LTE知识点汇总2_调度和功率控制
LTE笔记

基础知识:下行信道:上行信道:RB由12个子载波(每个15kHz)组成,也由一个时隙组成。
一个SB由两个RB组成。
RB=12*7=84RE,SB=2*RB=168RE。
(normal cp)频点编号EARFCN中心频率=(EARFCN-EARFCN0)*0.1+起始频率1个无线帧有10个子帧组成,每个子帧时长为1ms(=1个TTI),编号0-9。
FDD中每个子帧由2个时隙组成。
LTE规范中设计的基站最大覆盖范围为100km。
S是特殊子帧,由DwPTS(Downlink Pilot Time Slot,下行导频时隙)、GP(Guard Period,保护间隔)和UpPTS(上行导频时隙)组成。
一般情况下一个特殊子帧可以容纳14个OFDM符号(一个帧大小,如果采用external CP的话是12个),前面若干个Dw,最后1-2个用于Up,中间的用于GP。
增大Gp可以增加小区的覆盖半径。
PLMN(Public Lands Mobile Network, 移动通信网络),标识氛围MCC(国家代码)和MNC(移动网络代码)。
中国国家标识460,移动00、02、07;联通01、06;电信03、05。
R8小区选择用S算法。
R9小区选择也用S算法,补充增加S qual=Q qualmeas-(Q qualmin+Q qualnoffset)>=0(RSRP+RSRQ一起判断)小区重选过程中过滤采用S准则,排序采用R准则。
启动同频测量条件S服务小区<=S intrasearch启动异频测量条件S服务小区<= S nonintrasearchR准则(可以避免乒乓重选):针对服务小区R s=Q meas,s+Q Hyst针对邻区R n=Qmeans,s-Q offset候选邻区的信号在T reselectionEUTRA时间内持续成为,终端才能重选到候选邻区。
LTE为主同步信号定义了25、29、34三种ZC序列。
2.LTE 功率控制

MO
参数
小区信道功率配置
信息
SchPwr
ID 所属命令
描述
含义:该参数表示小 区同步信道功率相对 于参考信号的功率偏 置。
MOD CELLCHPWRCFG
LST CELLCHPWRCFG
界面取值范围:3175~3175
单位:0.005分贝
缺省值:0
PHICH 功率控制通过参数DlPcAlgoSwitch 设置。 当子开关PhichInnerLoopPcSwitch 打开时,PHICH 功率控制原理如下: eNodeB 首先由CQI(Channel Quality Indicator)估算出SINRRS,然后根据 SINRRS 和SINRTarget 的差异周期性地调整PHICH 发射功率,适应路径损耗 和阴影衰落的变化。 如果SINRRS 小于SINRTarget,则增大PHICH 发射功率。 反之则减小PHICH 发射功率。 当子开关PhichInnerLoopPcSwitch 关闭时,PHICH 功率通过参数PwrOffset 设置基于小区参考信号功率的偏置。PHICH 发射功率计算公式如下:
1.覆盖:ReferenceSignalPwr设置过大会造成越区覆盖,对其他小区造成干扰; ReferenceSignalPwr设置过小,会造成覆盖不足,出现盲区;
2.干扰:由于受周围小区干扰的影响,ReferenceSignalPwr设置也会不同,干 扰大的地方需要留出更大的干扰余量;
3.信道估计:ReferenceSignalPwr设置会影响信道估计,ReferenceSignalPwr 越大,信道估计精度越高,解调门限越低,接收机灵敏度越高,同时对邻区干 扰也越大;
LTE功率控制总结

LTE功率控制总结LTE (Long Term Evolution) 是一种高速无线通信技术,由于其高速率和低延迟,广泛应用于移动通信领域。
在LTE中,功率控制是保证信号质量、最大限度利用系统资源的重要技术。
下面是我对LTE功率控制的总结。
首先,LTE功率控制的目标是保证用户的通信质量,同时最大程度地利用系统资源。
因此,功率控制主要关注两个方面,即上行功控和下行功控。
上行功控是指对用户终端(UE)的上行信号进行功率控制。
在LTE中,上行功控通过调整UE的传输功率来控制其到达基站的信号强度,以保证信道质量。
LTE中采用了多种功控算法,例如关闭循环功控、开环加权功控和闭环功控等。
其中,闭环功控利用了基站对收到的上行PUCCH(物理上行共享信道)信号的质量进行反馈来调整功率。
基站通过应答信令中携带的反馈信息来控制UE的发射功率,实现了根据实际情况进行功率调节的闭环控制。
下行功控是指对基站对UE的下行信号进行功率控制。
在LTE中,下行功控通过调整基站的传输功率来保证UE接收到的信号强度在适当范围内,以保证信道质量。
下行功控主要包括两种方式,即全局功控和子载波功控。
全局功控通过调整基站的全局传输功率来控制信道质量,保证覆盖范围内所有UE的接收信号质量。
而子载波功控则是根据每个子载波的接收信号质量来调整功率,以实现对不同位置或用户间信号的灵活控制。
对于LTE功率控制的优化,可以从多个方面进行考虑。
首先,可以优化功控算法,提高功控的精确度和灵活性。
例如,可以引入更复杂的功控算法,结合信道质量、拥塞状态等因素进行综合权衡,以实现更加准确的功率调节。
其次,可以优化功控策略,根据网络负载、用户需求等因素,动态调整功控目标,以实现更好的资源利用效率。
此外,还可以优化功控参数的配置,根据网络拓扑和用户分布等特点,合理配置功控参数,以实现全网覆盖和负载均衡的最优化。
此外,LTE功率控制还需要考虑与其他技术的协同工作。
例如,与LTE调度算法的协同可以实现对功率控制和调度资源的优化配置,以提高系统性能。
LTE技术学习笔记

