高考数学专题复习圆锥曲线(文)

合集下载

(全国通用版)高考数学二轮复习专题五解析几何第2讲圆锥曲线文-2022年学习资料

(全国通用版)高考数学二轮复习专题五解析几何第2讲圆锥曲线文-2022年学习资料
板块三-专题五解析几何-专题突破-核心考点-第2讲圆锥曲线
考情考向分析]-1.以选择题、填空题形式考查圆推曲线的方程、几何性质(特别-是离心率.-2以解答题形式考查直线与圆锥曲线的位置关系(弦长、中点等)
内容索引-热点分类突破-真题押题精练
热点分类突破(全国通用版)2019高考数学二轮复习专题五解析几何第2讲圆锥曲线文
2已知双曲线C:广-芳=1c0,>0的焦距为2c,直线/过点,0l日-与双曲线C的一条渐近线垂直,以双曲线C的右焦点为圆心,半焦距为-4V2-半径 圆与直线1交于M,N两点,若MN=3C,-则双曲线C的渐近-线方程为-A.y=±V2x-B=±V3x-C.y=±2x-D.y=±4x-解析-答案
热点三-直线与圆锥曲线-判断直线与圆锥曲线公共点的个数或求交点问题有两种常用方法-代数法:联立直线与圆锥曲线方程可得到一个关于x,y的方程组,-消 y或x得一元二次方程,此方程根的个数即为交点个数,方程组的-解即为交点坐标,-2几何法:画出直线与圆锥曲线的图象,根据图象判断公共点个数,
利32018衡水金卷调研已知椭圆+点=1a>b>0的左、右焦点分别-为F1,F2,过F1的直线交椭圆于A,B两点-1若直线AB与椭圆的长轴垂直,A =20,求椭圆的离心率;-解由题意可知,直线AB的方程为x=-C,-2b21-∴.AB1=-a=24,直线AB的斜率为1,AB1=a十,-求椭圆的短轴与长轴的比值.-解答
,2-例112018:乌鲁木齐诊断椭圆的离心率为2,F为椭圆的一个焦-点,若椭圆上存在一点与F关于直线y=x+4对称,则椭圆方程为-x2 y2-A 8+=1-B+的=1-+-1号+-1-解析-答案
22018龙岩质检已知以圆C:x-12+y2=4的圆心为焦点的抛物线C1-与圆C在第一象限交于A点,B点是抛物线C2:x2=8y上任意一点,BM与 直线y=-2垂直,垂足为M,则BMI-AB的最大值为-B.2-C.-1-D.8-解析-答案

