§4-03-时移特性例题
南邮信号与系统B习题答案04

(3)
解:
s
s
2
a
2 2
a shatu (t ) 2 2 s a
由频域微分性:
d a 2as 2 tshatu(t ) 2 2 2 2 ds s a (s a )
s t shatu(t ) 由线性: 2 2 2 (s a ) 2a
4-7 用部分分式展开法求下 列函数的拉氏反变换。
1 2 3 原式 e t 2e 2t 3e 3t u t s 1 s 2 s 3
2s 4 (4) s s2 4
A Bs C 解:原式是真分式,可表示 为:原式 2 s s 4 2s 4 用遮挡法得: A 2 1 s 4 s 0
s 2 8s 10 (1) 2 s 5s 4
解:原式不是真分式,用长 除法将其分解为:
3s 6 原式 1 2 s 5s 4 3s 6 则f 0 lim s 2 3 t s 5s 4
平面,故f 存在:
由于原式的极点为 1、 4,均位于s平面的左半
s 1 1 2s 1 4 2 2s 5 Y s 2 2 s 4s 4 s 1 s 4s 4 s 22
设Y s
s 2
2
2s 5
2
s 22
A
B s 2
用遮挡法求系数 A: A s 2 Y s s 2 2s 5 s 2 6
4-3 已知f t F s ,求下列信号的拉氏变 换。
(2) e
解:
at
t f a
t f aF as a
信号与系统试题库史上最全(内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。
一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。
[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。
[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。
[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。
[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。
[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。
[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。
其中:)()21()(k k g k ε=。
[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。
傅里叶变换的性质

傅里叶变换的性质本质就是信号的时域运算关系在傅里叶变换域中的体现,也是求解信号傅里叶变换的基本手段。
傅里叶变换具有唯一性。
傅氏变换的性质揭示了信号的时域特性和频域特性之间的确定的内在联系。
讨论傅里叶变换的性质,目的在于:1. 了解特性的内在联系2. 用性质求3. 了解在通信系统领域中的实用这些性质在内容和形式上具有某种程度的对称性。
§3.7.1对称性质1.性质2.意义例3-7-1例3-7-2例3-7-3§3.7.2 线性1.性质2.说明§3.7.3 奇偶虚实性奇偶虚实性实际上在§3.4的“傅里叶变换的特殊形式”中已经介绍过。
1.证明:由定义可以得到2.若,则证明:设f(t)是实函数(为虚函数或复函数情况相似,略)显然§3.7.4 尺度变换性质1. 性质:2. 证明:综合上述两种情况3.意义(1) 0<a<1 时域扩展,频带压缩。
脉冲持续时间增加a倍,信号变化减缓,信号在频域的频带压缩a倍。
因此高频分量减少,幅度上升a倍。
(2) a>1 时域压缩,频域扩展a倍。
持续时间短,变化加快。
信号在频域高频分量增加,频带展宽,各分量的幅度下降a倍。
此例说明:信号的持续时间与信号占有频带成反比,有时为加速信号的传递,要将信号持续时间压缩,则要以展开频带为代价。
§3.7.5 时移特性性质幅度频谱无变化,只影响相位频谱,例3-7-8求下图所示函数的傅里叶变换。
解:由对称关系求,又因为得幅频、相频特性分别如下图所示。
幅度频谱无变化,只影响相位频谱§3.7.6 时移+尺度变换1.性质:2. 证明:(仿的证明过程)当时,设,则例3-7-9方法一:先标度变换,再时延方法二:先时延再标度变换§3.7.7 频移特性1.性质2.证明3.说明4.应用通信中调制与解调,频分复用§3.7.8 频移特性1.性质2.证明3.说明4.应用通信中调制与解调,频分复用§3.7.9 时域微分性质2. 证明即3. 特别注意如果f(t)中有确定的直流分量,应先取出直流分量单独求傅里变换,余下部分再用微分性质。
傅里叶变换性质

四.尺度变换性质
第 9
页
若f
(t)
F (),则f
at
1 a
F a
, a为非零实常数
意义
(1) 0<a<1 时域扩展,频带压缩。 (2) a>1 时域压缩,频域扩展a倍。
(3) a 1 f t f t, F F 。
X
第
(1) 0<a<1 时域扩展,频带压缩。
10
页
f t
F
E
E
o t
2
0
F
0
通信中调制与解调,频分复用。
X
七.微分性质
第 16
页
时域微分性质
f (t) F(),则f (t) jF()
频域微分性质
若f (t) F( ), 则tf (t) jd F d
d F
jtf (t)
d
jt n
f
(t)
dn F
d n
或
t n f (t) jn F n
X
1.时域微分
1、f(t)是实函数
实函数傅里叶变换的幅度谱和相位谱分别为偶、 奇函数
若f(t)是实偶函数,F(ω)必为ω的实偶函数
F f ( t )e j t d t
20 f ( t )cost d t
若f(t)是实奇函数,F(ω)必为ω的虚奇函数
F
f
(
t
)e
j
t
d
t
2 j f ( t )sint d t
0
X
第
2、 f(t)是虚函数
7 页
令 f t jgt
F jgt e jt dt
jgt cos( t )dt gt sin( t )dt
信号

