数值分析课程设计题目与要求
《数值分析课程设计》教学大纲

《数值分析课程设计》教学大纲课程编号:1512110303课程名称: 数值分析课程设计周数/学分:3/3先修课程:《数值分析》适用专业: 信息与计算科学开课教研室:应用数学教研室一、目的与要求:《数值分析课程设计》是实践性教学内容之一,是《数值分析》课程的辅助教学过程,是信息与计算科学专业的必修课。
通过设计,使学生深化对所学理论知识的理解,掌握数值计算方法的程序设计能力,初步具备解决实际数值计算问题的能力。
二、课程设计内容:1.掌握数值分析的基本内容。
误差的基本概念,插值与拟合,数值积分,线性代数方程组的解法,非线性方程求根,常微分方程初值问题的数值解法。
2.对每部分内容设计一定难度的问题,要求学生对问题进行分析,确定解决方案。
3.进行模拟与仿真,进行结果分析,编写课程设计报告三、课程设计步骤与方法1.教师向学生讲解课程设计目的和要求,补充相关基本知识,布置课程设计任务。
2.学生查找资料,编程、调试程序。
本步骤是课程设计的核心内容之一,要求学生分析算法,写出相应程序,并对结果进行解释3.撰写课程设计报告。
四、课程设计的基本要求1.算法说明正确无误,图表符合技术规范要求。
2.毎生一台计算机,要求学生使用Matlab软件或Mathematica软件编写相关程序。
3.按要求完成一篇的课程设计报告。
4.课程设计的方式:以集中学习为主;独立完成课程设计阶段规定的全部工作任务。
五、课程设计进度表序号 内 容 所用时间1 教师讲解,布置任务 1天2 学生编写程序并撰写设计报告 11天3 教师反馈意见,学生修改设计报告 3天合计 15天六、课程设计考核方式平时设计环节中的表现占总成绩30%,课程设计报告和软件运行情况占总成绩70%。
执笔:赵国喜审定:朱耀生 梁桂珍。
数值分析导论第三版课程设计

数值分析导论第三版课程设计介绍本文档是关于数值分析导论第三版课程设计的说明。
本课程设计旨在帮助学生初步掌握数值分析的基础知识和方法,并且能够通过程序实现对数值计算问题的求解。
本课程设计包括以下内容:1.基本数值方法的实现2.数值微积分的求解3.数值代数方程组的求解4.课程设计报告的撰写实验环境本课程设计需要使用以下软件:1.Python编程语言(版本3.6以上)2.Jupyter Notebook(版本4.0以上)实验基本要求1.课程设计可组队,每组不超过3人。
2.课程设计需要完成以下内容:–基本数值方法的实现•包括二分法、牛顿法、割线法等方法的实现•可以针对不同的数值计算问题,选择合适的数值方法进行实现–数值微积分的求解•包括梯形公式、辛普森公式等方法的实现•可以针对不同的数值微积分问题,选择合适的数值方法进行实现–数值代数方程组的求解•包括高斯消元法、LU分解法等方法的实现•可以针对不同的数值代数方程组问题,选择合适的数值方法进行实现–课程设计报告的撰写•报告需要包括以下内容:实验目的、实验方法、实验结果、代码清单实验题目1.二分法求根–实现二分法求方程f(x)=0的根。
–可以选择针对不同的目标函数进行求解。
2.牛顿法求根–实现牛顿法求方程f(x)=0的根。
–可以选择针对不同的目标函数进行求解。
3.割线法求根–实现割线法求方程f(x)=0的根。
–可以选择针对不同的目标函数进行求解。
4.梯形公式求积分–实现梯形公式求解目标函数f(x)的定积分。
–可以选择针对不同的目标函数进行求解。
5.辛普森公式求积分–实现辛普森公式求解目标函数f(x)的定积分。
–可以选择针对不同的目标函数进行求解。
6.高斯消元法求解线性方程组–实现高斯消元法求解线性方程组Ax=b。
–可以选择不同的系数矩阵A和方程组右侧的常向量b进行求解。
实验过程1.确定目标函数–根据实验要求选择合适的目标函数,或者自定义目标函数。
2.理解目标函数的性质–分析目标函数的连续性、可导性、多峰性、收敛性等性质,为选择合适的数值方法提供依据。
数值分析 教案