高考数学圆锥曲线专题复习

高考数学圆锥曲线专题复习

圆锥曲线一、知识结构 1.方程的曲线在平面直角坐标系中,如果某曲线C 看作适合某种条件的点的集合或轨迹 上的点与一个二元方程fx,y=0的实数解建立了如下的关系:1曲线上的点的坐标都是这个方程的解;2以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线.点与曲线的关系 若曲线C 的方程是fx,y=0,则点P 0x 0,y 0在曲线C 上⇔fx 0,y=0;点P 0x 0,y 0不在曲线C 上⇔fx 0,y 0≠0两条曲线的交点 若曲线C 1,C 2的方程分别为f 1x,y=0,f 2x,y=0,则 f 1x 0,y 0=0 点P 0x 0,y 0是C 1,C 2的交点⇔f 2x 0,y 0 =0方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有 交点.2.圆圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: 1标准方程圆心在ca,b,半径为r 的圆方程是x-a 2+y-b 2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 22一般方程当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为-2D ,-2E,半径是24F-E D 22+.配方,将方程x 2+y 2+Dx+Ey+F=0化为x+2D 2+y+2E 2=44F -E D 22+当D 2+E 2-4F=0时,方程表示一个点-2D ,-2E; 当D 2+E 2-4F <0时,方程不表示任何图形.点与圆的位置关系 已知圆心Ca,b,半径为r,点M 的坐标为x 0,y 0,则 |MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +. 3直线和圆的位置关系①直线和圆有相交、相切、相离三种位置关系 直线与圆相交⇔有两个公共点 直线与圆相切⇔有一个公共点 直线与圆相离⇔没有公共点②直线和圆的位置关系的判定 i 判别式法ii 利用圆心Ca,b 到直线Ax+By+C=0的距离d=22C Bb Aa BA +++与半径r 的大小关系来判定.3.椭圆、双曲线和抛物线基本知识4.圆锥曲线的统一定义平面内的动点Px,y到一个定点Fc,0的距离与到不通过这个定点的一条定直线l的距离之比是一个常数ee>0,则动点的轨迹叫做圆锥曲线.其中定点Fc,0称为焦点,定直线l称为准线,正常数e称为离心率.当0<e<1时,轨迹为椭圆,当e=1时,轨迹为抛物线当e>1时,轨迹为双曲线5.坐标变换坐标变换在解析几何中,把坐标系的变换如改变坐标系原点的位置或坐标轴的方向叫做坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点的坐标与曲线的方程.坐标轴的平移坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫做坐标轴的平移,简称移轴.坐标轴的平移公式设平面内任意一点M,它在原坐标系xOy中的坐标是9x,y,在新坐标系x ′O′y′中的坐标是x′,y′.设新坐标系的原点O′在原坐标系xOy 中的坐标是h,k,则x=x′+h x′=x-h1 或2y=y′+k y′=y-k公式1或2叫做平移或移轴公式.中心或顶点在h,k的圆锥曲线方程见下表.方程焦点焦线对称轴椭圆22h)-(xa+22k)-(yb=1 ±c+h,k x=±ca2+hx=hy=k 22h)-(xb+22k)-(ya=1h,±c+k y=±ca2+kx=hy=k双曲线22h)-(xa-22k)-(yb=1 ±c+h,k=±ca2+kx=hy=k 22k)-(ya-22h)-(xb=1 h,±c+h y=±ca2+kx=hy=k抛物线y-k2=2px-h2p+h,k x=-2p+h y=ky-k2=-2px-h -2p+h,k x=2p+h y=kx-h2=2py-k h,2p+k y=-2p+k x=hx-h2=-2py-k h,-2p+k y=2p+k x=h二、知识点、能力点提示一曲线和方程,由已知条件列出曲线的方程,曲线的交点说明在求曲线方程之前必须建立坐标系,然后根据条件列出等式进行化简 .特别是在求出方程后要考虑化简的过程是否是同解变形,是否满足已知条件,只有这样求出的曲线方程才能准确无误.另外,要求会判断曲线间有无交点,会求曲线的交点坐标.三、考纲中对圆锥曲线的要求:考试内容:. 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程;. 双曲线及其标准方程.双曲线的简单几何性质;. 抛物线及其标准方程.抛物线的简单几何性质;考试要求:. 1掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程;. 2掌握双曲线的定义、标准方程和双曲线的简单几何性质;. 3掌握抛物线的定义、标准方程和抛物线的简单几何性质;. 4了解圆锥曲线的初步应用;四.对考试大纲的理解高考圆锥曲线试题一般有3题1个选择题, 1个填空题, 1个解答题, 共计22分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查以圆锥曲线的基本概念和性质为主, 难度在中等以下,一般较容易得分,解答题常作为数学高考中的压轴题,综合考查学生数形结合、等价转换、分类讨论、逻辑推理等诸方面的能力,重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 往往结合平面向量进行求解,在复习应充分重视;求圆锥曲线的方程复习要点求指定的圆锥曲线的方程是高考命题的重点,主要考查识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.定形——指的是二次曲线的焦点位置与对称轴的位置.定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx 2+ny 2=1m >0,n >0.定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小. 例题【例1】 双曲线2224b y x =1b ∈N 的两个焦点F 1、F 2,P 为双曲线上一点,|OP |<5,|PF 1|,|F 1F 2|,|PF 2|成等比数列,则b 2=_________.解:设F 1-c ,0、F 2c ,0、Px ,y ,则 |PF 1|2+|PF 2|2=2|PO |2+|F 1O |2<252+c 2, 即|PF 1|2+|PF 2|2<50+2c 2,又∵|PF 1|2+|PF 2|2=|PF 1|-|PF 2|2+2|PF 1|·|PF 2|, 依双曲线定义,有|PF 1|-|PF 2|=4, 依已知条件有|PF 1|·|PF 2|=|F 1F 2|2=4c 2 ∴16+8c 2<50+2c 2,∴c 2<317,又∵c 2=4+b 2<317,∴b 2<35,∴b 2=1.【例2】 已知圆C 1的方程为()()3201222=-+-y x ,椭圆C 2的方程为12222=+b y a x ()a b >>0,C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程;解:由,2,22,22222b c a a c e ====得设椭圆方程为.122222=+b y b x设).1,2().,().,(2211由圆心为y x B y x A 又,12,12222222221221=+=+b y b x b y b x两式相减,得.022222122221=-+-b y y b x x 又.1.2.421212121-=--=+=+x x yy y y x x 得即3+-=x y 将得代入,1232222=++-=b y b x x y由.3204)(222122121=-+=-=x x x x x x B A 得.3203722422=-⋅b 解得 .82=b 故所有椭圆方程.181622=+y x【例3】 过点1,0的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程. 解法一:由e =22=a c ,得21222=-a b a ,从而a 2=2b 2,c =b .设椭圆方程为x 2+2y 2=2b 2,Ax 1,y 1,Bx 2,y 2在椭圆上. 则x 12+2y 12=2b 2,x 22+2y 22=2b 2,两式相减得,x 12-x 22+2y 12-y 22=0,.)(221212121y y x x x x y y ++-=--设AB 中点为x 0,y 0,则k AB =-02y x , 又x 0,y 0在直线y =21x上,y 0=21x 0,于是-02y x =-1,k AB =-1,设l 的方程为y =-x +1.右焦点b ,0关于l 的对称点设为x由点1,1-b 在椭圆上,得1+21-b 2=2b 2,b 2=89,1692=a .∴所求椭圆C的方程为2291698y x + =1,l的方程为y =-x +1.解法二:由e =21,22222=-=a b a a c 得,从而a 2=2b 2,c =b .设椭圆C 的方程为x 2+2y 2=2b 2,l 的方程为y =kx -1, 将l 的方程代入C 的方程,得1+2k 2x 2-4k 2x +2k 2-2b 2=0, 则x 1+x 2=22214k k +,y 1+y 2=kx 1-1+kx 2-1=kx 1+x 2-2k =-2212k k +.直线l :y =21x 过AB 的中点2,22121y y x x ++,则2222122121k k k k +⋅=+-, 解得k =0,或k =-1.若k =0,则l 的方程为y =0,焦点Fc ,0关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k =0舍去,从而k =-1,直线l 的方程为y =-x -1,即y =-x +1,以下同解法一.解法3:设椭圆方程为)1()0(12222>>=+b a by ax直线l 不平行于y 轴,否则AB 中点在x 轴上与直线AB x y 过21=中点矛盾; 故可设直线)2()1(-=x k y l 的方程为)()(2211y x B y x A ,,设,22222212ba k a k x x +=+知:21221=+-x x k k ,212222222=+⋅-∴a k b a k k k ,2122=--∴ka b k k ,22=e 又122)(22222222-=+-=--=-=∴e a c a a b k ,x y l -=∴1的方程为直线,222b a =此时,02243)3(22=-+-b x x 化为方程,0)13(8)1(241622>-=--=∆b b33>∴b ,)4(22222b y x C =+的方程可写成:椭圆,2222b b a c =-=又,)0(,右焦点b F ∴,)(00y x l F ,的对称点关于直线设点,则b y x b x y b x y -=-⇒⎪⎪⎩⎪⎪⎨⎧+-==-11212100000,, 得:在椭圆上,代入,又点)4()11(b -22)1(21b b =-+,3343>=∴b ,1692=∴b , 892=a 所以所求的椭圆方程为:11698922=+y x 【例4】 如图,已知△P 1OP 2的面积为427,P 为线段P 1P 2的一个三等分点,求以直线OP 1、OP 2为渐近线且过点P 的离心率为213的双曲线方程.解:以O 为原点,∠P 1OP 2的角平分线为x 轴建立如图所示的直角坐标系. 设双曲线方程为2222by ax -=1a >0,b >0由e 2=2222)213()(1=+=a b a c ,得23=a b .∴两渐近线OP 1、OP 2方程分别为y =23x 和y =-23x设点P 1x 1, 23x 1,P 2x 2,-23x 2x 1>0,x 2>0,则由点P 分21P P 所成的比λ=21PP PP =2,得P 点坐标为22,322121x x x x -+,又点P 在双曲线222294ay ax -=1上, 所以222122219)2(9)2(a x x a x x --+=1,即x 1+2x 22-x 1-2x 22=9a 2,整理得8x 1x 2=9a 2 ①即x 1x 2= 29②由①、②得a 2=4,b 2=9 故双曲线方程为9422y x -=1.【例5】 过椭圆C :)0(12222>>=+b a b x a y 上一动点P 引圆O :x 2 +y 2 =b 2的两条切线P A 、P B ,A 、B 为切点,直线AB 与x 轴,y 轴分别交于M 、N 两点;1 已知P 点坐标为x 0,y 0 并且x 0y 0≠0,试求直线AB 方程;2 若椭圆的短轴长为8,并且1625||||2222=+ON b OM a ,求椭圆C 的方程;3 椭圆C 上是否存在点P,由P 向圆O 所引两条切线互相垂直若存在,请求出存在的条件;若不存在,请说明理由; 解:1设Ax 1,y 1,Bx 2, y 2切线P A :211b y y x x =+,P B :222b y y x x =+ ∵P 点在切线P A 、P B 上,∴202022101b y y x x b y y x x =+=+∴直线AB 的方程为)0(00200≠=+y x b y y x x2在直线AB 方程中,令y =0,则M 02x b ,0;令x =0,则N0,2y b∴1625)(||||22220220222222==+=+ba b x a y b a ON b OM a ①∵2b =8 ∴b =4 代入①得a 2 =25, b 2 =16 ∴椭圆C 方程:)0(1162522≠=+xy x y 注:不剔除xy ≠0,可不扣分3 假设存在点P x 0,y 0满足P A ⊥P B ,连接O A 、O B 由|P A |=|P B |知,四边形P A O B 为正方形,|OP|=2|O A | ∴220202b y x =+ ① 又∵P 点在椭圆C 上 ∴22202202b a y b x a =+ ②由①②知x2222202222220,)2(b a b a y b a b a b -=--=∵a >b >0 ∴a 2-b 2>01当a 2-2b 2>0,即a >2b 时,椭圆C 上存在点,由P 点向圆所引两切线互相垂直; 2当a 2-2b 2<0,即b <b 时,椭圆C 上不存在满足条件的P 点【例6】 已知椭圆C 的焦点是F 1-3,0、F 23,0,点F 1到相应的准线的距离为33,过F 2点且倾斜角为锐角的直线l 与椭圆C 交于A 、B 两点,使得|F 2B|=3|F 2A|.1求椭圆C 的方程;2求直线l 的方程. 解:1依题意,椭圆中心为O0,0,3=c点F 1到相应准线的距离为1333,322=⨯=∴=b cb, a 2=b 2+c 2=1+3=4∴所求椭圆方程为1422=+y x2设椭圆的右准线l '与l 交于点P,作AM ⊥l ',AN⊥l ',垂足分别为M 、N. 由椭圆第二定义, 得||||||||22AM e AF e AM AF =⇒=同理|BF 2|=e|BN| 由Rt △PAM ~Rt △PBN,得||2||2||21||2AM e A F AB PA ===…9分 l ePA AM PAM ⇒=⨯===∠∴33232121||||cos 的斜率2tan =∠=PAM k .∴直线l 的方程062)3(2=---=y x x y 即【例7】 已知点B -1,0,C1,0,P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅1求点P 的轨迹C 对应的方程;x2已知点Am,2在曲线C 上,过点A 作曲线C 的两条弦AD 和AE,且AD ⊥AE,判断:直线DE 是否过定点试证明你的结论.3已知点Am,2在曲线C 上,过点A 作曲线C 的两条弦AD,AE,且AD,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:1设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入【例8】 已知曲线332)0,0(12222=>>=-e b a by ax 的离心率,直线l 过A a ,0、B0,-b 两点,原点O 到l 的距离是.23 Ⅰ求双曲线的方程;Ⅱ过点B 作直线m 交双曲线于M 、N 两点,若23-=⋅ON OM ,求直线m 的方程. 解:Ⅰ依题意,,0,1=--=-+ab ay bx byax l 即方程 由原点O 到l 的距离为23,得2322==+c ab ba ab 又332==ac e 3,1==∴a b故所求双曲线方程为1322=-y xⅡ显然直线m 不与x 轴垂直,设m 方程为y =k x -1,则点M 、N 坐标11,y x 、22,y x 是方程组 ⎪⎩⎪⎨⎧=--=13122y x kx y 的解 消去y ,得066)31(22=-+-kx x k ① 依设,,0312≠-k 由根与系数关系,知136,136221221-=-=+k x x k k x x =1)()1(21212++-+x x k x x k =113613)1(62222+---+k k k k =11362+-k23-=⋅ON OM ∴11362+-k =-23,k=±21 当k=±21时,方程①有两个不等的实数根 故直线l 方程为121,121--=-=x y x y 或【例9】 已知动点P 与双曲线13222=-y x 的两个焦点1F 、2F 的距离之和为定值,且21cos PF F ∠的最小值为91-.1求动点P 的轨迹方程;2若已知)3,0(D ,M 、N 在动点P 的轨迹上且DN DM λ=,求实数λ的取值范围. 解:1由已知可得: 5=c ,912)2(2222-=-+a c a a ∴ 4,92222=-==c a b a∴ 所求的椭圆方程为 14922=+y x . 2方法一:由题知点D 、M 、N 共线,设为直线m,当直线m 的斜率存在时,设为k,则直线m 的方程为 y = k x +3 代入前面的椭圆方程得 4+9k 2 x 2 +54 k +45 = 0 ① 由判别式 045)94(4)54(22≥⨯+⨯-=∆k k ,得952≥k . 再设M x 1 , y 1 , N x 2 , y 2,则一方面有))3(,()3,()3,(222211-=-==-=y x y x DN y x DM λλλλ,得另一方面有 2219454kk x x +-=+,2219445k x x += ②将21x x λ=代入②式并消去 x 2可得94)1(532422+=+k λλ,由前面知, 536402≤<k ∴ 581)1(532492≤+<λλ,解得 551<<λ.又当直线m 的斜率不存在时,不难验证:551==λλ或, 所以 551≤≤λ为所求;方法二:同上得设点M 3cos α,2sin α,N 3cos β,2sin β 则有⎩⎨⎧-=-=)3sin 2(3sin 2cos cos βλαβλα由上式消去α并整理得)(1251813sin 22λλλλβ-+-=, 由于1sin 1≤≤-β∴ 1)(1251813122≤-+-≤-λλλλ, 解得551≤≤λ为所求. 方法三:设法求出椭圆上的点到点D 的距离的最大值为5,最小值为1. 进而推得λ的取值范围为551≤≤λ;求圆锥曲线的方程练习一、选择题1.已知直线x +2y -3=0与圆x 2+y 2+x -6y +m =0相交于P 、Q 两点,O 为坐标原点,若OP ⊥OQ ,则m 等于B.-3D.-12.中心在原点,焦点在坐标为0,±52的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为二、填空题3.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_________.4.已知圆过点P 4,-2、Q -1,3两点,且在y 轴上截得的线段长为43,则该圆的方程为_________.三、解答题5.已知椭圆的中心在坐标原点,焦点在x 轴上,它的一个焦点为F ,M 是椭圆上的任意点,|MF |的最大值和最小值的几何平均数为2,椭圆上存在着以y =x 为轴的对称点M 1和M 2,且|M 1M 2|=3104,试求椭圆的方程.6.某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.7.已知圆C 1的方程为x -22+y -12=320,椭圆C 2的方程为2222by ax +=1a >b >0,C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程.参考答案一、1.解析:将直线方程变为x =3-2y ,代入圆的方程x 2+y 2+x -6y +m =0, 得3-2y 2+y 2+3-2y +m =0.整理得5y 2-20y +12+m =0,设Px 1,y 1、Qx 2,y 2 则y 1y 2=512m +,y 1+y 2=4.又∵P 、Q 在直线x =3-2y 上, ∴x 1x 2=3-2y 13-2y 2=4y 1y 2-6y 1+y 2+9 故y 1y 2+x 1x 2=5y 1y 2-6y 1+y 2+9=m -3=0,故m =3. 答案:A2.解析:由题意,可设椭圆方程为:2222b x a y + =1,且a 2=50+b 2,即方程为222250b x b y ++=1.将直线3x -y -2=0代入,整理成关于x 的二次方程. 由x 1+x 2=1可求得b 2=25,a 2=75. 答案:C二、3.解析:所求椭圆的焦点为F 1-1,0,F 21,0,2a =|PF 1|+|PF 2|.欲使2a 最小,只需在直线l 上找一点P .使|PF 1|+|PF 2|最小,利用对称性可解.答案:4522y x + =14.解析:设所求圆的方程为x -a 2+y -b 2=r 2则有⎪⎪⎩⎪⎪⎨⎧=+=-+--=--+-222222222)32(||)3()1()2()4(ra rb a r b a ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⇒2745130122r b a r b a 或由此可写所求圆的方程.答案:x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0三、5.