∫− ∞ δ
即 同理可得
∞
'
( t )e
− jω t
ℱ [δ (t )] = j ω
'
d − jω t dt = − e dt
t =0
= jω
ℱ [δ (t)] = ( jω)
(n)
n
3、 单位直流信号的频谱 幅度等于1 的直流信号可表示为: 幅度等于1 的直流信号可表示为 ↔ 1
0 (a)
t (b)
0
ω
图 4.4-6 单位冲激函数的频谱
2、冲激函数导数的频谱 根据定义, 根据定义,冲激函数一阶导数的频谱函数为 :
ℱ [δ ( t )] = ∫− ∞ δ ( t )e
' ∞ '
− jω t
dt
按冲激函数导数的定义 :
∫ δ ( t )ϕ ( t )dt = ( −1) ϕ (0)
t 0 为常数,则有 为常数,则有:
± j ω t0
f (t ± t0 ) ↔ e
F ( jω )
上式表示,在时域中信号沿时间轴右移( 上式表示,在时域中信号沿时间轴右移(即延 ),其在频域中所有频率 分量” 其在频域中所有频率“ 时 t 0 ),其在频域中所有频率“分量”相应落 而其幅度保持不变。 后一相位 ω t 0 ,而其幅度保持不变。
1 a
a
f (t ) = gτ (t )
F ( jω )
1
-2π/τ
−τ 2
τ
2π/τ
0
f (at ) 1
τ
t
2
0
1 3F
ω
(j ω ) 3
6π
τ
3
信号与系统-第2章例题

d2y dy 5 6 y (t ) 4 f (t ) 2 dt dt
ቤተ መጻሕፍቲ ባይዱ
t0
系统的特征方程为 系统的特征根为
s 2 5s 6 0 s1 2,s2 3
yx (t ) K1e—2t K2e—3t
y(0)=yx(0)=K1+K2=1 y' (0)= y'x(0)= 2K13K2 =3
r2 (t ) rzi (t ) 2rzs (t ) [e3t 2sin(2t )]u(t )
解得
rzi (t ) 3e3t u(t )
rzs (t ) [e3t sin(2t )]u(t )
r3 (t ) rzi (t ) rzs (t t0 )
冲激平衡法 冲激平衡法是指为保持系统对应的动态方程式的 恒等,方程式两边所具有的冲激信号函数及其各阶导 数必须相等。根据此规则即可求得系统的冲激响应h(t)。
例:
已知某线性非时变系统的动态方程式为
dy (t ) 3 y (t ) 2 f (t ) dt
试求系统的冲激响应h(t)。
(t 0)
[解] 系统的特征方程为 系统的特征根为 y(0)=yx(0)=K1=1; y'(0)= y'x(0)= 2K1+K2 =3
s 2 4s 4 0
s1 s2 2
(两相等实根)
yx (t ) K1e—2t K2te—2t
解得 K1 =1, K2=5
yx (t ) e2t 5te2t , t 0
2) 求非齐次方程y‘’(t)+6y‘(t)+8y(t) = f(t)的特解yp(t) 由输入f (t)的形式,设方程的特解为
傅里叶变换的性质