数值分析教案教案标题:数值分析教学目标:1. 了解数值分析的基本概念和原理2. 掌握数值分析的常用方法和技巧3. 能够应用数值分析解决实际问题4. 培养学生的数学思维和分析能力教学内容:1. 数值分析的基本概念和分类2. 插值与逼近3. 数值微分与数值积分4. 常微分方程的数值解法5. 线性代数的数值方法6. 数值分析在实际问题中的应用教学过程:1. 导入:通过引入一个实际问题,引起学生对数值分析的兴趣和认识2. 理论讲解:介绍数值分析的基本概念和分类,以及常用的数值分析方法和技巧3. 案例分析:通过具体的案例,演示数值分析在实际问题中的应用过程,引导学生理解和掌握数值分析的解决方法4. 练习与讨论:设计一些练习题,让学生在课堂上进行练习,并进行讨论和交流,加深对数值分析的理解5. 总结与拓展:总结本节课的重点内容,引导学生进行拓展思考,鼓励他们应用数值分析解决更多实际问题教学手段:1. 讲授2. 案例分析3. 讨论交流4. 练习与实践5. 总结与拓展教学评价:1. 课堂表现:学生是否积极参与讨论和练习,是否能够理解和掌握数值分析的基本概念和方法2. 作业与考试:设计一些作业和考试题目,检验学生对数值分析的掌握程度3. 实际应用:观察学生是否能够将数值分析应用到实际问题中,解决实际困难教学建议:1. 引导学生多进行实际问题的分析和解决,提高数值分析的实际应用能力2. 鼓励学生进行课外拓展阅读,了解数值分析在不同领域的应用案例3. 加强与其他学科的交叉融合,促进数值分析与实际问题的结合以上是关于数值分析的教案建议,希望对你有所帮助。
数值分析课程设计

课程设计报告课程名称课题名称专业班级学号姓名指导教师年月日湖南工程学院课程设计任务书课程名称数值分析课题专业班级学生姓名学号指导老师审批任务书下达日期2009 年 5 月 4 日任务完成日期2009 年 5 月18日一、设计内容与设计要求1.设计内容:对课程《计算方法》中的常见算法进行综合设计或应用(具体课题题目见后面的供选题目)。
2.设计要求:●课程设计报告正文内容a.问题的描述及算法设计;b.算法的流程图(要求画出模块图);c.算法的理论依据及其推导;d.相关的数值结果(通过程序调试),;e.数值计算结果的分析;f.附件(所有程序的原代码,要求对程序写出必要的注释)。
●书写格式a.要求用A4纸打印成册b.正文格式:一级标题用3号黑体,二级标题用四号宋体加粗,正文用小四号宋体;行距为22。
c.正文的内容:正文总字数要求在3000字左右(不含程序原代码)。
d.封面格式如下页。
●考核方式指导老师负责验收程序的运行结果,并结合学生的工作态度、实际动手能力、创新精神和设计报告等进行综合考评,并按优秀、良好、中等、及格和不及格五个等级给出每位同学的课程设计成绩。
具体考核标准包含以下几个部分:a.平时出勤(占10%)b.系统需求分析、功能设计、数据结构设计及程序总体结构合理与否(占10%)c.程序能否完整、准确地运行,个人能否独立、熟练地调试程序(占40%)d.设计报告(占30%)注意:不得抄袭他人的报告(或给他人抄袭),一旦发现,成绩为零分。
e.独立完成情况(占10%)。
●课程验收要求a.判定算法设计的合理性,运行相关程序,获得正确的数值结果。
b.回答有关问题。
c.提交课程设计报告。
d.提交软盘(源程序、设计报告文档)。
e.依内容的创新程度,完善程序情况及对程序讲解情况打分。
三、进度安排1、班级:信息与计算科学:0601、0602、06032、主讲教师:聂存云3、辅导教师:聂存云上机时间安排:第 12 周星期一 8时:30分——11时:30分星期三 8时:30分——11时:30分星期五 8时:30分——11时:30分第 13 周星期三 8时:30分——11时:30分星期五 8时:30分——11时:30分数理系课程设计评分表教师签名:日期:《计算方法》课程设计供选课题1. 线性代数系统的求解设计(供5人选:学号1-5)一、设计问题:数值求解下面的微分方程。
数值分析课程设计

仿真结果
• 电位三维立体图
仿真结果
• 等位线LAB源程序
• 绘图程序如下:
• • • • • • • • subplot(1,2,1),meshc(VPlot); %画含等高线的三维曲面 xlabel('x');ylabel('y');zlabel('空间电位'); subplot(1,2,2),axis([-xMax,xMax,-xMax,xMax,]); cs=contour(x,y,VPlot); %画等高线,cs是等高线值 clabel(cs); %在等高线图上加上编号 hold on; %在等高线图上加上电场 quiver(x,y,ExPlot,EyPlot); xlabel('x');ylabel('y');
MATLAB源程序
• 计算程序如下:
• • • • • • sym x; %定义符号变量x sym y; %定义符号变量y VPlot=log(x.^2+y.^2); %电位表达式 xMax=5; NGrid=20; %设置绘图区域和网格线数 xPlot=linspace(-xMax,xMax,NGrid); [x,y]=meshgrid(xPlot); %x,y取同样范围,生成二维网格 • [Explot,Eyplot]=gradient(-VPlot); %求解电场
《数值分析》课程设计
数学模型
• 本设计解决的是关于电磁场的两个基础性 问题:静电场场量的计算和场图的绘制。 • 本设计建立数学模型如下: • 已知空间电位分布为: V (x,y,z)=log(x2+y2) 计算空间各点电场,并画出电位线和电力线。
MATLAB源程序
•
数值分析课程设计题目_0811_

《数值分析》课程设计负责老师:刘瑞华、许安见、牛普 面向对象:0811-1、-2班级全体同学 时 间:第十八周周一至周五全天 地 点:实验楼B503 要求:(1) 4人一小组做一个设计题目,按照上次分组顺利,依次做下面的设计; (2) 每小组推选一位同学参加答辩,答辩不通过者,成绩等级将视为不及格; (3) 课程设计期间严格实行考勤记录,要求同学们到指定教室;(4) 严格按照课程设计的要求提交课程设计论文,需要制作封面,打印成绩评定书,其中成绩评定书装订在第2页;(5) 论文于第十八周周四下午5点前以班为单位收齐后交到实验楼B501,第十八周周五上午8:30在实验楼B502进行答辩。
题目(一)1、考虑两点边值问题()()⎪⎩⎪⎨⎧==<<=+.11,00,10,22y y a a dx dydx y d ε 容易知道它的精确解为.1111ax e e a y x +⎪⎪⎭⎫ ⎝⎛---=--εε为了把微分方程离散,把[]1,0区间n 等分,令nh 1=,ih x i =,,1,,2,1-=n i 得到差分方程 ,21211a h y y hy y y ii i i i =-++-++-ε简化为()(),2211ah y y h y h i i i =++-+-+εεε从而离散后得到的线性方程组的系数矩阵为()()()()⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+-++-++-++-=h h h h h h h A εεεεεεεεεε2222对1=ε,4.0=a ,200=n ,分别用1=ω、5.0=ω和5.1=ω的超松弛迭代法求解线性方程组,要求有4位有效数字,然后比较与精确解的误差,探讨使超松弛迭代法收敛较快的ω取值,对结果进行分析。
改变n ,讨论同样问题。
题目(二)2、先用你所熟悉的计算机语言将不选主元、列主元和完全主元Gauss 消去法编写成通用的子程序,然后用你编写的程序求解下面的方程组(考虑n 从120到130)123216186186186186186n n n x x x x x x --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ =71515151514⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; 对上述方程组还可以采用哪些方法求解?选择其中一些方法编程上机求解上述方程组,说明最适合的是什么方法;将计算结果进行比较分析,谈谈你对这些方法的看法。
数值分析课设实验报告 多项式求解

《数值分析》课程设计任务书根据课设任务书要求,我们的任务是计算出给定的任意的多项式方程:nn n n xa xa x a x a a ++++--112210 根的值。