解:|MF |ma x =a +c ,|MF |min =a -c ,则a +ca -c =a 2-c 2=b 2, ∴b 2=4,设椭圆方程为14222=+y a x ① 设过M 1和M 2的直线方程为y =-x +m② 将②代入①得:4+a 2x 2-2a 2mx +a 2m 2-4a 2=0③设M 1x 1,y 1、M 2x 2,y 2,M 1M 2的中点为x 0,y 0, 则x 0=21x 1+x 2=224a m a +,y 0=-x 0+m =244a m +.代入y =x ,得222444amam a +=+,由于a 2>4,∴m =0,∴由③知x 1+x 2=0,x 1x 2=-2244aa +,又|M 1M 2|=31044)(221221=-+x x x x ,代入x 1+x 2,x 1x 2可解a 2=5,故所求椭圆方程为:4522y x + =1.6.解:以拱顶为原点,水平线为x 轴,建立坐标系,如图,由题意知,|AB |=20,|OM |=4,A 、B 坐标分别为-10,-4、10,-4 设抛物线方程为x 2=-2py ,将A 点坐标代入,得100=-2p ×-4,解得p =, 于是抛物线方程为x 2=-25y .由题意知E 点坐标为2,-4,E ′点横坐标也为2,将2代入得y =-,从而|EE ′|=---4=.故最长支柱长应为米.7.解:由e =22,可设椭圆方程为22222b y b x +=1,又设Ax 1,y 1、Bx 2,y 2,则x 1+x 2=4,y 1+y 2=2, 又2222222212212,12by bx by bx +=+=1,两式相减,得22221222212by y bx x -+-=0,即x 1+x 2x 1-x 2+2y 1+y 2y 1-y 2=0. 化简得2121x x y y --=-1,故直线AB 的方程为y =-x +3, 代入椭圆方程得3x 2-12x +18-2b 2=0. 有Δ=24b 2-72>0,又|AB |=3204)(221221=-+x x x x ,得3209722422=-⋅b ,解得b 2=8.故所求椭圆方程为81622y x +=1.直线与圆锥曲线复习要点直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长即应用弦长公式;涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍. 例题【例1】 已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程.解:设椭圆方程为mx 2+ny 2=1m >0,n >0,Px 1,y 1,Qx 2,y 2 由⎪⎩⎪⎨⎧=++=1122ny mx x y 得m +nx 2+2nx +n -1=0,Δ=4n 2-4m +nn -1>0,即m +n -mn >0,由OP ⊥OQ ,所以x 1x 2+y 1y 2=0,即2x 1x 2+x 1+x 2+1=0, ∴nm nn m n --+-2)1(2+1=0,∴m +n =2①又2)210()(4=+-+nm mn n m 2, 将m +n =2,代入得m ·n =43②由①、②式得m =21,n =23或m =23,n =21 故椭圆方程为22x +23y 2=1或23x 2+21y 2=1.【例2】 如图所示,抛物线y 2=4x 的顶点为O ,点A 的坐标为5,0,倾斜角为4π的直线l 与线段OA 相交不经过点O 或点A 且交抛物线于M 、N 两点,求△AMN 面积最大时直线l 的方程,并求△AMN 的最大面积.解:由题意,可设l 的方程为y =x +m ,-5<m <0. 由方程组⎪⎩⎪⎨⎧=+=xy mx y 42,消去y ,得x 2+2m -4x +m 2=0……………①∵直线l 与抛物线有两个不同交点M 、N ,∴方程①的判别式Δ=2m -42-4m 2=161-m >0, 解得m <1,又-5<m <0,∴m 的范围为-5,0设Mx 1,y 1,Nx 2,y 2则x 1+x 2=4-2m ,x 1·x 2=m 2, ∴|MN |=4)1(2m -. 点A 到直线l 的距离为d =25m +.∴S △=25+m m -1,从而S △2=41-m 5+m 2 =22-2m ·5+m 5+m ≤235522mm m ++++-3=128.∴S △≤82,当且仅当2-2m =5+m ,即m =-1时取等号. 故直线l 的方程为y =x -1,△AMN 的最大面积为82.【例3】 已知双曲线C :2x 2-y 2=2与点P 1,2;1求过P 1,2点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点;2若Q 1,1,试判断以Q 为中点的弦是否存在.解:1当直线l 的斜率不存在时,l 的方程为x =1, 与曲线C 有一个交点.当l 的斜率存在时,设直线l 的方程为y -2=kx -1, 代入C 的方程,并整理得2-k 2x 2+2k 2-2kx -k 2+4k -6=0………………ⅰ当2-k 2=0,即k =±2时,方程有一个根,l 与C 有一个交点 ⅱ当2-k 2≠0,即k ≠±2时Δ=2k 2-2k 2-42-k 2-k 2+4k -6=163-2k①当Δ=0,即3-2k =0,k =23时,方程有一个实根,l 与C 有一个交点.②当Δ>0,即k <23,又k ≠±2,故当k <-2或-2<k <2或2<k <23时,方程有两不等实根,l 与C 有两个交点.③当Δ<0,即k >23时,方程无解,l 与C 无交点.综上知:当k =±2,或k =23,或k 不存在时,l 与C 只有一个交点;当2<k <23,或-2<k <2,或k <-2时,l 与C 有两个交点;当k >23时,l 与C 没有交点.2假设以Q 为中点的弦存在,设为AB ,且Ax 1,y 1,Bx 2,y 2,则2x 12-y 12=2,2x 22-y 22=2两式相减得:2x 1-x 2x 1+x 2=y 1-y 2y 1+y 2又∵x 1+x 2=2,y 1+y 2=2 ∴2x 1-x 2=y 1-y 1 即k AB =2121x x y y --=2但渐近线斜率为±2,结合图形知直线AB 与C 无交点,所以假设不正确,即以Q 为中点的弦不存在.【例4】 如图,已知某椭圆的焦点是F 1-4,0、F 24,0,过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10,椭圆上不同的两点Ax 1,y 1,Cx 2,y 2满足条件:|F 2A |、|F 2B |数列.1求该弦椭圆的方程; 2求弦AC 中点的横坐标;3设弦AC 的垂直平分线的方程为y =kx 求m 的取值范围.解:1由椭圆定义及条件知,2a =|F 1B |+|F 2B |=10,得a =5,又c =4,所以b =22c a -=3.故椭圆方程为92522y x +=1.2由点B 4,y B 在椭圆上,得|F 2B |=|y B |=59.因为椭圆右准线方程为x =425,离心率为54,根据椭圆定义,有|F 2A |=54425-x 1,|F 2C |=54425-x 2,由|F 2A |、|F 2B |、|F 2C |成等差数列,得54425-x 1+54425-x 2=2×59,由此得出:x 1+x 2=8.设弦AC 的中点为Px 0,y 0,则x 0=221x x +=4.3解法一:由Ax 1,y 1,Cx 2,y 2在椭圆上.得⎪⎩⎪⎨⎧⨯=+⨯=+25925925925922222121y x y x①-②得9x 12-x 22+25y 12-y 22=0, 即9×)()2(25)2(21212121x x y y y y x x --⋅+++=0x 1≠x 2 将kx x y y y y y x x x 1,2,422121021021-=--=+==+ k ≠0代入上式,得9×4+25y 0-k1=0k ≠0即k =3625y 0当k =0时也成立.由点P 4,y 0在弦AC 的垂直平分线上,得y 0=4k +m , 所以m =y 0-4k =y 0-925y 0=-916y 0.由点P 4,y 0在线段BB ′B ′与B 关于x 轴对称的内部, 得-59<y 0<59,所以-516<m <516.解法二:因为弦AC 的中点为P 4,y 0,所以直线AC 的方程为y -y 0=-k1x -4k ≠0③将③代入椭圆方程92522y x +=1,得9k 2+25x 2-50ky 0+4x +25ky 0+42-25×9k 2=0 所以x 1+x 2=259)4(5020++k k =8,解得k =3625y 0.当k =0时也成立①以下同解法一.【例5】 已知双曲线G 的中心在原点,它的渐近线与圆2210200x y x +-+=相切.过点()4,0P -作斜率为14的直线l ,使得l 和G 交于,A B 两点,和y 轴交于点C ,并且点P 在线段AB 上,又满足2PA PB PC ⋅=. 1求双曲线G 的渐近线的方程; 2求双曲线G 的方程;3椭圆S 的中心在原点,它的短轴是G 的实轴.如果S 中垂直于l 的平行弦的中点的轨迹恰好是G 的渐近线截在S 内的部分,求椭圆S 的方程.解:1设双曲线G 的渐近线的方程为:y kx =, 则由渐近线与圆2210200x y x +-+==所以,12k =±.双曲线G 的渐近线的方程为:12y x =±. 2由1可设双曲线G 的方程为:224x y m -=.把直线l 的方程()144y x =+代入双曲线方程,整理得2381640x x m ---=. 则8164, 33A B A B mx x x x ++==-∵ 2PA PB PC ⋅=,,,,P A B C 共线且P 在线段AB 上, ∴ ()()()2P A B P P C x x x x x x --=-,即:()()4416B A x x +--=,整理得:()4320A B A B x x x x +++= 将代入上式可解得:28m =.所以,双曲线的方程为221287x y -=. 3由题可设椭圆S的方程为:(222128x y a a+=>.下面我们来求出S 中垂直于l 的平行弦中点的轨迹.设弦的两个端点分别为()()1122,,,M x y N x y ,MN 的中点为()00,P x y ,则2211222222128128x y a x y a ⎧+=⎪⎪⎨⎪+=⎪⎩. 两式作差得:()()()()121212122028x x x x y y y y a-+-++=由于12124y y x x -=--,1201202,2x x x y y y +=+= 所以,0024028x y a -=, 所以,垂直于l 的平行弦中点的轨迹为直线24028x ya-=截在椭圆S 内的部分. 又由题,这个轨迹恰好是G 的渐近线截在S 内的部分,所以,211122a =.所以,256a =,椭圆S 的方程为:2212856x y +=. 点评:解决直线与圆锥曲线的问题时,把直线投影到坐标轴上也即化线段的关系为横坐标或纵坐标之间的关系是常用的简化问题的手段;有关弦中点的问题,常常用到“设而不求”的方法;判别式和韦达定理是解决直线与圆锥曲线问题的常用工具.【例6】 设抛物线过定点()1,0A -,且以直线1x =为准线.1求抛物线顶点的轨迹C 的方程;2若直线l 与轨迹C 交于不同的两点,M N ,且线段MN 恰被直线12x =-平分,设弦MN 的垂直平分线的方程为y kx m =+,试求m 的取值范围.解:1设抛物线的顶点为(),G x y ,则其焦点为()21,F x y -.由抛物线的定义可知:12AF A x ==点到直线的距离=.所以2=.所以,抛物线顶点G 的轨迹C 的方程为:2214y x += ()1x ≠.2因为m 是弦MN 的垂直平分线与y 轴交点的纵坐标,由MN 所唯一确定.所以,要求m 的取值范围,还应该从直线l 与轨迹C 相交入手.显然,直线l 与坐标轴不可能平行,所以,设直线l 的方程为1:l y x b k=-+,代入椭圆方程得:由于l 与轨迹C 交于不同的两点,M N ,所以,()22222441440b k b k k ⎛⎫+∆=--> ⎪⎝⎭,即:()222410 0k k b k -+>≠.又线段MN 恰被直线12x =-平分,所以,2212241M N bk x x k ⎛⎫+==⨯- ⎪+⎝⎭.所以,2412k bk +=-.代入可解得:() 022k k -<<≠. 下面,只需找到m 与k 的关系,即可求出m 的取值范围.由于y kx m =+为弦MN 的垂直平分线,故可考虑弦MN 的中点01,2P y ⎛⎫- ⎪⎝⎭.在1:l y x b k=-+中,令12x =-,可解得:2011412222k y b k k k k +=+=-=-. 将点1,22P k ⎛⎫-- ⎪⎝⎭代入y kx m =+,可得:32k m =-.所以,0m m <<≠. 从以上解题过程来看,求m 的取值范围,主要有两个关键步骤:一是寻求m 与其它参数之间的关系,二是构造一个有关参量的不等式.从这两点出发,我们可以得到下面的另一种解法:解法二.设弦MN 的中点为01,2P y ⎛⎫- ⎪⎝⎭,则由点,M N 为椭圆上的点,可知:22224444M M N N x y x y ⎧+=⎪⎨+=⎪⎩. 两式相减得:()()()()40M N M N M N M N x x x x y y y y -++-+= 又由于01121, 2, 2M N M N M N M N y y x x y y y x x k -⎛⎫+=⨯-=-+=- ⎪-⎝⎭=,代入上式得:02y k =-.又点01,2P y ⎛⎫- ⎪⎝⎭在弦MN 的垂直平分线上,所以,012y k m =-+. 所以,001324m y k y =+=. 由点01,2P y ⎛⎫- ⎪⎝⎭在线段BB ’上B ’、B 为直线12x =-与椭圆的交点,如图,所以,'0B B y y y <<.也即:0y <<所以,3333044m m -<<≠且 点评:解决直线和圆锥曲线的位置关系问题时,对于消元后的一元二次方程,必须讨论二次项系数和判别式,有时借助图形的几何性质更为方便.涉及弦中点问题,利用韦达定理或运用平方差法时设而不求,必须以直线与圆锥曲线相交为前提,否则不宜用此法.从构造不等式的角度来说,“将直线l 的方程与椭圆方程联立所得判别式大于0”与“弦MN 的中点01,2P y ⎛⎫- ⎪⎝⎭在椭圆内”是等价的.【例7】 设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线与抛物线交于A 、B 两点.又M 是其准线上一点.试证:直线MA 、MF 、MB 的斜率成等差数列.证明 依题意直线MA 、MB 、MF 的斜率显然存在,并分别设为1k ,2k ,3k 点A 、B 、M 的坐标分别为A 1x ,1y ,B 2x ,2y ,M 2p -,m由“AB 过点F 2p ,0”得 AB l :2p ty x +=将上式代入抛物线px y 22=中得:0222=--p pty y可知221p y y -=⋅又依“1212px y =及2222px y =”可知 因此22221121p x my p x m y k k +-++-=+而p m p p m k -=---=)2(203故3212k k k =+即直线MA 、MF 、MB 的斜率成等差数列.【例8】 已知a =x,0,b =1,y )3()3(b a b a -⊥+1求点Px,y 的轨迹C 的方程;2若直线l :y=kx+mkm ≠0与曲线C 交于A 、B 两端,D0,-1,且有|AD|=|BD|,试求m 的取值范围;解:1)3,3(),1(3)0,(y x y x a +=+=+∵((a a -⊥+∴((a a -⋅+=0∴0)3(3)3)(3(=-⋅+-+y y x x 得1322=-y x∴P 点的轨迹方程为1322=-y x2考虑方程组⎪⎩⎪⎨⎧=-+=1322y x m kx y 消去y,得1-3k 2x 2-6kmx -3m 2-3=0 显然1-3k 2≠0 △=6km 2-4-3m 2-3=12m 2+1-3k 2>0设x 1,x 2为方程的两根,则221316kkmx x -=+ 故AB 中点M 的坐标为2313k km -,231k m-∴线段AB 的垂直平分线方程为:)313)(1(3122k kmx k k m y ---=--将D0,-1坐标代入,化简得:4m=3k 2-1故m 、k 满足⎪⎩⎪⎨⎧-=>-+134031222k m k m ,消去k 2得:m 2-4m>0 解得:m<0或m>4又∵4m=3k 2-1>-1 ∴m>-41 故m ),4()0,41(+∞⋃-∈.直线与圆锥曲线练习一、选择题1.斜率为1的直线l 与椭圆42x +y 2=1相交于A 、B 两点,则|AB |的最大值为B.554C.5104D.51082.抛物线y =ax 2与直线y =kx +bk ≠0交于A 、B 两点,且此两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则恒有=x 1+x 2=x 1x 3+x 2x 3 +x 2+x 3=0+x 2x 3+x 3x 1=0二、填空题3.已知两点M 1,45、N -4,-45,给出下列曲线方程:①4x +2y -1=0,②x 2+y 2=3,③22x +y 2=1,④22x -y 2=1,在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是_________.4.正方形ABCD 的边AB 在直线y =x +4上,C 、D 两点在抛物线y 2=x 上,则正方形ABCD 的面积为_________.5.在抛物线y 2=16x 内,通过点2,1且在此点被平分的弦所在直线的方程是_________.三、解答题6.已知抛物线y 2=2pxp >0,过动点Ma ,0且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,且|AB |≤2p .1求a 的取值范围.2若线段AB 的垂直平分线交x求△NAB 面积的最大值.7.已知中心在原点,顶点A 1、A 2在x e =321的双曲线过点P 6,6.1求双曲线方程.2动直线l 经过△A 1PA 2的重心G ,与双曲线交于不同的两点M 、N ,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.8.已知双曲线C 的两条渐近线都过原点,且都以点A 2,0为圆心,1为半径的圆相切,双曲线的一个顶点A 1与A 点关于直线y =x 对称.1求双曲线C 的方程.2设直线l 过点A ,斜率为k ,当0<k <1时,双曲线C 的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时B 点的坐标.直线与圆锥曲线参考答案一、1.解析:弦长|AB |=55422t -⋅⋅≤5104.答案:C2.解析:解方程组⎪⎩⎪⎨⎧+==bkx y ax y 2,得ax 2-kx -b =0,可知x 1+x 2=ak ,x 1x 2=-ab ,x 3=-kb ,代入验证即可.答案:B二、3.解析:点P 在线段MN 的垂直平分线上,判断MN 的垂直平分线于所给曲线是否存在交点.答案:②③④4.解析:设C 、D 所在直线方程为y =x +b ,代入y 2=x ,利用弦长公式可求出|CD |的长,利用|CD |的长等于两平行直线y =x +4与y =x +b 间的距离,求出b 的值,再代入求出|CD |的长.答案:18或505.解析:设所求直线与y 2=16x 相交于点A 、B ,且Ax 1,y 1,Bx 2,y 2,代入抛物线方程得y 12=16x 1,y 22=16x 2,两式相减得,y 1+y 2y 1-y 2=16x 1-x 2.即⇒+=--21212116y y x x y y k AB =8. 故所求直线方程为y =8x -15. 答案:8x -y -15=0三、6.解:1设直线l 的方程为:y =x -a ,代入抛物线方程得x -a 2=2px ,即x 2-2a +px +a 2=0∴|AB |=224)(42a p a -+⋅≤2p .∴4ap +2p 2≤p 2,即4ap ≤-p 2又∵p >0,∴a ≤-4p .2设Ax 1,y 1、Bx 2,y 2,AB 的中点 Cx ,y , 由1知,y 1=x 1-a ,y 2=x 2-a ,x 1+x 2=2a +2p , 则有x =222,2212121ax x y y y p a x x -+=+=+=+=p .∴线段AB 的垂直平分线的方程为y -p =-x -a -p ,从而N 点坐标为a +2p ,0点N 到AB 的距离为p a p a 22|2|=-+从而S △NAB =2222224)(4221p ap p p a p a +=⋅-+⋅⋅当a 有最大值-4p 时,S 有最大值为2p 2.7.解:1如图,设双曲线方程为2222b y a x -=1.由已知得321,16622222222=+==-ab a e b a ,解得a 2=9,b 2=12.所以所求双曲线方程为12922y x -=1.2P 、A 1、A 2的坐标依次为6,6、3,0、-3,0, ∴其重心G 的坐标为2,2假设存在直线l ,使G 2,2平分线段MN ,设Mx 1,y 1,Nx 2,y 2.则有34912441089121089122121212122222121==--⇒⎪⎪⎩⎪⎪⎨⎧=+=+=-=-x x y y y y x x y x y x ,∴k l =34∴l 的方程为y =34x -2+2,由⎪⎩⎪⎨⎧-==-)2(3410891222x y y x ,消去y ,整理得x 2-4x +28=0.∵Δ=16-4×28<0,∴所求直线l 不存在. 8.解:1设双曲线的渐近线为y =kx ,由d =1|2|2+k k =1,解得k =±1.即渐近线为y =±x ,又点A 关于y =x 对称点的坐标为0,2. ∴a =2=b ,所求双曲线C 的方程为x 2-y 2=2.2设直线l :y =kx -20<k <1),依题意B 点在平行的直线l ′上,且l 与l ′间的距离为2.设直线l ′:y =kx +m ,应有21|2|2=++k m k ,化简得m 2+22k m=2. ②把l ′代入双曲线方程得k 2-1x 2+2mkx +m 2-2=0, 由Δ=4m 2k 2-4k 2-1m 2-2=0. 可得m 2+2k 2=2③②、③两式相减得k =2m ,代入③得m 2=52,解设m =510,k =552,此时x =2212=--k mk ,y =10.故B 22,10.。

