4)结合图④,请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.思路分析:(1)连接AB,由折叠的性质,可得AC=2,在Rt△ABC中,利用勾股定理可求出AB的长度.(2)先证明四边形BADQ是平行四边形,再进而证明它是菱形.选择其中一个给出证明.(3)通过计算,观察图④客户哪个矩形的宽与长的比是,(4)的矩形BCDE中,已知CD=BE=5-1,添加宽,使矩形的宽与长的比是.解答过程:(1)由折叠知,四边形MNCB是正方形,∴BC=MN=2,AC=1,∴AB=(2)∵矩形纸片,∴∠BQA=∠QAD,由折叠,得∠BAQ=∠QAD,AB=AD,∴∠BQA=∠BAQ,∴BQ=AB,∴BQ=AD.∵BQ∥AD,∴四边形BADQ是平行四边形,∵AB=AD,∴四边形BADQ是菱形.(3)图④中的黄金矩形有矩形BCDE,矩形MNDE.矩形BCDE是黄金矩形,理由如下:∵AD=AB AN=AC=1,∴CD =AD -AC 1,又∵BC =2,∴12CD BC =, ∴矩形BCDE 是黄金矩形.(4)如图,在矩形BCDE 上添加线段GH ,使四边形GCDH 为正方形,则矩形BGHE 为所要作的黄金矩形.矩形较长的边GH 1,宽HE =325.(2018·德州,25,14)如图1,在平面直角坐标系中,直线y =x -1与抛物线2y x bx c =-++交于A ,B 两点,其中A (m ,0),B (4,n ),该抛物线与y 轴交于点C ,与x 轴交于另一点D .(1) 求m ,n 的值及该抛物线的解析式;(2) 如图2,若点P 为线段AD 上的一动点(不与A ,D 重合),分别以AP ,DP 为斜边,在直线AD 的同侧作等腰直角△APM 和等腰直角△DPN ,连接MN ,试确定△MPN 面积最大时P 点的坐标;(3) 如图3,连接BD ,CD ,在线段CD 上是否存在点Q ,使得以A ,D ,Q 为顶点的三角形与△ABD 相似,若存在,请直接写出点Q 的坐标,若不存在,请说明理由.思路分析:(1)将A (m ,0)、B (4,n )代入y =x -1可得m ,n ;再将A ,B 坐标代入y =-x 2-bx +c ,解方程组求出b ,c .(2)由△APM 和△APM 是等腰直角三角形可推得△MPN 是直角三角形;解方程-x 2+6x -5=0得到A ,D 的坐标;设AP =m ,用含m 的代数式表示Rt △MPN 的面积,运用二次函数的最值可求得P 点的坐标.(3)待定系数法求得y AB =x -1,y CD =x -5,可知直线AB ∥CD ,∠BAD =∠ADC ;若∠BDA =∠DAQ 时,△ABD ∽△DQA ,此时BD ∥QA ,运用坐标平移规律可得Q (2,-3);若∠ABD =∠DAQ 时,△ABD ∽△DAQ,此时AB AD=AD DQ,据此求得DQ的长度,设Q(q,q-5),根据(5-q)2+(q-5)2=DQ2列方程,解方程可得q值,进而求出Q(73,83-).解答过程:(1)把点A(m,0)、点B(4,n)代入y=x-1中,得m=1,n=3.∴A(1,0),B(4,3)∵y=-x2-bx+c过点A、点B,所以1b c=0 164b c=3 --+⎧⎨--+⎩解得b=-6c=5⎧⎨-⎩,∴y=-x2+6x-5.(3)如图2,∵△APM和△DPN为等腰直角三角形,∴∠APM=∠DPN=45°,∴∠MPN=90°,∴△MPN为直角三角形.令-x2+6x-5=0,解得121,5, x x==∴D(5,0),AD=4.设AP=m,则DP=4-m,∴PM,PN)m-,∴11) 22MPNS PM PN m =⋅=-=2211(2)1 44m m m--=--+.∴当m=2,即AP=2时,△MPN的面积最大,此时OP=3,∴P(3,0).(3)存在,点Q的坐标为(2,-3)或(78,33 -).。

相关文档
最新文档