在此我们选用牛顿迭代法进行计算。
但为了避免重根的问题,我们在得到一个给定函数后,先要将其函数图像画出。
在图像中我们能清晰的看出每个根的大概位置,再选取其中一个根的近似值记为初始值,之后确定精度和误差界后就可以计算这个根的值了。
计算中我们将用到三个M 文件,分别存放牛顿迭代函数、原函数及导函数。
其中原函数和到函数是以迭代形式表现出来的,以此来表示任意阶多项式。
这个模型选取依次求根的方式,能将根的精确度进一步提高,因此适于解决小型多项式的求根问题。
关键字:牛顿迭代函数、多项式、原函数、导函数一、问题的提出————————————————————————4二、模型的假设与符号说明———————————————————5三、问题的分析、模型的建立和测试求解————————————6问题分析———————————————————————6模型建立———————————————————————6测试数据的结果分析——————————————————8四、模型的优缺点和评价————————————————————11五、课设总结—————————————————————————12六、参考文献—————————————————————————13七、附录———————————————————————————14一、问题的提出1.1问题的背景在数学的学习过程中,我们会经常遇到求解多项式的问题,一般情况下我们只能用待定系数法求解这些方程的根,如何能更快捷的利用计算机解决这些问题呢。
下面我们将利用数值分析中的一些方法解决这个问题。
1.2问题的提出任意给定一个多项式:nn n n xa xa x a x a a ++++--112210求出它的根。
二、模型的假设与符号说明2.1 模型的假设2.1.1 假设多项式是有限次的2.1.2 假设某根的区间,及近似值可由图像看出2.1.3 假设每个根能分别求出,由此可不用考虑冲根问题2.2 符号说明(1) f 非线性函数(2) dff的微商(3) 0p 初始值(4) delta给定的允许误差 (5) 1max迭代的最大次数(6) 1p牛顿法求出的方程的近似值(7) err0p 的误差估计(8) k 迭代次数(9) y )(1p f y =(10) A 给定方程的系数矩阵 (11) B给定方程导函数系数矩阵(12) b系数矩阵的列数(13) a 系数矩阵的行数(14)1y)(1x df y =三、 问题的分析、模型的建立和测试求解3.1 对问题的分析根据上文问题的提出可知,我们要对给定的任意多项式:nn n n xa xa x a x a a ++++--112210求解。
(完整word版)数值分析课程设计实验二

实验二2.1一、题目:用高斯消元法的消元过程作矩阵分解。
设20231812315A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦消元过程可将矩阵A 化为上三角矩阵U ,试求出消元过程所用的乘数21m 、31m 、31m 并以如下格式构造下三角矩阵L 和上三角矩阵U(1)(1)212223(2)313233120231,1L m U a a m m a ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦验证:矩阵A 可以分解为L 和U 的乘积,即A =LU 。
二、算法分析:设矩阵111213212223313233a a a A a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,通过消元法可以将其化成上三角矩阵U ,具体算法如下: 第1步消元:111111(1)22112(1)331130,0;;2,3;i i i i i i i i a m a a a a m a i a a m a +=≠⎧⎪=+=⎨⎪=+⎩ 得到111213(1)(1)12223(1)(1)323300a a a A