2011-2017新课标高考数学圆锥曲线分类汇编(文)

2011-2017新课标高考数学圆锥曲线分类汇编(文)

2011-2017新课标(文科)圆锥曲线分类汇编一、选择填空[2011新课标]4.椭圆的离心率为〔 D 〕A.B.CD[解析]cea===2228111162,be ea=-=-=∴=,故选D.[2011新课标]9.已知直线l过抛物线C的焦点,且与C的对称轴垂直. l与C交于A, B两点,|AB|=12,P为C的准线上一点,则ABP的面积为〔 C 〕A.18B.24C.36D.48[解析]易知2P=12,即AB=12,三角形的高是P=6,所以面积为36,故选C.[2012新课标]4.设F1、F2是椭圆E:22221x ya b+=(a>b>0)的左、右焦点,P为直线32ax=上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为〔C〕A.12B.23C.34D.45[解析]∵△F2PF1是底角为30º的等腰三角形,260PF A∴∠=︒,212||||2PF F F c==,∴2||AF=c,322c a∴=,34e∴=,故选C.[2012新课标]10.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,||AB=C的实轴长为〔〕A..4D.8[解析]由题设知抛物线的准线为:4x=,设等轴双曲线方程为:222x y a-=,将4x=代入等轴双曲线方程解得y=∵||AB=∴a=2,∴C的实轴长为4,故选C.[2013新课标1]4. 已知双曲线C:2222=1x ya b-(a>0,b>0),则C的渐近线方程为( )A.y=±14x B.y=±13x C.y=±12x D.y=±x[解析]∵e=∴ca=2254ca=,∵c2=a2+b2,∴2214ba=.∴12ba=.∵双曲线的渐近线方程为by xa=±,∴渐近线方程为12y x=±,故选C。

[2013新课标1]8. O为坐标原点,F为抛物线C:y2=的焦点,P为C上一点,若|PF|=,则△POF的面积为(C).A.2 B...4[解析]利用|PF|=Px=可得x P=∴y P=±∴S△POF=12|OF|·|y P|=221168x y+=1312∆[2013新课标2]5. 设椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为(D ) A .6 B . 13 C . 12D .3[解析]如图所示,在Rt △PF 1F 2中,|F 1F 2|=2c ,设|PF 2|=x ,则|PF 1|=2x ,由tan 30°=212||||2PF x F F c ==3x =, 而由椭圆定义得,|PF 1|+|PF 2|=2a =3x ,∴32a x ==,∴3c e a ===[2013新课标2]10. 抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF|=3|BF|,则l 的方程为(C).A .y =x -1或y =-x +1B .y =(x -1)或y = -(x -1)C .y = 3(x -1)或y = -3(x -1)D .y = 2(x -1)或y = -2(x -1)[解析]由题意可得抛物线焦点F(1,0),准线方程为x =-1,当直线l 的斜率大于0时,如图所示,过A ,B 两点分别向准线x =-1作垂线, 垂足分别为M ,N ,则由抛物线定义可得,|AM|=|AF|,|BN|=|BF|. 设|AM|=|AF|=3t(t >0),|BN|=|BF|=t ,|BK|=x ,而|GF|=2, 在△AMK 中,由||||||||NB BK AM AK =,得34t xt x t=+, 解得x =2t ,则cos ∠NBK=||1||2NB t BK x ==, ∴∠NBK =60°,则∠GFK =60°,即直线AB 的倾斜角为60°. ∴斜率k =tan 60°y 1)x -. 当直线l 的斜率小于0时,如图所示, 同理可得直线方程为y=1)x -,故选C.[2014新课标1]〔4〕已知双曲线)0(13222>=-a y a x 的离心率为2,则=a 〔 D 〕 A. 2 B.26C. 25D. 1 [解析]2=,解得1a =,选D. [2014新课标2]10. 设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =〔 C 〕 〔A 〔B 〕6 〔C 〕12 〔D 〕[2014新课标2]12. 设点0(,1)M x ,若在圆22:1O x y +=上存在点N ,使得°45OMN ∠=,则0x 的取值X 围是〔 A 〕〔A 〕[]1,1-〔B 〕1122⎡⎤-⎢⎥⎣⎦,〔C〕⎡⎣〔D 〕22⎡-⎢⎣⎦,[2015新课标1]〔5〕已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y²=8x 的焦点重合,A ,B 是C 的准线与E 的两个焦点,则|AB|=〔B 〕 〔A 〕3 〔B 〕6 〔C 〕9 〔D 〕12[2015新课标1]16. 已知F 是双曲线C :x 2-82y=1的右焦点,P 是C 的左支上一点,A 〔0,66〕.当△APF 周长最小是,该三角形的面积为12√6[2015新课标2]15.已知双曲线过点()34,,且渐近线方程为x y 21±=,则该双曲线的标准方程x 24-y 2=1。

