数学课件直线与圆锥曲线的位置关系高考总复习

合集下载

高中数学第2轮总复习专题6第4课时直线与圆锥曲线的位置关系课件文.ppt

高中数学第2轮总复习专题6第4课时直线与圆锥曲线的位置关系课件文.ppt



x y
21 2t , 1 2t 2


y
x2 4

即x2 4y.因为t 0,1,所以x 2 1 2t 2, 2.
所以所求动点M 的轨迹方程为x2 4y( x 2, 2).
备选例题: 已知一条曲线C在y轴右边,C上每一点
到点F 1, 0的距离减去它到y轴距离的差都是1. 1求曲线C的方程; 2是否存在正数m,对于过点M m,0且与曲线C
B
(
x

2
y2
),
l的



x
ty
m.

x ty
y2
4x
m,

y2
4ty
4m
0,
16t2
16m
0, 于

y1 y1
y2
y2
4t 4m
.
又FA (x1 1,y1),FB (x2 1,y2 ),由FA FB 0,
得x1x2
x1
x2 1
y1 y2
0.又x
y2 , 4
所以 y12 y22 16
xE yE
2t .
2t 1
所 以 kDE
yE xE
yD xD
2t 1 2t 1 2t 2t 2
1 2t.
所 以 t 0,1, 所 以 kDE 1,1.
2因为DM t DE,
所以( x 2t 2,y 2t 1)
t 2t 2t 2,2t 1 2t 1
t 2, 4t 2 2t, 4t 2 2t .
1.(2011四川卷)在抛物线yx2 ax5(a0)上取横
坐标为x1 4,x2 2的两点,过这两点引一条割线 有平行于该割线的一条直线同时与抛物线和圆

高二数学圆锥曲线复习课PPT课件演示文稿

高二数学圆锥曲线复习课PPT课件演示文稿
第38页,共129页。
(2)设椭圆方程为 mx2+ny2=1(m>0,n>0 且 m≠n). ∵椭圆经过 P1、P2 点,将 P1,P2 两点坐标代入椭圆方程, 得63mm+ +n2n==1, 1. 解得 m=19,n=13. ∴所求椭圆方程为x92+y32=1.
b2 1
消元
一元二次方程
消y
消x
f (x) 0
g( y) 0
y
SABC
1 2
AB
•d
1 SABC 2 OC • y1 y2
B
c
O
x
A
第10页,共129页。
(3)直线与圆锥曲线有关弦的中点问题
解 题
思 路
直线与圆锥曲线联立消元得到一元二次方程
点差法
点的对称性

第11页,共129页。
5、焦点三角y形性质:
高二数学圆锥曲线复习课PPT 课件演示文稿
第1页,共129页。
(优质)高二数学圆
锥曲线复习课PPT课 件
第2页,共129页。
二、基础知识点梳理
1、圆锥曲线的定义
椭圆的定义:
双曲线的定义: 圆锥曲线的统一定义(第二定义) :
l
d . .M F
l d .M .
F
l d.M .
F
第3页,共129页。
2、圆锥曲线的标准方程
Image (2)(20191·新1课6标全国高考)在平面直角1坐6标系9xOy中,椭圆
C的中心为原点,焦点F1,F2在x轴上,离心率为 过F1的2直. 线l交C于A,B两点,且△ABF2的周长为16,那么C的方程2为____.
第33页,共129页。
【解析】(1)选C.不妨设E(-c,0),F(c,0),则

高考数学微专题4直线与圆锥曲线4.2直线与双曲线的位置关系 课件

高考数学微专题4直线与圆锥曲线4.2直线与双曲线的位置关系 课件

12345
内容索引
x1x2=k2-1 3,所以 AB 的中点 P 的坐标 xP=x1+2 x2=k22-k 3,yP=kxP-2=
k2-6 3,则 Pk22-k 3,k2-6 3.由圆的性质可知,圆心与弦中点连线的斜率垂
直于弦所在的直线,所以 kPG=kk22-2-6k33--0t =-1k,整理可得 t=k28-k 3(*),则
内容索引
【解析】 (1) 因为点 A(2,1)在双曲线 C:ax22-a2y-2 1=1(a>1)上, 所以a42-a2-1 1=1,解得 a2=2, 所以双曲线 C:x22-y2=1. 易知直线 l 的斜率存在,设直线 l:y=kx+m,P(x1,y1),Q(x2,y2),
y=kx+m, 联立x22-y2=1, 消去 y 并整理,得(1-2k2)x2-4mkx-2m2-2=0,
内容索引
由 Δ=16m2k2+4(2m2+2)(1-2k2)>0,得 m2+1-2k2>0, 所以 x1+x2=-2k42m-k1,x1x2=22mk22-+12, 所以由 kAP+kAQ=0,得yx22--12+yx11--12=0, 即(x1-2)(kx2+m-1)+(x2-2)(kx1+m-1)=0, 即 2kx1x2+(m-1-2k)(x1+x2)-4(m-1)=0, 所以 2k×22mk22-+12+(m-1-2k)-2k42m-k1-4(m-1)=0,
内容索引
同理可得 xQ=10+34
2,yQ=-4
2-5 3.
所以直线 PQ:x+y-53=0,PQ=136,
点 A 到直线 PQ 的距离 d=|2+12-35|=232,
故△PAQ
的面积为12×136×2 3 2=169