a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭第2步消元:(1)(1)(1)32322222(2)(1)(1)333332230,0;;a m a a a a m a ⎧+=≠⎪⎨=+⎪⎩ 得到的矩阵为111213(1)(1)22223(2)33000a a a A a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭三、程序及运行结果b1.mA=[20 2 3;1 8 1;2 -3 15];for i=1:2M(i)=A(i+1,1)/A(1,1);endfor j=2:3A1(j,2)=A(j,2)-M(j-1)*A(1,2);A1(j,3)=A(j,3)-M(j-1)*A(1,3);endM(3)=A1(3,2)/A1(2,2);A1(3,2)=0;A1(3,3)=A1(3,3)-M(3)*A1(2,3);M,A1运行结果为:M =0.0500 0.1000 -0.4051A1 =0 0 00 7.9000 0.85000 0 15.0443所以:10020230.051007.90.850.10.405110015.0443L U ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭验证:L=[1 0 0;0.05 1 0;0.1 -0.4051 1];U=[20 2 3;0 7.9 0.85;0 0 15.0443];A1=L*UA1 =20.0000 2.0000 3.00001.0000 8.0000 1.00002.0000 -3.0003 15.0000四、精度分析因为根据LU 的递推公式可知,L ,U 分别为下三角和上三角矩阵,其中L 不在对角线上的元素值为111()k ik ik is sk s kk l a l u u -==-∑,在计算每个系数时会产生相应的计算误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析课程设计题目与要求
(10级应数及创新班)
[设计题一]
编写顺序Gauss消去法和列主元Gauss消去法的函数,再分别调用这两个函数求解下面的84阶方程组:
= ,
然后考虑将方程组的阶数取为10至100之间多个值进行求解。
将你的计算结果与方程组的精确解进行比较。
从“快”、“准”、“省”三个方面分析以上两个算法,试提出改进的算法并加以实现和验证。
[设计题二]
编写平方根法和改进的平方根法(参见教材《计算方法》P54的例题2.5)的函数,然后分别调用这两个函数求解对称正定方程组Ax=b,其中A和b分别为:
(1)系数矩阵A为矩阵(阶数取为10至100之间多个值):
,
向量b随机地选取;
(2)系数矩阵A为Hilbert矩阵(阶数取为5至40之间多个值),即A的第i行第j列元素,向量b的第i个分量取为。
将你的计算结果与方程组的精确解进
行比较。
若出现问题,分析其原因,提出改进的设想并尝试实现之。
对于迭代法 ,......)2,1,0(99.021=-=+k x x x k k k , 它显然有不动点0*
=x 。
试设计2个数值实验
得到收敛阶数的大概数值(不利用判定收敛阶的判据定理):
(1) 直接用收敛阶的定义; (2) 用最小二乘拟合的方法。
[设计题四]
湖水在夏天会出现分层现象,接近湖面温度较高,越往下温度变低。
这种上热下冷的现象影响了水的对流和混合过程,使得下层水域缺氧,导致水生鱼类的死亡。
如果把水温T 看成深度x 的函数T(x),有某个湖的观测数据如下:
环境工程师希望:
1) 用三次样条插值求出T(x)。
2) 求在什么深度处dx
dT
的绝对值达到最大( 即02
2=dx T d )。
[设计题五]
某飞机头部的光滑外形曲线的型值点坐标由下表给出:
...值y 及一阶、二阶导数值y ’,y ”。
绘出模拟曲线的图形。
给定初值问题
其精确解为,分别按下列方案求它在节点
处的数值解及误差。
比较各方法的优缺点,并将计算结果与精确解做比较(列表、画图)。
(方案I)欧拉法,步长h = 0.025, h = 0.1;