高考数学复习:圆锥曲线

高考数学复习:圆锥曲线

1.(2023·浙江·校联考模拟预测)高考数学复习:圆锥曲线已知双曲线−=>>a bC a b x y :1(0,0)2222A (2,1)在双曲线C 上.(1)求双曲线C 的方程;(2)若点M ,N 在双曲线C 上,且⊥AM AN ,直线MN 不与y 轴平行,证明:直线MN 的斜率k 为定值. 利用韦达定理用坐标表示出0AM AN ⋅=,进而可求解,所以0AM AN ⋅=,2.(2023·广东佛山·统考一模)已知椭圆+=a b x y :1Γ2222>>a b 0)(的左焦点为−F 1,0)(,左、右顶点及上顶点分别记为A 、B 、C ,且1CF CB ⋅=. (1)求椭圆Γ的方程;(2)设过F 的直线PQ 交椭圆Γ于P 、Q 两点,若直线PA 、QA 与直线l :+=x 40分别交于M 、N 两点,l 与x 轴的交点为K ,则⋅MK KN 是否为定值?若为定值,请求出该定值;若不为定值,请说明理由.的坐标,即可得到CF ,CB ,根据1CF CB ⋅=及,所以(1,CF b =−−),(,CB a b =−),由1CF CB ⋅=,可得3.(2023·广东江门·统考一模)已知M 是平面直角坐标系内的一个动点,直线MA 与直线=y x 垂直,A 为垂足且位于第一象限,直线MB 与直线=−y x 垂直,B 为垂足且位于第四象限,四边形OAMB (O 为原点)的面积为8,动点M 的轨迹为C . (1)求轨迹C 的方程;(2)已知T 5,3)(是轨迹C 上一点,直线l 交轨迹C 于P ,Q 两点,直线TP ,TQ 的斜率之和为1,∠=PTQ tan 1,求TPQ 的面积.,即可求出TPQ 的面积=αk tan ,=−βk tan 1,T 5,3(则>k 1或<−k 1,同时−>k 1+∠=−=βαPTQ 1tan tan tan tan )(=k 3时,直线TP 的方程为y 联立⎩−=⎨⎧=−x y y x 1631222,消y 得:4.(2023·浙江·永嘉中学校联考模拟预测)已知双曲线E 的顶点为−A 1,0)(,,B 10)(,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且△=S OFG 点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程; (2)求证:OP OH ⋅为定值.故OP OH mx m ⋅==⨯=mH 11,得证5.(2023·江苏徐州·徐州市第七中学校考一模)已知双曲线−=>a b C a b x y :1(,0)2222的实轴长为4,左、右顶点分别为A A ,12,经过点B 4,0)(的直线l 与C 的右支分别交于M N ,两点,其中点M 在x 轴上方.当⊥l x 轴时,=MN (1)设直线MA NA ,12的斜率分别为k k ,12,求k k 12的值; (2)若=∠∠BA N BA M 221,求1A MN 的面积.y或解得43所以1A MN的面积为1A MNS=6.(2023·江苏泰州·统考一模)已知双曲线的左顶点为A ,过左焦点F 的直线与C 交于P Q ,两点.当⊥PQ x轴时,=PA △PAQ 的面积为3. (1)求C 的方程;(2)证明:以PQ 为直径的圆经过定点.(2)方法一:设PQ 方程为=x my ⎩−=⎨⇒−+⎧=−x y m y my x my 3334422222)(以PQ 为直径的圆的方程为−x x 1(−+++−+x x x x x x y y y 12121222()(000EP EQ x t x t y y x x t x x t y y ∴⋅=⇒−−+=⇒−+++=12121212122)()()(,7.(2023·辽宁葫芦岛·统考一模)在平面直角坐标系中,已知点−A (2,0),B (2,0),直线P A 与直线PB 的斜率乘积为−43,点P 的轨迹为M .(1)求M 的方程;(2)分别过−F (1,0)1,F (1,0)2做两条斜率存在的直线分别交M 于C ,D 两点和E ,F 两点,且+=CD EF ||||12117,求直线CD 的斜率与直线EF 的斜率之积.8.(2023·江苏南通·统考模拟预测)已知A x y ,11)(,B x y ,22)(,C x y ,33)(三个点在椭圆+=y x 2122,椭圆外一点P 满足2OP AO =,2BP CP =,(O 为坐标原点). (1)求+x x y y 21212的值;(2)证明:直线AC 与OB 斜率之积为定值.,因为2OP AO =,所以又因为2BP CP =,所以9.(2023·河北衡水·衡水市第二中学校考模拟预测)已知抛物线C :=>y px p 202)(和椭圆E :++=>a a a x y 11022)(有共同的焦点F(1)求抛物线C 的方程,并写出它的准线方程(2)过F 作直线l 交抛物线C 于P , Q 两点,交椭圆E 于M , N 两点,证明:当且仅当⊥l x 轴时,MNPQ取得最小值10.(2023·河北石家庄·统考一模)已知点P (4,3)在双曲线C :−=a bx y12222(>a 0,>b 0)上,过P 作x 轴的平行线,分别交双曲线C 的两条渐近线于M ,N 两点,⋅=PM PN ||||4.(1)求双曲线C 的方程;(2)若直线l:=+y kx m与双曲线C交于不同的两点A,B,设直线PA,PB的斜率分别为k1,k2,从下面两个条件中选一个(多选只按先做给分),证明:直线l过定点.①+=k k112;②=k k1 12.后把求解方程得出k m ,的关系式,从而可得定点,定点问题虽然运算过程繁琐,但是求解思路较为明确.11.(2023·福建漳州·统考二模)已知椭圆+=>>a b C a b x y :1(0)2222的左、右焦点分别为F 1,F 2,且=F F 412.过右焦点F 2的直线l 与C 交于A ,B 两点,1ABF 的周长为(1)求C 的标准方程;(2)过坐标原点O 作一条与垂直的直线'l ,交C 于P ,Q 两点,求PQ AB ||||的取值范围; (3)记点A 关于x 轴的对称点为M (异于B 点),试问直线BM 是否过定点?若是,请求出定点坐标;若不是请说明理由.12.(2023·福建泉州·统考三模)已知椭圆+=C x y 43:122的左、右顶点分别为A ,B .直线l与C 相切,且与圆+=O x y :422交于M ,N 两点,M 在N 的左侧.(1)若=MN ||l 的斜率; (2)记直线AM BN ,的斜率分别为k k ,12,证明:k k 12为定值.13.(2023·山东·烟台二中校考模拟预测)已知椭圆+=>>a bC a b x y :1(0)22122过点P (4,1),且C 1的焦距是椭圆⎝⎭+ ⎪+=−⎛⎫a b a b C x y a b :2222222222的焦距的3倍.(1)求C 1的标准方程;(2)设M ,N 是C 1上异于点P 的两个动点,且0PM PN ⋅=,试问直线是否过定点?若过,求出定点坐标;若不过,请说明理由.⋅=列方程,整理后可求得定点坐标PM PN因为0⋅=,所以PM PN由0PM PN ⋅=,得14.(2023·山东青岛·统考一模)已知O 为坐标原点,椭圆+=>>a b C a b x y :102222)(的左,右焦点分别为F 1,F 2,A 为椭圆C 的上顶点,△AF F 12为等腰直角三角形,其面积为1. (1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于P ,Q 两点,点W 在过原点且与l 平行的直线上,记直线WP ,WQ 的斜率分别为k 1,k 2,△WPQ 的面积为S .从下面三个条件①②③中选择两个条件,证明另一个条件成立.①=S =−k k 2112;③W 为原点O .注:若选择不同的组合分别解答,则按第一个解答计分.12AF F S==c 1,∴椭圆C15.(2023·山东济南·一模)已知抛物线=H x py :22(p 为常数,>p 0).(1)若直线=−+l y kx pk p :22与H 只有一个公共点,求k ;(2)贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau 算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图,A ,B ,C 是H 上不同的三点,过三点的三条切线分别两两交于点D ,E ,F ,证明:==DE FC BF AD EF DB ||||||||||||. 【答案】(1)=k 2 (2)证明见解析【分析】(1)联立直线l 的方程和抛物线方程,消去y 后利用判别式求得的值.(2)求得过A B C ,,三点的切线方程,进而求得D E F ,,的恒坐标,根据抛物线的知识证得结论成立.【详解】(1)将=−+y kx pk p 22代入=x py 22, 化简得++−=x pkx p k 24(1)022(*),方程(*)的判别式=−−=p k p k p 44440Δ2222)(,化简得−+=k k 4402, 即=k 2.(2)设A x y B x y C x y D x y E x y F x y A A B B C C D D E E F F ,,,,,,,,,,,)()()()()()(, 设抛物线=x py 22在A 点处的切线方程为−=−y y k x x A A A )(,由⎩=⎨−=−⎧x pyy y k x x A A A 22)(消去y 并化简得−+−=x pk x pk x py A A A A 22202, ∆=−−=−+=p k pk x py p k pk x py A A A A A A A A 442248802222)(,16.(2023·山东聊城·统考一模)已知双曲线C :−=a bx y 12222(>a 0,>b 0)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1. (1)求C 的方程;(2)设点O 0,0)(,M 0,2)(,动直线l :=+y kx m 与C 的右支相交于不同两点A ,B ,且∠=∠AFM BFM ,过点O 作⊥OH l ,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.,(2,2FM =−),,则()(2,,2,,FA x y FB x y =−=−1122) 于是()()FA x y x x x =−+=−+−=−223321111112222,同理21FB x =−2,即FA FM FB FM FAFB⋅⋅=17.(2023·湖北·校联考模拟预测)已知椭圆+=>>a b E a b x y :1(0)2222过点⎝⎭ ⎛A . (1)若椭圆E 的离心率⎝⎦⎥ ∈⎛⎤e 20,1,求b 的取值范围;(2)已知椭圆E 的离心率=e 2,M ,N 为椭圆E 上不同两点,若经过M ,N 两点的直线与圆+=x y b 222相切,求线段的最大值.由直线与+=x y 122相切,故联立⎩⎪+=⎨⎪⎧=+y x y kx m 41,,22得++k x 1422)(−km m 844218.(2023·湖北武汉·统考模拟预测)过坐标原点O 作圆++=C x y :(2)322的两条切线,设切点为P Q ,,直线PQ 恰为抛物=>E y px p :2,(0)2的准线. (1)求抛物线E 的标准方程;(2)设点T 是圆C 上的动点,抛物线E 上四点A B M N ,,,满足:2,2TA TM TB TN ==,设AB 中点为D .(i )求直线TD 的斜率;(ii )设△TAB 面积为S ,求S 的最大值. 【答案】(1)=y x 22 (2)(i )0;(ii )48CPP与由几何性质易得:019.(2023·江苏·统考一模)已知直线l 与抛物线=C y x :212交于两点A x y ,11)(,B x y ,22)(,与抛物线=C y x :422交于两点C x y ,33)(,D x y ,44)(,其中A ,C 在第一象限,B ,D 在第四象限.(1)若直线l 过点M 1,0)(,且−BM AM 11l 的方程; (2)①证明:+=+y y y y 11111234; ②设AOB ,△COD 的面积分别为S 1,S 2,(O 为坐标原点),若=AC BD 2,求S S 21.,整理得220y my n 2,,2y y n 12,20.(2023·湖北·荆州中学校联考二模)已知点A 2,2)(为抛物线y px Γ=:22上的点,B ,C 为抛物线Γ上的两个动点,Q 为抛物线Γ的准线与x 轴的交点,F 为抛物线Γ的焦点.(1)若︒∠=BOC 90,求证:直线BC 恒过定点;(2)若直线BC 过点Q ,B ,C 在x 轴下方,点B 在Q ,C 之间,且∠=BFC 7tan 24,求△AFC 的面积和△BFC 的面积之比.)根据∠=BOC 90,可得,OB OC x x y y ⋅=+=01212,利用韦达定理求解;可得7cos ,FA FB =25,利用韦达定理和向量夹角的坐标∵∠=BOC 90∴OB OC x x y y ⋅=+=01212,∵FA x y ⎛⎫=− ⎪⎝⎭2,111,FB x y ⎛⎫=− ⎪⎝⎭2,122,,x FA FB FA FB FA FB⎛⋅⎝==1+−++m y y y y m y y 111221212)()由于直线BC 过点Q ,B ,C 在21.(2023·湖北武汉·华中师大一附中校联考模拟预测)已知A ,B 为椭圆+=a b x y 12222左右两个顶点,动点D 是椭圆上异于A ,B 的一点,点F 是右焦点.当点D 的坐标为−1)(时,=DF 3. (1)求椭圆的方程.(2)已知点C 的坐标为4,0)(,直线CD 与椭圆交于另一点E ,判断直线AD 与直线BE 的交点P 是否在一定直线上,如果是,求出该直线方程;如果不是,请说明理由.设D x y ,11)(,E x y ,22)(,则++=k x x k 21162122,x x 12∴=+−x x x x 2451212)(,又−A 2,0)(,B 2,0)(, ∴直线AD 的方程为+=+x y x y 2211)(,直线BE 的方程为22.(2023·湖南邵阳·统考二模)已知双曲线−=<a bC a b x y :1010,02222)(的右顶点为A ,左焦点−F c ,0)(到其渐近线+=bx ay 0的距离为2,斜率为31的直线l 1交双曲线C 于A ,B 两点,且=AB 3. (1)求双曲线C 的方程;(2)过点T 6,0)(的直线l 2与双曲线C 交于P ,Q 两点,直线AP ,AQ 分别与直线=x 6相交于M ,N 两点,试问:以线段为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.,则6,RM t ⎛⎫=− ⎪⎝⎭−x y 3311,6,RN t ⎛⎫=− ⎪⎝⎭−x y 3322,故(()()6RM RN t ⋅=−+−−x x y y 33912122)y y 923.(2023·湖南·模拟预测)已知椭圆+=>>a bE a b x y :1(0)2222的左、右焦点分别为,F F 12,上顶点为B 1,若△F B F 112为等边三角形,且点⎝⎭ ⎪⎛⎫P 21,3在椭圆E 上.(1)求椭圆E 的方程;(2)设椭圆E 的左、右顶点分别为,A A 12,不过坐标原点的直线l 与椭圆E 相交于A 、B 两点(异于椭圆E 的顶点),直线、AA BA 12与y 轴的交点分别为M 、N ,若=ON OM ||3||,证明:直线过定点,并求该定点的坐标.24.(2023·湖南张家界·统考二模)已知曲线C 的方程:−=>x x y 451022)(,倾斜角为α的直线l 过点F 3,02)(,且与曲线C 相交于A ,B 两点. (1)=︒α90时,求三角形ABO 的面积;(2)在x 轴上是否存在定点M ,使直线l 与曲线C 有两个交点A 、B 的情况下,总有∠=∠OMA OMB 如果存在,求出定点M ;如果不存在,请说明理由.过焦点F 3,02)(,倾斜角为所以△=⨯⨯=S AOB 2235115(2)设直线l 的方程为:=−y k x (整理得−+−k x k x 542436222)(因为直线l 与曲线C 有两个交点,设5与椭圆+=>>a bC a b x y :1(0)2222交于P Q ,两点(P 在x 轴上方),且=PQ a 56,设点P 在x 轴上的射影为点N ,PQN ,抛物线=>E y px p :2(0)2的焦点与椭圆C 的焦点重合,斜率为的直线l 过抛物线E 的焦点与椭圆C 交于A B ,两,点,与抛物线E 交于C D ,两点.(1)求椭圆C 及抛物线E 的标准方程;(2)是否存在常数λ,使+λAB CD ||||为常数?若存在,求λ的值;若不存在,说明理由.26.(2023·湖南常德·统考一模)已知双曲线:−=>>a b C a b x y 1(0,0)2222的右顶点到渐近线的C 的右焦点F 作直线MN (不与x 轴重合)与双曲线C 相交于M ,N 两点,过点M 作直线l :=−<<x t a t a )(的垂线ME ,E 为垂足. (1)求双曲线C 的标准方程;(2)是否存在实数t ,使得直线EN 过x 轴上的定点P ,若存在,求t 的值及定点P 的坐标;若不存在,说明理由.27.(2023·广东揭阳·校考模拟预测)椭圆、双曲线、抛物线三种圆锥曲线有许多相似性质.比如三种曲线都可以用如下方式定义(又称圆锥曲线第二定义):到定点的距离与到定直线的距离之比为常数e 的点的轨迹为圆锥曲线.当<<e 01为椭圆,当=e 1为抛物线,当>e 1为双曲线.定点为焦点,定直线为对应的准线,常数e 为圆锥曲线的离心率.依据上述表述解答下列问题.已知点F (1,0),直线=l x :4动点E 满足到点F 的距离与到定直线l 的距离之比为21(1)求曲线E 的轨迹方程;(2)在抛物线中有如下性质:如图,在抛物线=>y px p 2(0)2中,O 为抛物线顶点,过焦点F 的直线交抛物线与A ,B 两点,连接AO ,BO 并延长交准线l 与D ,C ,则以CD 为直径的圆与AB 相切于点F ,以AB 为直径的圆与CD 相切于CD 中点.那么如图在曲线E 中是否具有相同的性质?若有,证明它们成立;若没有,说明理由.圆联立方程,结合韦达定理证明=0CF DF ⋅且,()()9CF DF ⋅=+−−x x y y 2241212 +m 34()()90CF DF ∴⋅=+=−−x x y y 2241212,CF DF ∴⊥28.(2023·广东广州·统考二模)已知直线l 与抛物线=C y x :42交于A ,B 两点,且与x 轴交于点>M a a ,00)()(,过点A ,B 分别作直线=−l x a :1的垂线,垂足依次为A 1,B 1,动点N 在l 1上.(1)当=a 1,且N 为线段A B 11的中点时,证明:⊥AN BN ;(2)记直线NA ,NB ,NM 的斜率分别为k 1,k 2,k 3,是否存在实数λ,使得+=λk k k 123?若存在,求λ的值;若不存在,请说明理由.(恰为抛物线当=a1时,M1,0)AM AA 由抛物线的定义可得:=取AB的中点D,连接DN,则DNDA因为D为AB的中点,所以=DA DN可得:在△ADN中,由=29.(2023·广东惠州·统考模拟预测)已知椭圆+=>>a bC a b x y :1(0)22的右焦点为F ,点−A 2,0)(在椭圆上且=AF ||3.(1)求椭圆C 的方程;(2)点、P Q 分别在椭圆C 和直线=x 4上,∥OQ AP ,M 为AP 的中点,若T 为直线OM 与直线QF 的交点.是否存在一个确定的曲线,使得T 始终在该曲线上?若存在,求出该曲线的轨迹方程;若不存在,请说明理由.进而求出(3x OM FQ ⋅=2代入得0OM FQ ⋅=,从而FQ ,判断出点T (1)因为椭圆=|3,所以+a。

高考数学一轮复习专题02 圆锥曲线弦长问题(解析版)

高考数学一轮复习专题02 圆锥曲线弦长问题(解析版)