傅里叶变换的性质实质就是信号的时域运算关系在傅里叶变换域中的体现,也是求解信号傅里叶变换的基本手段.之迟辟智美创作傅里叶变换具有唯一性.傅氏变换的性质揭示了信号的时域特性和频域特性之间简直定的内在联系.讨论傅里叶变换的性质,目的在于:1. 了解特性的内在联系2. 用性质求3. 了解在通信系统领域中的实用这些性质在内容和形式上具有某种水平的对称性.1.性质2.意义例3-7-1例3-7-2例3-7-3§3.7.2 线性1.性质2.说明这个性质虽然简单,但实际上是应用最多的.例3-7-4§3.7.3 奇偶虚实性奇偶虚实性实际上在§3.4的“傅里叶变换的特殊形式”中已经介绍过. 1.证明:由界说可以获得,则证明:设f(t)是实函数(为虚函数或复函数情况相似,略)显然§3.7.4 标准变换性质1. 性质:2. 证明:综合上述两种情况3.意义(1) 0<a<1 时域扩展,频带压缩.脉冲继续时间增加a倍,信号变动减缓,信号在频域的频带压缩a倍.因此高频分量减少,幅度上升a倍.(2) a>1 时域压缩,频域扩展a倍.继续时间短,变动加快.信号在频域高频分量增加,频带展宽,各分量的幅度下降a倍.此例说明:信号的继续时间与信号占有频带成反比,有时为加速信号的传递,要将信号继续时间压缩,则要以展开频带为价格.§3.7.5 时移特性性质幅度频谱无变动,只影响相位频谱,例3-7-8求下图所示函数的傅里叶变换.解:由对称关系求,又因为得幅频、相频特性分别如下图所示.幅度频谱无变动,只影响相位频谱§3.7.6 时移+标准变换1. 性质:2. 证明:(仿的证明过程)那时,设,则例3-7-9方法一:先标度变换,再时延方法二:先时延再标度变换两种方法结果相同.§3.7.7 频移特性1.性质2.证明3.说明4.应用通信中调制与解调,频分复用§3.7.8 频移特性1.性质2.证明3.说明4.应用通信中调制与解调,频分复用§3.7.9 时域微分性质1.性质2. 证明即3. 特别注意如果f(t)中有确定的直流分量,应先取出直流分量独自求傅里变换,余下部份再用微分性质.§3.7.10 频域微分性质性质:则或例3-7-6解:例3-7-7解:……1. 性质2. 证明其中:(1)变上限积分用带时移的单元阶跃的无限积分暗示,成为(2)交换积分顺序,即先求时移的单元阶跃的信号的傅里叶变换(3)(5).例题——时域积分性质1. 求单元阶跃函数的傅里叶变换.解:则2. 求门函数积分的频谱函数.解:。
傅里叶变换的性质

傅里叶变换的性质实质就是旌旗灯号的时域运算关系在傅里叶变换域中的体现,也是求解旌旗灯号傅里叶变换的基本手段.之杨若古兰创作傅里叶变换具有独一性.傅氏变换的性质揭示了旌旗灯号的时域特性和频域特性之间的确定的内在联系.讨论傅里叶变换的性质,目的在于:1. 了解特性的内在联系2. 用性质求3. 了解在通信零碎领域中的实用这些性质在内容和方式上具有某种程度的对称性.1.性质2.意义例3-7-1例3-7-2例3-7-3§3.7.2 线性1.性质2.说明这个性质虽然简单,但实际上是利用最多的.例3-7-4§3.7.3 奇偶真假性奇偶真假性实际上在§3.4的“傅里叶变换的特殊方式”中曾经介绍过. 1.证实:由定义可以得到,则证实:设f(t)是实函数(为虚函数或复函数情况类似,略)明显§3.7.4 尺度变换性质1. 性质:2. 证实:综合上述两种情况3.意义(1) 0<a<1 时域扩展,频带紧缩.脉冲持续时间添加a倍,旌旗灯号变更减缓,旌旗灯号在频域的频带紧缩a倍.是以高频分量减少,幅度上升a倍.(2) a>1 时域紧缩,频域扩展a倍.持续时间短,变更加快.旌旗灯号在频域高频分量添加,频带展宽,各分量的幅度降低a 倍.此例说明:旌旗灯号的持续时间与旌旗灯号据有频带成反比,有时为加速旌旗灯号的传递,要将旌旗灯号持续时间紧缩,则要以睁开频带为代价.§3.7.5 时移特性性质幅度频谱无变更,只影响相位频谱,例3-7-8求下图所示函数的傅里叶变换.解:由对称关系求,又由于得幅频、相频特性分别如下图所示.幅度频谱无变更,只影响相位频谱§3.7.6 时移+尺度变换1. 性质:2. 证实:(仿的证实过程)当时,设,则例3-7-9方法一:先标度变换,再时延方法二:先时延再标度变换两种方法结果不异.§3.7.7 频移特性1.性质2.证实3.说明4.利用通信中调制与解调,频分复用§3.7.8 频移特性1.性质2.证实3.说明4.利用通信中调制与解调,频分复用§3.7.9 时域微分性质1.性质2. 证实即3. 特别留意如果f(t)中有确定的直流分量,应先取出直流分量单独求傅里变换,余下部分再用微分性质.§3.7.10 频域微分性质性质:则或例3-7-6解:例3-7-7解:……1. 性质2. 证实其中:(1)变上限积分用带时移的单位阶跃的无穷积分暗示,成为(2)交换积分顺序,即先求时移的单位阶跃的旌旗灯号的傅里叶变换(3)(5).例题——时域积分性质1. 求单位阶跃函数的傅里叶变换.解:则2. 求门函数积分的频谱函数.解:。