(方案II)改进的欧拉法,步长h = 0.05, h = 0.1;
(方案III)四阶经典龙格—库塔法,步长h = 0.1。
[设计题七]
生态环境学家在研究自然界中两个生物种群数目变化时得到一组常微分方程。
x(t),后者在假设有两种生物(例如一种是蓝鲸,另一种是南极磷虾),前者在时刻t时的数量为
1
时刻t 时的数目为2x (t ),并假设它们都是t 的连续可微函数。
蓝鲸是以磷虾为主要食物的。
当没有食物来源时蓝鲸数目会减少,其减少速度与当时蓝鲸的数目成线性关系,即
)(11
t cx dt
dx -= . (1) 当有食物来源时,蓝鲸的数目会增加。
增加的速度和它捕食的数目有关,即
dt
dx 1
= d 1x (t ) 2x (t ) . (2) 合并(1)和(2),得到蓝鲸变化速度满足的微分方程
+-=)(11
t cx dt
dx d 1x (t ) 2x (t ). (3) 同样,在没有蓝鲸时,磷虾的增加速度满足
dt
dx 2
=2ax (t ). (4) 考虑到被捕食情况,则磷虾的数目满足
dt
dx 2
=2ax (t )-b 1x (t ) 2x (t ). (5) 合并(3)和(5),得到著名的Lotka-Volterra 方程
1
112
2212
dx cx dx x dt dx ax bx x
dt
⎧=-+⎪⎪⎨
⎪=-⎪⎩ (6) 其中d c b a ,,,均为正常数。
(6)是一个非线性常微分方程组,不可能有解析解。
假设,3.0,8.0,6.0,2.1====d c b a 而且初始值为1x (0)=2, 2x (0)=1.
1) 分别用欧拉法、改进的欧拉法和四阶经典龙格—库塔法,取多种步长求解(6)。
把1x (t ) 和2x (t )
画在同一张图上,并给予解释。
2) 把(6)的两个方程相除,得到
2
112
1212x dx cx x bx ax dx dx +--= (7) 尝试用数值方法求出2x ~1x 之间的函数关系。
并把它画在以1x ,2x 为坐标的图上,对所得结果加以解释。
[要求]
一、设计题必须用Matlab 完成;设计题一、二、三必做;设计题四、五选做一题,设计题六、七选做
一题(也可全做)。
二、须提交纸质课程设计报告,基本内容包括(可进一步发挥):
1)设计思路、算法步骤(或流程图);
2)程序清单(函数文件、命令文件)(加上必要的注释);
3)程序运行操作过程与输出结果(必须附上相应的截屏图,图中须有任务栏和命令历史窗口中的日期、时间);
4)对计算过程与结果的分析(如误差分析,收敛性,稳定性,计算量,存储量,方法比较等);各设计的优缺点(如特色、自己最满意之处、需改进的地方等);
5)自己在课程设计中的心得体会(须含程序调试过程中遇到的问题与困难及解决办法)以及对本课程的认识;
6)课程设计自我评价(优、良、中、及格、差之一)及其支持依据。
其中2)、3)两部分必须打印,其余部分打印、手写皆可。
须加封面,格式:题目(即“数值分析课程设计报告”);学生班级;姓名;学号;完成日期。
三、请将全班同学的电子版设计报告和相关的M文件刻录在一张光盘上上交。
严禁抄袭!若发现雷同,不区分抄与被抄,一并处理,成绩不及格或要求重做。
敢于说“不!”,以免害人又害己。
判断抄袭的参考标准:出现下列情形之一
(1)无截屏图;
(2)截屏图与他人相同;
(3)需编写的M文件(含注释)与他人完全相同;
(4)设计题一、二中方程组的阶数取得与他人完全相同;
(5)无“课程设计中的心得体会”或过于简短;
(6)“课程设计中的心得体会”不含“遇到的问题与困难及解决办法”;
(7)“课程设计中的心得体会”与他人相同。
必要时,进行面试和当场上机操作。
课程设计提交时间:
按要求完成后,统一交给课代表(或学习委员、班长),于下学期开学报到日(8月31日)或之前(下学期第一周便要评优,须完成成绩的评定)交至任课教师处,包括光盘和纸质的课程设计报告。
过期不交作为缺考处理。
附上机安排:
时间:第17周星期三、四下午2:30-5:00
第18周星期三下午2:30-5:00
地点:数学系机房。