2015高考总复习数学(文)课件:12.5 直线与圆锥曲线的位置关系

2015高考总复习数学(文)课件:12.5 直线与圆锥曲线的位置关系

【方法与技巧】当直线(斜率为 k)与圆锥曲线交于点 A(x1, y1),B(x2,y2)时,则|AB|= 1+k · |x1-x2|=
2
1 1+k2· |y1-y2|,而
|x1-x2|= x1+x22-4x1x2,可根据直线方程与圆锥曲线方程联 立消元后得到的一元二次方程,利用根与系数的关系得到两根 之和、两根之积的代数式,然后再进行整体代入求解.
2
2x x y-1 即 kMN=- =-2y= , 2×2y x-2 即 x2+2y2-2x-2y=0. (3)设过点
1 1 P2,2的弦为
MN,点 P 为 MN 的中点,
设 M(x1,y1),N(x2,y2), x1 2 2 +y1=1, ⑤ 同样有 2 x2+y2 ⑥ 2=1. 2
∵|AM|=4<R,∴点 A(-2,0)在圆 M 内.
设动圆 C 的半径为 r,圆心为 C,
依题意得 r=|CA|,且|CM|=R-r,
即|CM|+|CA|=8>|AM|. ∴圆心 C 的轨迹是中心在原点,以 A,M 两点为焦点,长 轴长为 8 的椭圆. x2 y2 设其方程为a2+b2=1(a>b>0),
y=kx+m, 2 由x y2 -12=1, 4 消去 y 化简整理,得(3-k2)x2-2kmx-m2-12=0. 2km 设 E(x3,y3),F(x4,y4),则 x3+x4= 2, 3-k Δ2=(-2km)2+4(3-k2)(m2+12)>0. ② → +BE → =0,∴(x4-x2)+(x3-x1)=0. ∵DF 即 x1+x2=x3+x4.
【互动探究】 1.椭圆 x2+4y2=4 长轴上一个顶点为 A,以 A 为直角顶点 16 作一个内接于椭圆的等腰直角三角形,该三角形的面积是______. 25

高考数学一轮复习直线与圆锥曲线的位置关系课件理

高考数学一轮复习直线与圆锥曲线的位置关系课件理

4.椭圆 ax2+by2=1 与直线 y=1-x 交于 A、B 两点,若
过原点与线段 AB 中点的直线的倾斜角为 30°,则ab的值为( )
3
3
A. 4 B. 3
3 C. 2 D. 3
解析:设 AB 的中点为 M(x0,y0),A(x1,y1),B(x2, y2),
由点差法得yx11- -yx22=-abxy00=-1,
解析:方法 1:设以 Q 为中点的弦 AB 端点坐标为 A(x1, y1),B(x2,y2),则有 y12=8x1,y22=8x2,
两式相减,得(y1-y2)(y1+y2)=8(x1-x2). 又 x1+x2=8,y1+y2=2, 则 k=xy22--xy11=y1+8 y2=4,
∴所求直线 AB 的方程为 y-1=4(x-4), 即 4x-y-15=0. 方法 2:设弦 AB 所在的直线方程为 y=k(x-4)+1,
由yy= 2=k8xx-4+1, 消去 x 整理,得 ky2-8y-32k+8=0. 设 A(x1,y1),B(x2,y2),
由韦达定理得 y1+y2=8k. 又∵Q 是 AB 中点,∴y1+2 y2=1,
∴8k=2,∴k=4. ∴弦 AB 所在直线方程为 4x-y-15=0.
点评:有关弦中点轨迹、中点弦所在直线的方程,中点坐 标的问题,有时采用“平方差”法,可优化解题方法,简化运 算.
=2 5m+20.
(3)设线段 AB 中点坐标为(x,y),则 x=x1+2 x2=-2, y=y1+2 y2=2x1+2 x2=-4. ∴AB 中点坐标为(-2,-4).
题型三 圆锥曲线的中点弦问题 例 3 过点 Q(4,1)作抛物线 y2=8x 的弦 AB,恰被 Q 所平分, 求 AB 所在直线的方程.