解析几何专题二:圆锥曲线弦长问题一、知识储备弦长公式||AB =12||AB x ==-= (最常用公式,使用频率最高)= 二、例题讲解1.(2022·辽宁高三开学考试)已知椭圆C 的标准方程为:22221(0)x y a b a b +=>>,若右焦点为F(1)求椭圆C 的方程;(2)设M ,N 是C 上的两点,直线MN 与曲线222x y b +=相切且M ,N ,F 三点共线,求线段MN 的长. 【答案】(1)2213x y +=;(2【分析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为221(0)x y x +=>,讨论直线MN 的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可. 【详解】(1)由题意,椭圆半焦距c =c e a =,则a =2221b a c =-=, ∴椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>当直线MN 的斜率不存在时,直线:1MN x =,不合题意:当直线MN 的斜率存在时,设()11,M x y ,()22,N x y 又M ,N ,F 三点共线,可设直线:(MN y k x =,即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立22(13y x x y ⎧=±⎪⎨+=⎪⎩,得2430x -+=,则12x x +=1234x x ⋅=,∴||MN ==2.(2022·全国高三专题练习)过双曲线142x y -=的右焦点F 作斜率为2的直线l ,交双曲线于A ,B 两点.(1)求双曲线的离心率和渐近线; (2)求AB 的长. 【答案】(1)e =,渐近线方程为y =;(2)207.【分析】(1)由双曲线方程得出,a b ,再求出c ,可得离心率,渐近线方程;(2)写出直线方程,代入双曲线方程,设()11,A xy ,()22,B x y,由韦达定理得1212,x x x x +,然后由弦长公式计算弦长. 【详解】解:(1)因为双曲线方程为22142x y -=, 所以2a =,b =则c =所以62cea,渐近线方程为2y x =±. (2)双曲线右焦点为0),则直线l 的方程为2(y x = 代入双曲线22142x y -=中,化简可得27520x -+=设()11,A x y ,()22,B x y 所以12x x +=12527x x ⋅=,所以2120|||7AB x x -==. 【点睛】方法点睛:本题考查双曲线的离心率和渐近线方程,考查直线与双曲线相交弦长.解题方法是直线方程与双曲线方程联立并消元后应用韦达定理求出1212,x x x x +,然后由弦长公式12d x =-求出弦长.3.(2022·全国高三模拟预测)在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB . 【答案】(1)28y x =;(2【分析】(1)设(),P x y ,求得,,MP OF PF 的坐标,结合12OF MP PF ⋅=,化简、整理,即可求得抛物线的方程; (2)设()()1122,,,A x y B x y ,不妨设120,0y y ><,由2AFD BFD S S =△△,求得122y y =-,设直线AB 的方程为1x my =+,联立方程组,结合根与系数的关系,求得128y y m +=,128y y =-,进而求得12,,y y m ,利用弦长公式,即可求解. 【详解】(1)设(),P x y ,因为()2,0F ,()2,3M -,则()2,3MP x y =+-,()2,0OF =,()2,PF x y =--. 由12OF MP PF ⋅=,可得2x +=28y x =,即动点P 的轨迹C 的方程为28y x =. (2)设()11,A x y ,()22,B x y , 由题意知112AFD S FD y =⋅△,212BFD S FD y =⋅△, 易知120y y <,不妨设120,0y y ><,因为2AFD BFD S S =△△,所以122y y =,所以122y y =-. ① 设直线AB 的方程为1x my =+,联立281y xx my ⎧=⎨=+⎩消去x ,得2880y my --=,则264320m ∆=+>,可得128y y m +=,128y y =- ② 由①②联立,解得1214,2,4y y m ==-=,所以124(2)AB y =-=--=. 【点睛】本题主要考查了向量的坐标运算,抛物线的标准方程的求解,以及直线与抛物线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.三、实战练习1.(2022·江门市培英高级中学高三模拟预测)已知椭圆()2222:10x y C a b a b +=>>过点P ⎭,离心率为12. (1)求椭圆C 的标准方程;(2)若1A 为椭圆C 的左顶点,直线l 过右焦点2F 与椭圆C 交于M ,N 两点(M ,N 与1A 不重合),l 不与x 轴垂直,若11A M A N MN k k k +=-,求MN .【答案】(1)22143x y +=;(2)247 【分析】(1)由题意可得关于,,a b c 的方程组,求解,a b 的值,即可求得椭圆C 的标准方程;(2)根据题意设()()1122,,,M x y N x y ,直线l :()1,0x my m =+≠,联立直线方程与椭圆方程,化为关于y 的一元二次方程,利用根与系数的关系结合11A M A N MN k k k +=-,求出m 的值,再根据弦长公式即可求得MN . 【详解】(1)由题意可得:22222123314c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:224,3a b ==,∴ 椭圆C 的标准方程为:22143x y +=; (2)()()211,0,2,0F A -,由题意可设:直线l :()1,0x my m =+≠,()()1122,,,M x y N x y ,联立:221143x my x y =+⎧⎪⎨+=⎪⎩ 得:()2234690m y my ++-=, 则12122269,3434m y y y y m m --+==++, 1112121,,22A M A N MN y y k k k x x m===++, 11121222A M A N y yx k x k ∴+=+++ ()()()()1221122222y x y x x x +++=++()()()()1221213333y my y my my my +++=++()()2122112122339y y y m y y y my m y ++=+++222229623343496393434mm m m m m m m m --⨯+⨯++=--⨯+⨯+++ m =-,又11A M A N MN k k k +=-, 1m m∴-=-, 解得:21,1m m ==±, 故1212226699,347347m y y y y m m --+==±==-++,247MN =.2.(2022·广东执信中学高三月考)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN =充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k=+,联立直线与椭圆方程结合弦长公式可得=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a =,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N,F 三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN === 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =或y x =-+所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.3.(2022·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>与抛物线24y x =有公共的焦点F ,1A ,2A 分别为椭圆C 长轴的左、右端点,P 为C 上一动点,且12PAA ∆的最大面积为 (1)求椭圆C 的标准方程;(2)直线l 经过点F ,且与C 交于A ,B 两点,若10||3AB =,求直线l 的方程. 【答案】(1)22143x y +=;(20=. 【分析】(1)利用已知条件可以直接得出焦点F 的坐标,当三角形面积最大时P 为短轴端点,从而解出a ,b 的值即可; (2)利用(1)中求出的点F 的坐标,设出直线方程,然后与椭圆方程联立,利用弦长公式即可求出直线的方程. 【详解】(1)抛物线24y x =的焦点F 坐标为()1,0∴椭圆C 中的半焦距为1.由椭圆的几何性质可知,当12PA A ∆面积最大时,P 为椭圆短轴端点,不妨令()0,P b ,则221a b ab ⎧-=⎪⎨=⎪⎩解得2a b =⎧⎪⎨=⎪⎩∴椭圆C 的标准方程为22143x y +=. (2)直线l 经过椭圆C 的右焦点,且10||3AB =∴直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为(1)y k x =-, 与椭圆C 的方程联立可得()22223484120k xk x k +-+-=,0∆>,设()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x x k -=+12||AB x ∴-=()2212110343k k +==+解得k =∴直线l 0=0.【点睛】本题考查椭圆的标准方程、抛物线的几何性质以及直线与椭圆的位置关系,要求较高的运算求解能力,属于中档题.本题的关键点有:(1)韦达定理的应用,韦达定理是联系各个变量之间的桥梁是解决解析几何问题的重要方法; (2)计算能力和计算技巧是解决解析几何问题的关键能力.4.(2022·陕西(文))已知点B 是圆22:(1)16C x y -+=上的任意一点,点(1,0)F -,线段BF 的垂直平分线交BC 于点P .(1)求动点P 的轨迹E 的方程;(2)直线:2l y x m =+与E 交于点M ,N ,且MN =m 的值. 【答案】(1)22143x y +=,(2)1m =±.(1)由条件可得42PC PF PC PB BC FC +=+==>=,然后由椭圆的定义可求出答案;(2)设()()1122,,,M x y N x y ,然后联立直线与椭圆的方程消元,韦达定理得出1212,x x x x +,然后利用MN =出m 的值即可. 【详解】(1)由条件可得42PC PF PC PB BC FC +=+==>=所以动点P 的轨迹E 是以,F C 为焦点的椭圆,设其方程为()222210x y a b a b+=>>所以24,22a c ==,所以2,1,a c b ===所以方程为22143x y += (2)设()()1122,,,M x y N x y联立221432x y y x m ⎧+=⎪⎨⎪=+⎩可得221916+4120x mx m +-= 所以由()22256764120m m ∆=-->得(m ∈2121216412,1919m m x x x x -+=-=因为MN =所以可解得1m =±5.(2022·全国高三专题练习)已知点(A 和B ,动点C到A ,B 两点的距离之差的绝对值为2,记点C 的(1)求轨迹E 的方程;(2)设E 与直线2y x =-交于两点M ,N ,求线段MN 的长度. 【答案】(1)2212y x -=;(2)【分析】(1)设(,)C x y ,由于||||2CA CB -=,||AB =,利用双曲线的定义求解即可; (2)直线和双曲线方程联立消y ,利用韦达定理以及弦长公式求解即可. 【详解】 (1)设(,)C x y , 则||||2CA CB -=,所以点C 的轨迹E 为双曲线22221(0,0)x y a b a b-=>>,且22a =,2||c AB == 则1a =,2222b c a =-=, 所以轨迹E 的方程为2212y x -=;(2)由22122y x y x ⎧-=⎪⎨⎪=-⎩, 得2460x x +-=, 因为0∆>,所以直线与双曲线有两个交点, 设()11,M x y ,()22,N x y , 则124x x +=-,126x x =-,故MN =所以线段MN 的长度为6.(2022·全国高三专题练习)已知双曲线C :22221(0,0)x y a b a b-=>>)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30的直线,直线与双曲线交于不同的两点A ,B ,求AB . 【答案】(1)22136x y -=;(2【分析】(1)求出,a b ,即可得出双曲线方程;(2)可先求出直线方程为3)y x =-,联立椭圆方程,再利用弦长公式即可求出. 【详解】(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b ,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪-⎪⎩得256270x x +-=.设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以AB ==【点睛】本题考查双曲线方程的求法,考查直线与双曲线相交弦长的求法,属于基础题.7.(2022·重庆高三模拟预测)已知直线l :4y kx =+与抛物线C :2y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足||||AN AM =,求BM 的最小值.【答案】(1)214y x =;(2)【分析】(1)先联立直线与抛物线,得到判别式和韦达定理,再根据垂直关系,利用0OA OB ⋅=,求得参数即可;(2)设直线BM 的方程,并与抛物线联立,得到判别式和韦达定理,根据已知关系,判断中点位置,利用坐标关系求得参数m ,最后利用弦长公式计算BM ,利用二次函数判断最小值即可. 【详解】解:(1)依题意,设()()1122,,,A x y B x y ,由24y ax y kx ⎧=⎨=+⎩,消去y ,得240ax kx --=,2121604k a x x a ⎧∆=+>⎪∴⎨=-⎪⎩, OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即2212120x x ax ax +⋅=,即22212120x x a x x +=,所以22440a a a ⎛⎫⎛⎫-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得14a =,∴抛物线C 的标准方程为214y x =; (2)由题意知,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,()33,M x y ,由214y xy tx m ⎧=⎪⎨⎪=+⎩,消去y ,得2440x tx m --=,223231616044t m x x m x x t ⎧∆=+>⎪∴=-⎨⎪+=⎩,由(1)知,1216x x =-,故1123321644x x x x x x m m-===-, 由题意知,,A M N 三点共线,且|AN |=|AM |,即A 为线段MN 的中点,设()0,N n , 则3102x x +=,即13142x x m ==,即8m =,22323161680324t x x x x t⎧∆=+⨯>⎪∴=-⎨⎪+=⎩,23BM x ∴=-=)20t ==≥, 故20t =时,BM最小为=【点睛】 思路点睛:直线与抛物线中的弦长问题,我们常让直线与抛物线方程联立,再利用韦达定理及弦长公式,建立关系式.其中弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B xy ,所以12AB x =-或12AB y =-,解决相关问题.8.(2022·全国高三模拟预测)已知抛物线()2:20C y px p =>的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若A ,B 是C 上的两个动点,且A ,B 两点的横坐标之和为8,求当AB 取最大值时,直线AB 的方程. 【答案】(1)24yx =;(2)220x ±-=. 【分析】(1)根据题意,列出方程组22242pp t pt⎧+=⨯⎪⎨⎪=⎩,求得p 的值,即可求得C 的标准方程; (2)设()11,A x y ,()22,B x y ,当12x x =时,得到AB 的方程4x =;当12x x ≠时,得到2AB k n =,得到()42nx y n =-+,联立方程组,结合根与系数的关系,得到1212,y y y y +,根据弦长公式和基本不等式,即可求解. 【详解】(1)由题意,点(),2P t -在()2:20C y px p =>上,且2PF OF =,可得22242pp t pt ⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()11,A x y ,()22,B x y ,且128x x +=,设AB 中点为(),D m n ,则122x x m +=,122y y n +=, 当12x x =时,:4AB l x =,8AB =; 当12x x ≠时,()212122212121442AB y y y y k x x y y y y n--====--+, 则()2:4AB l y n x n-=-,即()42n x y n =-+,与C 联立方程消去x ,整理得2222160y ny n -+-=, 由22(2)4(216)0n n ∆=--->,解得216n <,且122y y n +=,212216y y n =-,所以2212416102n n AB y ++-=-==, 当26n =时取“=”,所以AB 的最大值为10,此时AB 的方程为220x -=. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.9.(2022·浙江高三模拟预测)已知直线:4l y kx =+与抛物线2:C y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足AN AM =,求BM 的最小值. 【答案】(1)24x y=;(2)最小值为【分析】(1)联立直线l 与抛物线C 的方程,列出韦达定理,由已知条件可得出0OA OB ⋅=,利用平面向量数量积的坐标运算结合韦达定理求出a 的值,即可得出抛物线C 的标准方程;(2)设直线BM 的方程为y tx m =+,点()33,M x y ,将直线BM 的方程与抛物线C 的方程联立,列出韦达定理,由已知条件可得1312x x =,代入韦达定理求出m 的值,再利用弦长公式可求得BM 的最小值.【详解】(1)依题意设()11,A x y 、()22,B x y ,由24y ax y kx ⎧=⎨=+⎩消去y ,得240ax kx --=,所以,212160,4.k a x x a ⎧+>⎪⎨=-⎪⎩OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即22212120x x a x x +=,4160a∴-+=,解得14a =,所以,抛物线C 的标准方程为24x y =;(2)由题意知,若直线BM 的斜率不存在,则该直线与抛物线C 只有一个公共点,不合乎题意.所以,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,点()33,M x y , 由24x y y tx m ⎧=⎨=+⎩消去y ,得2440x tx m --=,223231616044t m x x t x x m⎧+>⎪∴+=⎨⎪=-⎩, 由(1)知1216x x =-,1123231644x x x x x x m m-∴===-①. 由题意知A 、M 、N 三点共线,且A 为线段MN 的中点,设()0,N n ,则3102x x +=,即1312x x =②,由①②得8m =,22323161680432t x x t x x ⎧+⨯>⎪∴+=⎨⎪=-⎩,23BM x ∴=-=)20t ==≥,当且仅当0t =时,等号成立,故BM 的最小值为【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.10.(2022·全国高三专题练习)如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上.(1)求FA FB +的值; (2)求AB 的最大值. 【答案】(1)72;(2)【分析】(1)由抛物线定义有12FA FB x x p +=++,结合已知条件即可求FA FB +;(2)由直线与抛物线位置关系,联立方程得到一元二次方程,结合根与系数关系、弦长公式即可求AB 的最大值. 【详解】(1)由题意知:2p =,抛物线对称轴方程1x =-.设()11,A x y ,()22,B x y ,12324x x +=,则1272FA FB x x p +=++=; (2)点A 和B 在抛物线24y x =上,有2114y x =,2224y x =,两式相减得:()()()1212124y y y y x x -+=-,令3(,)4M m ,∴12122y y x x m -=-,即2AB k m=, ∴设直线AB 的方程为234y m x m ⎛⎫-=- ⎪⎝⎭,即23224m m x y =-+,代入抛物线方程得222230y my m -+-=,∴22248121240m m m ∆=-+=->,得203m ≤<,122y y m +=,21223y y m =-∴12AB y =-=∴当20m=时,max AB = 【点睛】思路点睛:求抛物线焦半径相关线段长度时注意抛物线定义的应用,即抛物线焦点到抛物线上点的距离等于该点到抛物线准线的距离;直线与抛物线相交,求弦长时一般要联立方程应用根与系数关系以及弦长公式.11.(2022·全国高三专题练习)已知抛物线C :22(0)y px p =>的焦点F 与椭圆22143x y +=的右焦点重合,点M 是抛物线C 的准线上任意一点,直线MA ,MB 分别与抛物线C 相切于点A ,B .(1)求抛物线C 的标准方程;(2)设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k ⋅为定值; (3)求AB 的最小值.【答案】(1)24y x =;(2)证明见解析;(3)4.【分析】(1)由椭圆的方程可得右焦点的坐标,由题意可得抛物线的焦点坐标,进而可得抛物线的方程;(2)可设M 的坐标,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=,利用判别式等于零可得结论;(3)设A ,B 的坐标,由(2)可得参数t ,k 的关系,代入过M 的切线方程与抛物线的方程中,可得A ,B 用参数1k ,2k 表示的坐标,代入弦长公式中求||AB的表达式,由参数的范围求出||AB 的最小值.【详解】(1)由椭圆方程得,椭圆的右焦点为(1,0) ∴抛物线的焦点为(1,0)F ,2p ∴=,所以抛物线的标准方程:24y x =. (2)抛物线C 的准线方程为1x =-. 设(1,)M t -,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=. 其判别式△1616()k k t =-+,令△0=,得:210k kt +-=. 由韦达定理知12k k t +=-,121k k =-, 故121k k =-(定值).(3)设1(A x ,1)y ,2(B x ,2)y ,由210k kt +-=,得21k t k-=,故2222214244444440k ky y k t ky y k ky y k y k k k -⎛⎫-++=-++⨯=-+=-= ⎪⎝⎭,所以2y k=,代入抛物线方程得21x k =,所以211(A k ,12)k ,221(B k ,22)k ,||AB=因为121k k =-,12k k t +=-,所以12|||AB k k -244t =+,当且仅当0t =时取等号. 当且仅时取等号. 故||AB 的最小值为4.【点睛】求曲线弦长的方法:(1)利用弦长公式12l x -;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.12.(2022·广西河池·高三期末(理))已知抛物线2:4C y x =的焦点为F ,斜率为2的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)若直线l 与抛物线C 的准线相交于点P ,且PF =l 的方程; (Ⅱ)若直线l 不过原点,且90AFB ∠=︒,求ABF 的周长.【答案】(Ⅰ)2y x =;(Ⅱ)15+【分析】(Ⅰ)设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立直线与抛物线,由判别式大于0可得12m <,由PF =0m =或4m =(舍去),从而可得结果;(Ⅱ)设直线l 的方程为()20=+≠y x b b ,并代入抛物线2:4C y x =,根据韦达定理和0FA FB ⋅=可解得12b =-,根据弦长公式可得||AB =||||AF BF +,进一步可得ABF 的周长. 【详解】(Ⅰ)由抛物线2:4C y x =可知(1,0)F ,准线为1x =-, 设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立方程242y x y x m⎧=⎨=+⎩,消去y 后整理为()224440x m x m +-+=,又由()22441616320m m m ∆=--=->,可得12m <,由点F 的坐标为()1,0,有PF ==, 解得0m =或4m =(舍去), 故直线l 的方程为2y x =.(Ⅱ)设直线l 的方程为()20=+≠y x b b , 点A 、B 的坐标分别为()11,x y ,()22,x y ,联立方程242y x y x b⎧=⎨=+⎩,消去y 后整理为()224440x b x b +-+=,可得121x x b +=-,21214x x b =,()()()()222121212122242212y y x b x b x x b x x b b b b b b =++=+++=+-+=又由()22441616320b b b ∆=--=->,可得12b <. 又由()111,FA x y =-,()221,FB x y =-,可得()()()1212121212111FA FB x x y y x x x x y y ⋅=--+=-+++ ()22111123044b b b b b =--++=+=,得0b =(舍去)或12b =-.由12b =-,可得1213x x +=,1236x x =,所以AB ===()()121211215AF BF x x x x +=+++=++=,故ABF 的周长为15+ 【点睛】本题考查了直线与抛物线的位置关系,考查了抛物线的定义,韦达定理和弦长公式,考查了运算求解能力,属于中档题.。

高考数学复习考点题型专题讲解21 圆锥曲线的基本问题

高考数学复习考点题型专题讲解21 圆锥曲线的基本问题

高考数学复习考点题型专题讲解专题21 圆锥曲线的基本问题高考定位 圆锥曲线的方程与几何性质是高考的重点,多以选择题、填空题或解答题的一问的形式命题,难度较小.1.(2021·新高考Ⅰ卷)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( )A.13B.12C.9D.6 答案 C解析 由椭圆C :x 29+y 24=1,得|MF 1|+|MF 2|=2×3=6,则|MF 1|·|MF 2|≤⎝⎛⎭⎪⎫|MF 1|+|MF 2|22=32=9,当且仅当|MF 1|=|MF 2|=3时等号成立.故选C.2.(2022·全国乙卷)设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B (3,0),若|AF |=|BF |,则|AB |=( )A.2B.2 2C.3D.3 2 答案 B解析 法一 由题意可知F (1,0), 抛物线的准线方程为x =-1.设A (y 204,y 0),则由抛物线的定义可知|AF |=y 204+1,又|BF |=3-1=2,故由|AF|=|BF|,可得y24+1=2,解得y0=±2,所以A(1,2)或A(1,-2). 不妨取A(1,2),故|AB|=(1-3)2+(2-0)2=22,故选B.法二由题意可知F(1,0),故|BF|=2,所以|AF|=2.又抛物线通径长为4,所以|AF|=2为通径长的一半,所以AF⊥x轴,所以|AB|=(-2)2+22=22,故选B.3.(2022·全国甲卷)椭圆C:x2a2+y2b2=1(a>b>0)的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为( )A.32B.22C.12D.13答案 A解析设P(m,n)(n≠0),则Q(-m,n),易知A(-a,0),所以k AP·k AQ=nm+a·n-m+a=n2a2-m2=14(*).因为点P在椭圆C上,所以m 2a 2+n 2b 2=1,得n 2=b 2a2(a 2-m 2),代入(*)式,得b 2a 2=14,所以e =ca=1-b 2a 2=32.故选A.4.(2022·北京卷)已知双曲线y 2+x 2m =1的渐近线方程为y =±33x ,则m =________.答案 -3解析法一 依题意得m <0,双曲线的方程化为标准方程为y 2-x 2-m=1,此时双曲线的渐近线的斜率为±1-m=±33,解得m =-3.法二 依题意得m <0,令y 2-x 2-m =0,得y =±1-m x ,则±1-m=±33,解得m =-3.5.(2022·新高考Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE |=6,则△ADE 的周长是________. 答案 13解析 如图,连接AF 1,DF 2,EF 2,因为C 的离心率为12,所以c a =12,所以a =2c ,所以b 2=a 2-c 2=3c 2.因为|AF 1|=|AF 2|=a =2c =|F 1F 2|, 所以△AF 1F 2为等边三角形,又DE ⊥AF 2,所以直线DE 为线段AF 2的垂直平分线, 所以|AD |=|DF 2|,|AE |=|EF 2|,且∠EF 1F 2=30°, 所以直线DE 的方程为y =33(x +c ),代入椭圆C 的方程x 24c 2+y 23c 2=1,得13x 2+8cx -32c 2=0.设D (x 1,y 1),E (x 2,y 2), 则x 1+x 2=-8c 13,x 1x 2=-32c 213,所以|DE |=⎝⎛⎭⎪⎫1+13[(x 1+x 2)2-4x 1x 2]=43⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-8c 132-4×⎝ ⎛⎭⎪⎫-32c 213=48c 13=6, 解得c =138,所以a =2c =134, 所以△ADE 的周长为|AD |+|AE |+|DE |=|DF 2|+|EF 2|+|DE |=4a =13.热点一 圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|).(2)双曲线:||PF 1|-|PF 2||=2a (0<2a <|F 1F 2|).(3)抛物线:|PF |=|PM |,l 为抛物线的准线,点F 不在定直线l 上,PM ⊥l 于点M . 2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.例1 (1)已知A ,B 分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点与虚轴的上端点,F (2,0)是双曲线C 的右焦点,直线AB 与双曲线C 的一条渐近线垂直,则双曲线C 的标准方程为________.(2)(2022·成都二诊)已知抛物线C 以坐标原点O 为顶点,以⎝ ⎛⎭⎪⎫p 2,0为焦点,直线x -my-2p =0与抛物线C 交于两点A ,B ,直线AB 上的点M (1,1)满足OM ⊥AB ,则抛物线C 的方程为________.答案 (1)x 22-y 22=1 (2)y 2=2x解析 (1)由题意得A (a ,0),B (0,b ),双曲线的渐近线方程为y =±ba x ,而k AB =-b a,∴-b 2a2=-1,∴a =b ,又F (2,0),∴c 2=a 2+b 2=2a 2=4, ∴a 2=b 2=2,∴双曲线C 的标准方程为x 22-y 22=1.(2)由已知直线OM 的斜率为1,则AB 的斜率为-1,所以m =-1,又M (1,1)在直线AB 上, ∴1+1-2p =0,∴p =1. ∴抛物线C 的方程为y 2=2x .易错提醒 求圆锥曲线的标准方程时的常见错误:(1)双曲线的定义中忽略“绝对值”致错;(2)椭圆与双曲线中参数的关系式弄混,椭圆中的关系式为a 2=b 2+c 2,双曲线中的关系式为c 2=a 2+b 2;(3)圆锥曲线方程确定时还要注意焦点位置.训练1 (1)(2022·武汉模拟)抛物线y 2=2px (p >0)上一点M (3,y )到焦点F 的距离|MF |=4,则抛物线的方程为( ) A.y 2=8x B.y 2=4x C.y 2=2x D.y 2=x(2)(2022·怀仁二模)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上任意一点到两焦点的距离之差的绝对值为6,且离心率为2,则双曲线C 的标准方程为________. 答案 (1)B (2)x 29-y 227=1解析 (1)由抛物线y 2=2px (p >0)上一点M (3,y )到焦点F 的距离|MF |=4, 可得3+p2=4,解得p =2,所以抛物线的方程为y 2=4x ,故选B.(2)由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上任意一点到两焦点的距离之差的绝对值为6,可得a =3,离心率为2,所以c =6,则b 2=c 2-a 2=62-32=27.所以双曲线C 的标准方程为x 29-y 227=1.热点二 椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e =ca =1-b 2a 2(0<e <1),双曲线的离心率e =c a =1+b 2a2(e >1). (2)根据条件建立关于a ,b ,c 的齐次式,消去b 后,转化为关于e 的方程或不等式,即可求得e 的值或取值范围.2.与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共渐近线的双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).考向1 离心率问题例2 (1)(2022·济南模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为( ) A.3-1 B.32C.12D.22(2)(2022·浙江卷)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,过F 且斜率为b4a 的直线交双曲线于点A (x 1,y 1),交双曲线的渐近线于点B (x 2,y 2)且x 1<0<x 2.若|FB |=3|FA |,则双曲线的离心率是________. 答案 (1)A (2)364解析 (1)可画出如图所示图形.△MF 1F 2为等边三角形,F 1(-c ,0),F 2(c ,0),QF 1⊥MF 2,∠F 1F 2Q =60°, ∵|F 1F 2|=2c ,∴|QF 2|=c ,|QF 1|=3c , ∴|QF 1|+|QF 2|=(3+1)c =2a ,∴ca=3-1, 即e =3-1.故选A.(2)结合题意作出图形如图所示,由题意知,过左焦点F (-c ,0)且斜率为b 4a 的直线方程为y =b4a(x +c ), 由⎩⎪⎨⎪⎧y =b 4a (x +c ),y =b a x 解得⎩⎪⎨⎪⎧x =c3,y =bc 3a ,所以B ⎝ ⎛⎭⎪⎫c 3,bc 3a .因为|FB |=3|FA |,所以FB →=3FA →, 即⎝ ⎛⎭⎪⎫4c 3,bc 3a =3(x 1+c ,y 1),得⎩⎪⎨⎪⎧x 1=-5c9,y 1=bc9a ,所以A ⎝ ⎛⎭⎪⎫-5c 9,bc 9a .将⎝ ⎛⎭⎪⎫-5c 9,bc 9a 代入双曲线方程x 2a 2-y 2b 2=1,可得⎝ ⎛⎭⎪⎫-5c 92a 2-⎝ ⎛⎭⎪⎫bc 9a 2b 2=1,结合离心率e =c a得e 2=8124, 又e >1,所以双曲线的离心率为364. 考向2 椭圆、双曲线的几何性质例3 (1)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是双曲线C 上一点,PF 2⊥x 轴,tan∠PF 1F 2=34,则双曲线的渐近线方程为( )A.x ±2y =0B.2x ±y =0C.3x ±y =0D.x ±3y =0(2)(2022·南通质检)椭圆C :x 218+y 2b 2=1(b 2<18且b >0)的上、下顶点分别为A ,C ,如图,点B 在椭圆上(异于椭圆顶点),点D 在椭圆内,平面四边形ABCD 满足∠BAD =∠BCD =90°,且S △ABC =2S △ADC ,则该椭圆的短轴长为________.答案 (1)C (2)6解析 (1)因为点P 在双曲线上,且PF 2⊥x 轴,所以点P 的横坐标为c ,代入双曲线的方程可得P ⎝ ⎛⎭⎪⎫c ,±b 2a ,则|PF 2|=b 2a,|F 1F 2|=2c ,所以tan∠PF 1F 2=|PF 2||F 1F 2|=b 2a 2c =b 22ac =34,整理得2b 2=3ac , 所以4⎝ ⎛⎭⎪⎫b a 4-9⎝ ⎛⎭⎪⎫b a 2-9=0,解得ba=3,所以双曲线的渐近线方程为y =±3x ,即3x ±y =0,故选C. (2)根据题意可得A (0,b ),C (0,-b ),设B (x 1,y 1),D (x 2,y 2).连接BD ,由∠BAD =∠BCD =90°可得,点A ,B ,C ,D 均在以BD 为直径的圆E (E 为BD 中点)上,又原点O 为圆E 上的弦AC 的中点,所以圆心E 在AC 的垂直平分线上,即圆心E 在x 轴上, 所以y 1+y 2=0. 又S △ABC =2S △ADC , 所以x 1=-2x 2,故圆心E 的坐标为⎝ ⎛⎭⎪⎫x 14,0,所以圆E 的方程为⎝⎛⎭⎪⎫x -x 142+y 2=916x 21+y 21,将(0,b )代入圆E 的方程,结合x 2118+y 21b 2=1可得b 2=9,所以b =3,短轴长为6.规律方法 1.确定椭圆和双曲线的离心率的值或范围,其关键就是确立一个关于a ,b ,c 的等量关系或不等关系,然后用a ,c 代换b ,进而求ca的值或范围.2.求双曲线渐近线方程的关键在于求b a 或ab 的值,也可将双曲线方程中等号右边的“1”变为“0”,然后因式分解得到.训练2 (1)双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 在y 轴上,且△MF 1F 2为正三角形.若线段MF 2的中点恰好在双曲线E 的渐近线上,则E 的离心率等于( ) A.5B.2 C.3D. 2(2)(2022·张家口一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,过原点O 的直线l交椭圆C 于点A ,B ,且2|FO |=|AB |,若∠BAF =π6,则椭圆C 的离心率是________. 答案 (1)B (2)3-1解析 (1)不妨设M 在y 轴的正半轴上, 设M (0,t ),t >0,由于△MF 1F 2为正三角形,所以t =3c ,故M (0,3c ),则MF 2的中点为N ⎝ ⎛⎭⎪⎫c 2,3c 2, 因为N 在渐近线y =b ax 上,所以3c 2=b a ×c 2,即b a =3,e =ca=1+⎝ ⎛⎭⎪⎫b a 2=2,故选B. (2)因为直线AB 过原点,由椭圆及直线的对称性可得|OA |=|OB |, 所以|AB |=2|OA |,设右焦点F ′,连接BF ′,AF ′, 又因为2|OF |=|AB |=2c , 可得四边形AFBF ′为矩形,在Rt△ABF 中,|AF |=2c ·cos∠BAF =2c ·32=3c , |BF |=2c ·sin∠BAF =2c ·12=c ,∴|AF ′|=|BF |=c ,由椭圆定义|AF |+|AF ′|=3c +c =2a , ∴e =c a=3-1.热点三 抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),α是弦AB 的倾斜角,则(1)x 1x 2=p 24,y 1y 2=-p 2.(2)|AB |=x 1+x 2+p =2psin 2α. (3)1|FA |+1|FB |=2p.(4)以线段AB 为直径的圆与准线x =-p2相切.例4 (1)(2022·泰安模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,射线FM 与y 轴交于点A (0,2),与抛物线C 的准线交于点N ,FM →=55MN →,则p 的值等于( ) A.18B.2 C.14D.4 (2)(多选)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线l 的斜率为3且经过点F ,直线l 与抛物线C 交于A ,B 两点(点A 在第一象限),与抛物线的准线交于点D ,若|AF |=8,则以下结论正确的是( ) A.p =4 B.DF →=FA → C.|BD |=2|BF | D.|BF |=4 答案 (1)B (2)ABC解析 (1)依题意F 点的坐标⎝ ⎛⎭⎪⎫p 2,0,设M 在准线上的射影为K , 由抛物线的定义知|MF |=|MK |, ∵FM →=55MN →,∴|FM ||MN |=55, 可得|MK ||MN |=55, 则|KN |∶|KM |=2∶1, ∴k FN =0-2p 2-0=-4p ,∴-4p=-2,求得p =2.故选B.(2)如图所示,分别过点A ,B 作准线的垂线,垂足分别为E ,M ,连接EF .设抛物线C 的准线交x 轴于点P ,则|PF |=p ,由于直线l 的斜率为3,则其倾斜角为60°.又AE ∥x 轴,∴∠EAF =60°,由抛物线的定义可知,|AE |=|AF |,则△AEF 为等边三角形, ∴∠EFP =∠AEF =60°,则∠PEF =30°,∴|AF |=|EF |=2|PF |=2p =8,解得p =4,故A 正确;∵|AE |=|EF |=2|PF |,PF ∥AE ,∴F 为线段AD 的中点,则DF →=FA →,故B 正确; ∵∠DAE =60°,∴∠ADE =30°,∴|BD|=2|BM|=2|BF|(抛物线定义),故C正确;∵|BD|=2|BF|,∴|BF|=13|DF|=13|AF|=83,故D错误.规律方法利用抛物线的几何性质解题时,要注意利用定义构造与焦半径相关的几何图形(如三角形、直角梯形等)来沟通已知量与p的关系,灵活运用抛物线的焦点弦的特殊结论,使问题简单化且减少数学运算.训练3 (1)(2022·济南模拟)已知抛物线y2=4x的焦点为F,直线l经过F与抛物线交于A,B两点,点P在抛物线的准线上,且PF⊥AB,线段AB的中点为Q.若|PQ|=4,则|AB|=( )A.4B.4 2C.8D.8 2(2)(2022·广州模拟)过抛物线y2=4x焦点F的直线与该抛物线及其准线都相交,交点从左到右依次为A,B,C.若AB→=2BF→,则线段BC的中点到准线的距离为( )A.3B.4C.5D.6答案(1)C (2)B解析(1)由A,B向准线作垂线,垂足分别为C,D,因为PF⊥AB,可知P是线段CD的中点,PQ 是梯形ABDC 的中位线,又由抛物线的定义可知|AB |=2|PQ |=8,故选C. (2)由抛物线的方程可得焦点F (1,0),渐近线的方程为:x =-1, 由AB →=2BF →, 可得|AB ||BF |=2, 如图所示:作BB ′垂直于准线于B ′, 而|BB ′||AB |=22,∴∠ABB ′=45°, 所以直线AB 的斜率为1, 所以直线AB 的方程为x =y +1, 设B (x 1,y 1),C (x 2,y 2),联立⎩⎨⎧y 2=4x ,x =y +1,整理可得:x 2-6x +1=0,可得x 1+x 2=6,所以线段BC 的中点到准线的距离为x 1+x 22+1=4,故选B.一、基本技能练1.(2022·温州模拟)双曲线y 2-2x 2=1的离心率是( )A.52B.62C.3D. 5 答案 B解析 双曲线方程化为y 21-x 212=1,则a 2=1,b 2=12,从而e =1+b 2a 2=62,故选B. 2.设经过点F (1,0)的直线与抛物线y 2=4x 相交于A ,B 两点.若线段AB 中点的横坐标为2,则|AB |=( ) A.4 B.5 C.6 D.7 答案 C解析 因为抛物线为y 2=4x ,所以p =2, 设A ,B 两点横坐标为x 1,x 2, 因为线段AB 中点的横坐标为2, 则x 1+x 22=2,即x 1+x 2=4,故|AB |=x 1+x 2+p =4+2=6,故选C.3.(2022·烟台一模)已知点F 为抛物线y 2=2px (p >0)的焦点,点P 在抛物线上且横坐标为8,O 为坐标原点,若△OFP 的面积为22,则该抛物线的准线方程为( ) A.x =-12B.x =-1C.x =-2D.x =-4 答案 B解析 由抛物线的方程可得F ⎝ ⎛⎭⎪⎫p 2,0,不妨设P 在x 轴上方,则y 2=2p ×8,可得y p =4p , 则S △OFP =12|OF |·y p =12×p2×4p =22,解得p =2,所以准线方程为x =-p2=-1,故选B.4.“1<k <5”是方程“x 2k -1+y 25-k=1表示椭圆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 答案 B解析 因为k =3时,x 2k -1+y 25-k=1表示圆,故充分性不成立.若x 2k -1+y 25-k=1表示椭圆,则⎩⎨⎧k -1>0,5-k >0,k -1≠5-k ,∴1<k <5且k ≠3,∴必要性成立. 故“1<k <5”是“方程x 2k -1+y 25-k=1表示椭圆”的必要不充分条件.故选B.5.已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的一条渐近线与x 轴正半轴所成夹角为π3,则C的离心率为( )A.233B.2C.3D.3 答案 A解析 双曲线C 的渐近线方程为y =±ab x ,由题意可得a b =tanπ3=3, 则b a =33, 所以e =ca =c 2a 2=1+⎝ ⎛⎭⎪⎫b a 2=233,故选A.6.(2022·西安二模)直线y =kx (k >0)与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)在第一、第三象限分别交于P ,Q 两点,F 2是C 的右焦点,有|PF 2|∶|QF 2|=1∶3,且PF 2⊥QF 2,则C 的离心率是( ) A.3B. 6 C.3+1 D.6+1 答案 C解析 由对称性可知四边形PF 1QF 2为平行四边形, 又由PF 2⊥QF 2得四边形PF 1QF 2为矩形, ∴|PQ |=|F 1F 2|=2c , 又|PF 2|∶|QF 2|=1∶3, ∴|QF 2|-|PF 2|=(3-1)c =2a , ∴e =c a=23-1=3+1,故选C.7.(2022·石家庄模拟)已知椭圆M:x2a2+y2=1(a>1)的中心为O,过焦点F的直线l与M交于A,B两点,线段AF的中点为P,若|OP|=|PF|=32,则M的方程为( )A.x22+y2=1 B.x23+y2=1C.x24+y2=1 D.x25+y2=1答案 B解析不妨设F为椭圆M的右焦点,则其左焦点为F1,连接AF1,∵O为FF1中点,P为AF中点.∴OP为△AFF1的中位线.∴|AF1|=2|OP|=3,|AF|=2|PF|= 3.∴|AF1|+|AF|=23=2a,∴a= 3.∴椭圆M的方程为x23+y2=1,故选B.8.(2022·南京调研)已知F1,F2分别为双曲线x2a2-y2b2=1(a>0,b>0)的左焦点和右焦点,过F2的直线l与双曲线的右支交于A,B两点,△AF1F2的内切圆半径为r1,△BF1F2的内切圆半径为r2,若r1=2r2,则直线l的斜率为( )A.1B. 2C.2D.2 2答案 D解析记△AF1F2的内切圆圆心为C,△BF1F2的内切圆圆心为D,边AF 1,AF 2,F 1F 2上的切点分别为M ,N ,E ,易知C ,E 横坐标相等,|AM |=|AN |,|F 1M |=|F 1E |,|F 2N |=|F 2E |,由|AF 1|-|AF 2|=2a ,即|AM |+|MF 1|-(|AN |+|NF 2|)=2a ,得|MF 1|-|NF 2|=2a , 即|F 1E |-|F 2E |=2a ,记C 的横坐标为x 0,则E (x 0,0), 于是x 0+c -(c -x 0)=2a ,得x 0=a , 同样圆心D 的横坐标也为a ,则有CD ⊥x 轴,设直线l 的倾斜角为θ,则∠OF 2D =θ2,∠CF 2O =90°-θ2,在△CEF 2中,tan∠CF 2O =tan ⎝ ⎛⎭⎪⎫90°-θ2=r 1|EF 2|,在△DEF 2中,tan∠OF 2D =tan θ2=r 2|EF 2|,由r 1=2r 2,可得2tan θ2=tan ⎝⎛⎭⎪⎫90°-θ2=1tanθ2,解得tan θ2=22,则直线l 的斜率为tan θ=2tanθ21-tan 2θ2=21-12=22,故选D.9.(多选)(2022·福州模拟)已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,P 为C上一点,则( )A.C 的离心率为22B.△PF 1F 2的周长为5C.∠F 1PF 2<90°D.1≤|PF 1|≤3 答案 CD解析 对于A ,由椭圆方程知:a =2,c =4-3=1,∴离心率e =c a =12,A 错误;对于B ,由椭圆定义知:|PF 1|+|PF 2|=2a =4,|F 1F 2|=2c =2, ∴△PF 1F 2的周长为4+2=6,B 错误;对于C ,当P 为椭圆短轴端点时,tan ∠F 1PF 22=c b =33,∴tan∠F 1PF 2=2tan∠F 1PF 221-tan 2∠F 1PF 22=2331-13=3,∴∠F 1PF 2=60°,即(∠F 1PF 2)max =60°, ∴∠F 1PF 2<90°,C 正确;对于D ,∵|PF 1|min =a -c =1,|PF 1|max =a +c =3, ∴1≤|PF 1|≤3,D 正确. 故选CD.10.(多选)(2022·菏泽模拟)设抛物线C:y2=8x的焦点为F,准线为l,点M为C上一动点,E(3,1)为定点,则下列结论正确的有( )A.准线l的方程是y=-2B.以线段MF为直径的圆与y轴相切C.|ME|+|MF|的最小值为5D.|ME|-|MF|的最大值为2答案BC解析抛物线C:y2=8x的焦点为F(2,0),准线为l:x=-2,故A错误;设M(m,n),MF的中点为N,可得|MF|=m+2=2·m+2 2,即N到y轴的距离是|MF|的一半,则以线段MF为直径的圆与y轴相切,故B正确;设M在准线上的射影为H,由|ME|+|MF|=|ME|+|MH|,当E,M,H三点共线时,|ME|+|MH|取得最小值,为3+2=5,故C正确;由|ME|-|MF|≤|EF|,当M为EF的延长线与抛物线的交点时,取得最大值|EF|,为(3-2)2+(1-0)2=2,故D错误.故选BC.11.已知抛物线y2=2px的准线方程为x=-1,则p=________.答案 2解析 y 2=2px 准线方程为x =-p2,则-p2=-1,∴p =2.12.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为5,且其虚轴长大于1,则双曲线C的一个标准方程可以为________. 答案x 2-y 24=1(答案不唯一)解析 依题意,不妨取b =2,由题意可得⎩⎪⎨⎪⎧c a =5,b =2,c 2=a 2+b 2,解得a =1,b =2,c = 5.所以满足题设的一个标准方程为x 2-y 24=1.二、创新拓展练13.(多选)(2022·南通适考)在平面直角坐标系xOy 中,已知F 1,F 2分别是椭圆C :x 24+y 22=1的左、右焦点,点A ,B 是椭圆C 上异于长轴端点的两点,且满足AF 1→=λF 1B →,则( ) A.△ABF 2的周长为定值B.AB 的长度最小值为1 C.若AB ⊥AF 2,则λ=3D.λ的取值范围是[1,5] 答案 AC解析 AF 1→=λF 1B →,则A ,B ,F 1三点共线,△ABF 2周长=4a =8是定值,A 正确.AB min =2·b 2a=2≠1,B 错误;∵AB ⊥AF 2,则AF 1⊥AF 2,A 在上、下顶点处,不妨设A (0,2),则AB ∶y =x +2,⎩⎨⎧y =x +2,x 24+y 22=1.解得⎩⎨⎧x =0,y =2或⎩⎪⎨⎪⎧x =-423,y =-23,B ⎝ ⎛⎭⎪⎫-423,-23,λ=-2-23=3,C 正确; 令AB :x =my -2,A (x 1,y 1),B (x 2,y 2),⎩⎨⎧x =my -2,x 24+y 22=1消x 可得(m 2+2)y 2-22my -2=0,则y 1+y 2=22mm 2+2, y 1y 2=-2m 2+2,-y 1=λy 2,当m =0时,λ=1,当m ≠0时,λ(1-λ)2=m 2+24m 2>14,∴3-22<λ<3+22,D 错误.故选AC.14.(多选)(2022·济宁模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2,点P 是双曲线C 上异于顶点的一点,则( ) A.||PA 1|-|PA 2||=2aB.若焦点F 2关于双曲线C 的渐近线的对称点在C 上,则C 的离心率为 5C.若双曲线C 为等轴双曲线,则直线PA 1的斜率与直线PA 2的斜率之积为1D.若双曲线C 为等轴双曲线,且∠A 1PA 2=3∠PA 1A 2,则∠PA 1A 2=π10答案 BCD解析 对于A :在△PA 1A 2中,根据三角形两边之差小于第三边, 故||PA 1|-|PA 2||<|A 1A 2|=2a ,故A 错误; 对于B ,焦点F 2(c ,0),渐近线不妨取y =bax ,即bx -ay =0, 设焦点F 2关于双曲线C 的渐近线的对称点为(m ,n ),则⎩⎪⎨⎪⎧n m -c ×b a =-1,b ×m +c 2-a ×n 2=0,解得⎩⎪⎨⎪⎧m =a 2-b 2c ,n =2abc,即F 2关于双曲线C 的渐近线的对称点为⎝⎛⎭⎪⎫a 2-b 2c ,2ab c , 由题意该对称点在双曲线上,故(a 2-b 2)2a 2c 2-(2ab )2b 2c 2=1,将c 2=a 2+b 2代入,化简整理得b 4-3a 2b 2-4a 4=0,即b 2=4a 2, 所以e =1+b 2a2=5, ∴e =5,故B 正确;对于C :双曲线C 为等轴双曲线, 即C :x 2-y 2=a 2(a >0),设P (x 0,y 0)(y 0≠0),则x 20-y 20=a 2,所以x 20-a 2=y 20, 故k PA 1·k PA 2=y 0x 0+a ·y 0x 0-a =y 20x 20-a2=1,故C 正确;对于D :双曲线为等轴双曲线,即C :x 2-y 2=a 2(a >0), 且∠A 1PA 2=3∠PA 1A 2, 设∠PA 1A 2=θ,∠A 1PA 2=3θ, 则∠PA 2x =4θ,根据C 项中的结论kPA 1·kPA 2=1, 即有tan θ·tan 4θ=1,在三角形中,只有两角互余时,它们的正切值才互为倒数, 故θ+4θ=π2,所以θ=π10,即∠PA 1A 2=π10,故D 正确.故选BCD.15.(多选)(2022·济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)左、右焦点分别为F 1,F 2,点P 为C 上任意一点,△PF 1F 2的内切圆的圆心为I ,圆I 与PF 1的切点为M ,PI 与x 轴的交点为N ,则以下结论正确的有( ) A.PF 1→·PF 2→有最大值a 2 B.内切圆I 面积有最大值πb 2c 2(a +c )2C.若|PM |=12|F 1F 2|,则椭圆C 的离心率为 12D.若∠F 1PF 2=2π3,则1|PF 1|+1|PF 2|=1|PN |答案 BCD解析 对A :PF 1→·PF 2→=PO →2-c 2≤b 2,故A 不正确;对B :由等面积法,内切圆I 的半径r =S △PF 1F 2a +c ≤bca +c ,所以内切圆面积有最大值πb 2c 2(a +c )2,故B 正确;对C :|PM |=12|F 1F 2|=c ,2|PM |+2c =4c =2a ,椭圆C 的离心率为12,故C 正确;对D :若∠F 1PF 2=2π3,由角平分线性质得则1|PF 1|+1|PF 2|=1|PN |,故D 正确.故选BCD. 16.(多选)(2022·无锡模拟)已知双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)的一条渐近线的方程为y =3x ,且过点⎝⎛⎭⎪⎫1,32,椭圆C 2:x 2a 2+y 2b 2=1的焦距与双曲线C 1的焦距相同,且椭圆C 2的左、右焦点分别为F 1,F 2,过点F 1的直线交C 2于A ,B 两点,若点A (1,y 1),则下列说法中正确的有( ) A.双曲线C 1的离心率为2 B.双曲线C 1的实轴长为12C.点B 的横坐标的取值范围为(-2,-1)D.点B 的横坐标的取值范围为(-3,-1) 答案 AD解析 双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)的一条渐近线的方程为y =3x ,则可设双曲线C 1的方程为x 2-y 23=λ,∵过点⎝⎛⎭⎪⎫1,32,∴1-34=λ,解得λ=14,∴双曲线C 1方程为4x 2-43y 2=1,即x 214-y234=1,可知双曲线C 1的离心率e =ca=2,实轴的长为1,故选项A 正确,选项B 错误; 由14+34=1,可知椭圆C 2:x 2a 2+y 2b2=1的焦点F 1(-1,0),F 2(1,0), 不妨设A (1,y 1)(y 1>0),代入x 2a 2+y 2b 2=1,得1a 2+y 21b 2=1,∴y 1=b 2a ,直线AB 的方程为y =b 22a(x +1),联立⎩⎪⎨⎪⎧y =b 22a (x +1),x2a 2+y2b 2=1,消去y 并整理得(a 2+3)x 2+2(a 2-1)x -3a 2-1=0, 根据韦达定理可得1·x B =-3a 2+1a 2+3,可得x B =-3a 2+1a 2+3=-3+8a 2+3,又a 2>1,∴a 2+3>4,0<8a 2+3<2, ∴-3<x B <-1,故选项C 错误,选项D 正确,故选AD.17.(2022·北京石景山区一模)设点F 1,F 2分别为椭圆C :x 24+y 2=1的左、右焦点,点P是椭圆C 上任意一点,若使得PF 1→·PF 2→=m 成立的点恰好是4个,则实数m 的一个取值可以为________. 答案 0(答案不唯一)解析 当m =0时,PF 1→·PF 2→=0,则PF 1→⊥PF 2→,由椭圆方程可知a 2=4,b 2=1,c 2=3,因为c >b ,所以以F 1F 2为直径的圆与椭圆有4个交点. 使得PF 1→·PF 2→=0成立的点恰好有4个. 所以实数m 的一个取值可以为0.18.(2022·湖州质检)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,设椭圆、双曲线的离心率分别为e 1,e 2,则e 21+e 22的最小值为________.答案 1+32解析 由题意,可设椭圆长半轴为a 1,双曲线的实半轴为a 2, 不妨设P 为双曲线右支上一点,由椭圆和双曲线的定义可知 ⎩⎨⎧|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,则|PF 1|=a 1+a 2,|PF 2|=a 1-a 2, 又∠F 1PF 2=π3,由余弦定理可得(2c )2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cosπ3, 整理得4c 2=a 21+3a 22,即1e 21+3e 22=4,则14e 21+34e 22=1, 所以e 21+e 22=⎝ ⎛⎭⎪⎫14e 21+34e 22(e 21+e 22)=1+e 224e 21+3e 214e 22≥1+2e 224e 21·3e 214e 22=1+32. 当且仅当e 224e 21=3e 214e 22,即e 2=43e 1时取等号.。