高中数学总复习课件之直线与圆锥曲线的位置关系共55页

高中数学总复习课件之直线与圆锥曲线的位置关系共55页

• 若a≠0,可考虑一元二次方程的判别式Δ ,有:
• Δ>0
• Δ=0
• Δ<0
.
• 若a=0,则直线与圆锥曲线相交,且有一 个交点.若曲线为双曲线,则直线与双曲 线的渐近线平行;若曲线为抛物线,则直 线与抛物线的对称轴平行.
• 2.圆锥曲线的弦长问题设直线l与圆锥 曲线C相交于A,B两点,A(x1,y1), B(x2,y2A ),B 1 k 2x 1 x 2 1 k 1 2y 1 y 2 .
2
取值范围是02<a<2 或6 a>2 .
• (Ⅱ)由y=kx+1与双曲线3x2-4y2=12联立消 去y得(3-4k2)x2-8kx-16=0,
• 由题意知3-4k2≠0,即k≠± ,则 3 Δ=64k2+64(3-4k2)>0,得k2<1,2即-
1<k<1,
• 综上所得 k ( 1 , 3 ) ( 3 ,3 ) ( 3 ,1 ) .
2 22 2

(Ⅰ)解答直线与椭圆的位置关
系有两种,即判别式法与数形结合法.
• (Ⅱ)判断直线与双曲线的位置关系利
用判别式法时,注意对二次项系数的
讨论,二次项系数等于零实质是直线
与渐近线平行的情况.

变式练当习1k=
-1,0,时1,直线
y=k(x+1)与抛物线y2=4x恰有一个公共点.

由y=k(x+1)与y2=4x联立消去x,
• 则弦长

重点突破:直线与圆锥曲线的位置关

系 AB
例1
x2
(Ⅰy2)已a知2 A(-3,4),B(4,4),若线段
2
• 与椭圆

高考数学一轮总复习第九章平面解析几何第八节直线与圆锥曲线的位置关系课件

高考数学一轮总复习第九章平面解析几何第八节直线与圆锥曲线的位置关系课件


x=- ,分别过
2

F( ,0),
2
A,B 作准线的垂线,垂足为点 A',B',
过A作BB'的垂线,垂足为M,设|AA'|=|AF|=t,
∵|BF|=3|FA|,∴|BB'|=|BF|=3t,则|BM|=2t,|AB|=4t,
∴∠ABM=60°.
即直线l的倾斜角∠AFx=120°,可得直线l的斜率为
k=tan 120°= - 3 ,故选A.
考点二
弦长问题
典例突破
例2.(多选)(2023新高考Ⅱ,10)设O为坐标原点,直线 y=- 3(x-1) 过抛物线
C:y2=2px(p>0)的焦点,且与C交于M,N两点,l为C的准线,则(
A.p=2
B.|MN|=
8
3
C.以MN为直径的圆与l相切
D.△OMN为等腰三角形
21
22
(2 -1 )(2 +1 )
2
2
+1 =1, +2 =1,两式作差,得
+(y2-y1)(y2+y1)=0.因为
2
2
2
2 -1
0
x1+x2=2x0,y1+y2=2y0, - =kAB,所以 kAB=-2 .
2 1
0
(1)设弦中点为 M(x,y),由①式, 得

2=-2,所以
= 16 2 -4 × (1- 2 ) × (-10) > 0,
4
A(x1,y1),B(x2,y2),则 1 + 2 =
1 2 =
解得-
15
<k<-1.故选
3

高考二轮复习圆锥曲线专题(共88张PPT)

高考二轮复习圆锥曲线专题(共88张PPT)

F(1,0),
基础知识 题型分类 思想方法 练出高分
题型分类·深度剖析
题型一 圆锥曲线中的范围、最值问题
思维启迪 解析 探究提高
【例 1】 已知抛物线 C:y2=4x, 过点 A(-1,0)的直线交抛物线 C → =λAQ →. 于 P、Q 两点,设AP (1)若点 P 关于 x 轴的对称点为 M,求证:直线 MQ 经过抛物线 C 的焦点 F; 1 1 (2)若 λ∈3,2,求|PQ|的最 大值.
基础知识 题型分类 思想方法 练出高分
难点正本 疑点清源 1.直线和圆锥曲线问题解 法的一般规律
“ 联立方程求交点,根 与系数的关系求弦长, 根的分布找范围,曲线 定义不能忘”.
基础知识·自主学习
要点梳理
2
难点正本 疑点清源 1.直线和圆锥曲线问题解 法的一般规律
“ 联立方程求交点,根 与系数的关系求弦长, 根的分布找范围,曲线 定义不能忘”.
“ 联立方程求交点,根 与系数的关系求弦长, 根的分布找范围,曲线 定义不能忘”.
a.Δ > 0 时,直线和圆锥曲线相 交于不同两点; b.Δ = 0 时,直线和圆锥曲线相 切于一点; c.Δ < 0 时,直线和圆锥曲线没 有公共点.
基础知识
题型分类
思想方法
练出高分
基础知识·自主学习
要点梳理
2.直线与圆锥曲线相交时的弦长问题 (1)斜率为 k 的直线与圆锥曲线交于两点 P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|
1 10 1 当 λ+ λ = 3 ,即 λ=3时,|PQ|2 有最大值 4 7 . 3 112 ,|PQ|的最大值为 9
基础知识
题型分类
思想方法
练出高分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档