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。

2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。

(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。

2024高考数学专项复习圆锥曲线专题:调和点列-极点极线

2024高考数学专项复习圆锥曲线专题:调和点列-极点极线

圆锥曲线专题:调和点列-极点极线一、问题综述(一)概念明晰(系列概念):1.调和点列:如图,在直线l上有两基点A,B,则在l上存在两点C,D到A,B两点的距离比值为定值,即AC BC =ADBD=λ,则称顺序点列A,C,B,D四点构成调和点列(易得调和关系2AB=1AC+1AD)。

同理,也可以C,D为基点,则顺序点列A,C,B,D四点仍构成调和点列。

所以称A,B和C,D称为调和共轭。

2.调和线束:如图,若A,C,B,D构成调和点列,O为直线AB外任意一点,则直线OA,OC,OB,OD称为调和线束。

若另一直线截调和线束,则截得的四点A ,C ,B ,D 仍构成调和点列。

3.阿波罗尼斯圆:如图,A,B为平面中两定点,则满足APBP=λ(λ≠1)的点P的轨迹为圆O,A,B互为反演点。

由调和点列定义可知,圆O与直线AB交点C,D满足A,C,B,D四点构成调和点列。

4.极点极线:如图,A,B互为阿圆O反演点,则过B作直线l垂直AB,则称A为l的极点,l为A的极线.2024高考数学专项复习5.极点极线推广(二次曲线的极点极线):(1).二次曲线Ax 2+By 2+Cxy +Dx +Ey +F =0极点P (x 0,y 0)对应的极线为Ax 0x +By 0y +Cx 0y +y 0x 2+D x 0+x2+E y 0+y 2+F =0x 2→x 0x ,y 2→y 0y ,xy →x 0y +y 0x 2,x →x 0+x2,y →y 0+y 2(半代半不代)(2)圆锥曲线的三类极点极线(以椭圆为例):椭圆方程x 2a 2+y 2b 2=1①极点P (x 0,y 0)在椭圆外,PA ,PB 为椭圆的切线,切点为A ,B 则极线为切点弦AB :x 0xa 2+y 0yb 2=1;②极点P (x 0,y 0)在椭圆上,过点P 作椭圆的切线l ,则极线为切线l :x 0x a 2+y 0y b 2=1;③极点P (x 0,y 0)在椭圆内,过点P 作椭圆的弦AB ,分别过A ,B 作椭圆切线,则切线交点轨迹为极线x 0xa 2+y 0yb 2=1;(3)圆锥曲线的焦点为极点,对应准线为极线.(二)重要性质性质1:调和点列的几种表示形式如图,若A ,C ,B ,D 四点构成调和点列,则有AC BC =AD BD =λ⇔2AB =1AD +1AC⇔OC 2=OB ⋅OA ⇔AC ⋅AD =AB ⋅AO ⇔AB ⋅OD =AC ⋅BD性质2:调和点列与极点极线如图,过极点P作任意直线,与椭圆及极线交点M,D,N则点M,D,N,P成调和点列(可由阿圆推广)性质3:极点极线配极原则若点A的极线通过另一点D,则D的极线也通过A.一般称A、D互为共轭点.推广:如图,过极点P作两条任意直线,与椭圆分别交于点MN,HG,则MG,HN的交点必在极线上,反之也成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考数学专题复习:圆锥曲线(文)学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)1.(2016高考新课标1文数)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13 (B )12 (C )13 (D )34 2.(2016高考新课标2文数)设F 为抛物线C :y 2=4x 的焦点,曲线y=k x (k >0)与C 交于点P ,PF ⊥x 轴,则k=( )(A )12 (B )1 (C )32(D )2 3.(2016高考新课标Ⅲ文数)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13 (B )12 (C )23 (D )344.(2016高考四川文数)抛物线24y x =的焦点坐标是( )(A )(0,2) (B )(0,1) (C )(2,0) (D )(1,0)5.(2016江西师大附中、鹰潭一中一联)已知抛物线C 的标准方程为)0(22>=p px y ,M 为抛物线C 上一动点,)0)(0,(≠a a A 为其对称轴上一点,直线MA 与抛物线C 的另一个交点为N .当A 为抛物线C 的焦点且直线MA 与其对称轴垂直时,△MON 的面积为18. (Ⅰ)求抛物线C 的标准方程; (Ⅱ)记ANAM t 11+=,若t 值与M 点位置无关,则称此时的点A 为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.6.【2015高考新课标1,文5】已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( ) (A )3 (B )6 (C )9 (D )127.【2015高考重庆,文9】设双曲线22221(a 0,b 0)x y a b 的右焦点是F ,左、右顶点分别是12A ,A ,过F 做12A A 的垂线与双曲线交于B ,C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为( )(A )12 (B )22(C )1 (D )2 8.【2015高考四川,文7】过双曲线2213y x -=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A 、B 两点,则|AB|=( )(A (B )(C )6 (D ) 9.【2015高考陕西,文3】已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( )A .(1,0)-B .(1,0)C .(0,1)-D .(0,1)10.【2015高考广东,文8】已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( )A .9B .4C .3D .211.【2015高考湖南,文6】若双曲线22221x y a b-=的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A 、3B 、54C 、43D 、5312.【2015高考安徽,文6】下列双曲线中,渐近线方程为2y x =±的是( ) (A )2214y x -= (B )2214x y -= (C )2212y x -= (D )2212x y -= 13.【2015高考福建,文11】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A .B .3(0,]4C .D .3[,1)4二、填空题(题型注释)14.(2016高考上海文数)已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________.15.(2016高考北京文数)已知双曲线22221x y a b-= (0a >,0b >)的一条渐近线为20x y +=,一个焦点为(5,0),则a =_______;b =_____________.16.(2016高考浙江文数)设双曲线x 2–23y =1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.17.(2016高考山东文数)已知双曲线E :22x a–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB|=3|BC|,则E 的离心率是_______.18.(2016江西南昌一模)已知抛物线C:x 2 =4y 的焦点为F ,过点F 且斜率为1的直线与抛物线相交于M ,N 两点.设直线l 是抛物线C 的切线,且l ∥MN ,P 为l 上一点,则的最小值为___________.19.(2016湖南师大附中等四校联考)若抛物线)0(22>=p px y 的准线经过双曲线122=-y x 的一个焦点,则=p _____.20.【2015高考浙江,文15】椭圆22221x y a b+=(0a b >>)的右焦点()F ,0c 关于直线b y x c=的对称点Q 在椭圆上,则椭圆的离心率是 . 21.【2015高考北京,文12】已知()2,0是双曲线2221y x b-=(0b >)的一个焦点,则b = .22.【2015高考上海,文7】抛物线)0(22>=p px y 上的动点Q 到焦点的距离的最小值为1,则=p .23.【2015高考上海,文12】已知双曲线1C 、2C 的顶点重合,1C 的方程为1422=-y x ,若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为 .24.【2015高考山东,文15】过双曲线C :22221x y a a-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为 .三、解答题(题型注释)25.(2016高考新课标1文数)在直角坐标系xOy 中,直线l:y=t (t≠0)交y 轴于点M,交抛物线C :22(0)y px p =>于点P,M 关于点P 的对称点为N,连结ON 并延长交C 于点H . (Ⅰ)求OH ON; (Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.26.(2016高考新课标2文数)已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当AM AN =时,求AMN ∆的面积;(Ⅱ)当AM AN =2k <.27.(2016高考新课标Ⅲ文数)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ;(Ⅱ)若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.28.(2016高考天津文数)(设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA e OA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.29.(2016高考上海文数)双曲线2221(0)y x b b-=>的左、右焦点分别为F1、F2,直线l 过F2且与双曲线交于A 、B 两点. (1)若l 的倾斜角为2π ,1F AB △是等边三角形,求双曲线的渐近线方程;(2)设b l 的斜率存在,且|AB|=4,求l 的斜率.学科&网30.(2016广东广州综合测试一)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为()120F -,,点(B 在椭圆C 上,直线()0y kx k =≠与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(Ⅰ)求椭圆C 的方程;(Ⅱ)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.31.【2015高考安徽,文20】设椭圆E 的方程为22221(0),x y a b a b+=>>点O 为坐标原点,点A 的坐标为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM . (Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB .32.【2015高考北京,文20】(本小题满分14分)已知椭圆C:2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M . (Ⅰ)求椭圆C 的离心率;(Ⅱ)若AB 垂直于x 轴,求直线BM 的斜率;(Ⅲ)试判断直线BM 与直线D E 的位置关系,并说明理由.33.【2015高考湖南,文20】(本小题满分13分)已知抛物线21:4C x y =的焦点F 也是椭圆22222:1y x C a b+=(0)a b >>的一个焦点,1C 与2C 的公共弦长为过点F 的直线l 与1C 相交于,A B 两点,与2C 相交于,C D 两点,且AC 与BD 同向.(Ⅰ)求2C 的方程; (Ⅱ)若AC BD =,求直线l 的斜率.34.【2015高考山东,文21】平面直角坐标系xOy 中,已知椭圆C :2222+=1(>>0)x y b b αα的离心率为2,12)在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222+=144x y a b,P 为椭圆C 上任意一点,过点P 的直线=+y kx m 交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(ⅰ)求||||OQ OP 的值; (ⅱ)求ABQ ∆面积的最大值.35.【2015高考陕西,文20】如图,椭圆2222:1(0)x y E a b a b+=>>经过点(0,1)A -,且离心率为2.(Ⅰ)求椭圆E 的方程; (Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同两点,P Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.36.【2015高考四川,文20】如图,椭圆E :22221x y a b+=(a>b>0)的离心率是22,点P (0,1)在短轴CD 上,且PC PD ⋅=-1(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA OB PA PB λ⋅+⋅为定值?若存在,求λ的值;若不存在,请说明理由.37.【2015高考上海,文22】(本题满分14分)本题共3个小题,第1小题4分,第2小题6分,第3小题6分.已知椭圆1222=+y x ,过原点的两条直线1l 和2l 分别于椭圆交于A 、B 和C 、D ,设AOC ∆的面积为S .(1)设),(11y x A ,),(22y x C ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明||21221y x y x S -=;A D BC Ox yP(2)设kx y l =:1,)33,33(C ,31=S ,求k 的值; (3)设1l 与2l 的斜率之积为m ,求m 的值,使得无论1l 与2l 如何变动,面积S 保持不变.参考答案1.B【解析】试题分析:如图,由题意得在椭圆中,11OF c,OB b,OD 2b b 42===⨯= 在Rt OFB ∆中,|OF ||OB||BF ||OD |⨯=⨯,且222a b c =+,代入解得22a 4c =,所以椭圆得离心率得1e 2=,故选B .考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .2.D【解析】试题分析:因为F 抛物线24y x =的焦点,所以(1,0)F , 又因为曲线(0)k y k x =>与C 交于点P ,PF x ⊥轴,所以21k =,所以2k =,选D . 考点: 抛物线的性质,反比例函数的性质. 【名师点睛】抛物线方程有四种形式,注意焦点的位置.对函数y=k x (0)k ≠,当0k >时,在(,0)-∞,(0,)+∞上是减函数,当0k <时,在(,0)-∞,(0,)+∞上是增函数.3.A【解析】试题分析:由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得点||()FM k a c =-,||OE ka =,由OBE CBM ∆∆,得1||||2||||OE OB FM BC =,即2(c)ka a k a a c =-+,整理,得13c a =,所以椭圆离心率为13e =,故选A . 考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得b a或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .4.D【解析】试题分析:由题意,24y x =的焦点坐标为(1,0),故选D .考点:抛物线的定义.【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单的性质是我们重点要掌握的内容,一定要熟记掌握.5.(Ⅰ)212y x =;(Ⅱ)仅当1103a -=,即3a =时,t 与m 无关 【解析】(Ⅰ)由题意,211||||2182222MON p p S OA MN p =⋅⋅=⋅⋅==△, 6p =∴, 抛物线C 的标准方程为212y x =.(Ⅱ)设1122()()M x y N x y ,,,,设直线MN 的方程为x my a =+,联立212x my a y x=+⎧⎨=⎩得212120y my a --=, ∴2144480m a ∆=+>, 1212y y m +=, 1212y y a =-,由对称性,不妨设0m >,(ⅰ)0a <时,12120y y a =->∵, 12y y ∴,同号,又11||||t AM AN =+= 2221222222212()111441111()11441y y m t m y y m a a m +⎛⎫=⋅=⋅=- ⎪+++⎝⎭∴, 不论a 取何值,t 均与m 有关, 即0a <时,A 不是“稳定点”; (ⅱ)0a >时,12120y y a =-<∵, 12y y ∴,异号.又11||||t AM AN =+=22122212()11()y y t m y y -=⋅+∴212122212()411()y y y y m y y +-=⋅+2221144481144m a m a +=⋅+22111311a a m ⎛⎫- ⎪=+ ⎪+ ⎪⎪⎝⎭, ∴仅当1103a -=,即3a =时,t 与m 无关,6.B【解析】∵抛物线2:8C y x =的焦点为(2,0),准线方程为2x =-,∴椭圆E 的右焦点为(2,0),∴椭圆E 的焦点在x 轴上,设方程为22221(0)x y a b a b+=>>,c=2,∵12c e a ==,∴4a =,∴22212b a c =-=,∴椭圆E 方程为2211612x y +=, 将2x =-代入椭圆E 的方程解得A (-2,3),B (-2,-3),∴|AB|=6,故选B .【考点定位】抛物线性质;椭圆标准方程与性质 【名师点睛】本题是抛物线与椭圆结合的基础题目,解此类问题的关键是要熟悉抛物线的定义、标准方程与性质、椭圆的定义、标准方程与性质,先由已知曲线与待确定曲线的关系结合已知曲线方程求出待确定曲线中的量,写出待确定曲线的方程或求出其相关性质. 7.C【解析】由已知得右焦点(,0)F c (其中)0,222>+=c b a c ,)0,(),0,(21a A a A -,),(),,(22ab c C a b c B -,从而),(),,(2221a b a c A a b a c A -=-+=,又因为12A B A C ⊥,所以120AB A C ⋅=,即0)()()()(22=⋅-++⋅-ab a b ac a c , 化简得到1122±=⇒=a bab ,即双曲线的渐近线的斜率为1±,故选C .【考点定位】双曲线的几何性质与向量数量积. 【名师点睛】本题考查双曲线的简单几何性质,利用向量垂直的条件来转化两直线垂直的条件而得到a 与b 的关系式来求解.本题属于中档题,注意运算的准确性. 8.D【解析】由题意,a =1,bc =2, 渐近线方程为y将x =2代入渐近线方程,得y 1,2=±故|AB|=D【考点定位】本题考查双曲线的概念、双曲线渐近线方程、直线与直线的交点、线段长等基础知识,考查简单的运算能力. 【名师点睛】本题跳出直线与圆锥曲线位置关系的常考点,进而考查直线与双曲线渐近线交点问题,考生在解题中要注意识别.本题需要首先求出双曲线的渐近线方程,然后联立方程组,接触线段AB 的端点坐标,即可求得|AB|的值.属于中档题. 9.B【解析】由抛物线22(0)y px p =>得准线2px =-,因为准线经过点(1,1)-,所以2p =, 所以抛物线焦点坐标为(1,0),故答案选B【考点定位】抛物线方程和性质.【名师点睛】1.本题考查抛物线方程和性质,采用待定系数法求出p 的值.本题属于基础题,注意运算的准确性.2.给出抛物线方程要求我们能够找出焦点坐标和直线方程,往往这个是解题的关键. 10.C【解析】由题意得:222549m =-=,因为0m >,所以3m =,故选C .【考点定位】椭圆的简单几何性质.【名师点晴】本题主要考查的是椭圆的简单几何性质,属于容易题.解题时要注意椭圆的焦点落在哪个轴上,否则很容易出现错误.解本题需要掌握的知识点是椭圆的简单几何性质,即椭圆22221x y a b+=(0a b >>)的左焦点()1F ,0c -,右焦点()2F ,0c ,其中222a b c =+. 11.D【解析】因为双曲线22221x y a b -=的一条渐近线经过点(3,-4),2225349163c b a c a a e a ∴=∴-=∴=,(),=. 故选D . 【考点定位】双曲线的简单性质【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线22221x y a b -=共渐近线的可设为2222(0)x y a b λλ-=≠;(2)若渐近线方程为by x a =±,则可设为2222(0)x y a b λλ-=≠;(3)双曲线的焦点到渐近线的距离等于虚半轴长b ;(4)22221(0.0)x y a b a b -=>>的一条渐近线的斜率为b a =口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.12.A【解析】由双曲线的渐进线的公式可行选项A 的渐进线方程为x y 2±=,故选A . 【考点定位】本题主要考查双曲线的渐近线公式.【名师点睛】在求双曲线的渐近线方程时,考生一定要注意观察双曲线的交点是在x 轴,还是在y 轴,选用各自对应的公式,切不可混淆. 13.A【解析】设左焦点为F ,连接1AF ,1BF .则四边形1BF AF 是平行四边形,故1AF BF =,所以142AF AF a +==,所以2a =,设(0,)M b ,则4455b ≥,故1b ≥,从而221ac -≥,203c <≤,0c <≤E 的离心率的取值范围是(0,]2,故选A . 【考点定位】1、椭圆的定义和简单几何性质;2、点到直线距离公式.【名师点睛】本题考查椭圆的简单几何性质,将4AF BF +=转化为142AF AF a +==,进而确定a 的值,是本题关键所在,体现了椭圆的对称性和椭圆概念的重要性,属于难题.求离心率取值范围就是利用代数方法或平面几何知识寻找椭圆中基本量,,a b c 满足的不等量关系,以确定ca的取值范围.14【解析】试题分析:利用两平行线间距离公式得d 5===考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即,x y 的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力. 15.1,2a b ==. 【解析】试题分析:依题意有2c b a⎧=⎪⎨=-⎪⎩,结合222c a b =+,解得1,2a b ==.考点:双曲线的基本概念 【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为122=+By Ax 的形式,当0>A ,0>B ,B A ≠时为椭圆,当0<AB 时为双曲线.16.. 【解析】试题分析:由已知1,2a b c ===,则2ce a==,设(,)P x y 是双曲线上任一点,由对称性不妨设P 在右支上,则12x <<,121PF x =+,221PF x =-,12F PF ∠为锐角,则2221212PF PF F F +>,即222(21)(21)4x x ++->,解得x >,2x <<,124PF PF x +=∈. 考点:双曲线的几何性质.【思路点睛】先由对称性可设点P 在右支上,进而可得1F P 和2F P ,再由12F F ∆P 为锐角三角形可得2221212F F FF P +P >,进而可得x 的不等式,解不等式可得12F F P +P 的取值范围. 17.2 【解析】试题分析:依题意,不妨设6,4AB AD ==,作出图象如下图所示则2124,2;2532,1,c c a DF DF a ===-=-==故离心率221c a == 考点:双曲线的几何性质【名师点睛】本题主要考查双曲线的几何性质.本题解答,利用特殊化思想,通过对特殊情况的讨论,转化得到一般结论,降低了解题的难度.本题能较好的考查考生转化与化归思想、一般与特殊思想及基本运算能力等. 18.-14【解析】设l :y x b =+,代入抛物线方程,得2440x x b --=,因为l 与抛物线相切,所以16160b ∆=+=,解得1b =-,所以l :1y x =-.由抛物线的方程,知(0,1)F ,所以MN l :1y x =+.设1122(,),(,)M x y N x y ,由241x x y y ==+⎧⎨⎩,得2440x x --=,所以12124,4x x x x +==-,所以12126,1y y y y +==.设(,1)P m m -,则11(,1)PM x m y m =--+,22(,1)PN x m y m =--+,所以12()()PM PN x m x m ⋅=--+12(1)(1)y m y m -+-+=2121212()x x m x x m y y -++++212(1)()(1)m y y m -++-=222(62)2[(3)7]14m m m -+=--≥-,所以PM PN ⋅的最小值为-14.19.22.【解析】抛物线)0(22>=p px y 的准线方程是2p x -=,双曲线122=-y x 的一个焦点)0,2(1-F ,∵抛物线)0(22>=p px y 的准线经过双曲线122=-y x 的一个焦点,∴22-=-p,解得22=p .20.2【解析】设()F ,0c 关于直线b y x c =的对称点为(,)Q m n ,则有1222n bm c cn b m c ⎧⋅=-⎪⎪-⎨+⎪=⨯⎪⎩,解得3222222,c b bc bc m n a a --==,所以3222222(,)c b bc bcQ a a --在椭圆上,即有32222422(2)(2)1c b bc bc a a b--+=,解得222a c =,所以离心率2c e a ==. 【考点定位】1.点关于直线对称;2.椭圆的离心率.【名师点睛】本题主要考查椭圆的离心率.利用点关于直线对称的关系,计算得到右焦点的对称点,通过该点在椭圆上,代入方程,转化得到关于,a c 的方程,由此计算离心率.本题属于中等题。

相关文档
最新文档