SIB2中包含公共的无线资源配置信息SIB2中包含公共的无线资源配置信息,如上行RACH、PUCCH、PUSCH、SRS的资源分配与调度,上行信道功率控制信息;下行BCCH、PDSCH、PCCH信道资源配置等,这些信息对理解当前系统上下行的资源使用及分析网络资源问题有很大帮助。
系统消息2主要有三大部分,包括radioResourceConfigCommon(公共无线资源配置信息)、ue-TimersAndConstants(定时器与常量)、freqInfo(频率信息)。
除此之外还包含小区接入禁止相关信息。
下面结合现网参数设置介绍下相关参数含义。
第一部分:radioResourceConfigCommon(公共无线资源配置信息)radioResourceConfigCommon:rach-ConfigCommon............................preambleInfo..............................numberOfRA-Preambles:n52 (12) 保留给竞争模式使用的随机接入探针个数,PRACH探针共有64。
当前参数设置52,表示52个探针用于竞争模式随机接入..............................preamblesGroupAConfig................................sizeOfRA-PreamblesGroupA:n28 (6) 组A随机接入探针个数。
基于竞争模式的随机接入探针共分2组,A组和B组。
当前参数设置28,A组中有28个探针,B组中52-28=24个探针。
................................messageSizeGroupA:b56 (0) 表示随机接入过程中UE选择A组前导时判断msg3大小的门限值/bit。
当前参数设置56,即msg3的消息小于56bit时,选择A组。
最新LTE功率控制

1功率控制23功率控制是无线系统中重要的一个功能。
UE在不同的区域向基站发送信号,4这样发送的功率就会有不一致。
远的UE发送的功率应该大一些,近的稍微小一5些,这样以便基站能够更好的将不同的UE能够解调出来。
6功率控制也通常分为开环功率控制和闭环功率控制。
开环功率控制通常不需7要UE反馈,基站通过自身的一些测量或者其他信息,来控制UE的功率发送或8者自身的功率发送。
闭环功率控制通常需要UE的一些相应的信息,包括信噪比9(SIR/ SINR) 或者是BLER/FER等信息,来调整UE的发送功率。
闭环功率控制10又一般分为两种,一种是内环功率控制,一种是外环功率控制。
内环功率控制11是通过SIR来进行相应的功率控制,基站通过接收到UE的SIR,发现与预期的12SIR有差距,然后产生功率控制命令,指示UE进行调整发送功能,以达到预期13的SIR。
外环功率通常是一种慢功率调整,主要是通过链路的质量来调整SIR,14通过测量链路的BLER,来指示SIR的调整情况。
15LTE的功率控制,有别于其他系统的功率控制。
LTE在一个小区是一个信号正16交的系统,所以小区内相互干扰比较小,LTE主要是在小区之间的干扰。
所以17LTE对于小区内的功率控制的频率相对比较慢。
LTE有个概念下行功率分配时要18使用到,the energy per resource element (EPRE),可以立即为每个RE的平19均功率。
1上行功率控制20 1.1 PUSCH 21 1.1.1 PUSCH 的功率控制22 UE 需要根据eNB 的指示设置每个子帧的PUSCH 的发射功率PUSCH P :23 )}()()()())((log 10,min{)(TF O_PUSCH PUSCH 10CMAX PUSCH i f i PL j j P i M P i P +∆+⋅++=α24 [dBm]25 以下对于各个参数进行相应的解析。
LTE功率控制

4 12 4 4 4 4 4 3 3
4 16 4 4 4 4 4 2 2
4 12
4 16
B B A
/
A
RS所占功率
5 5 4 4
/ / / /
4 4 4 24 1 / 6
4 4 4 8
/ / / /
4 8 8 24 2 / 6
3 / 4 3 /12 4 /12 12 / 24 3 / 6
通过X2接口交换小区间干扰信息,进行协调调度,抑制小区间的
同频干扰,交互的信息有:
过载指示OI(被动):指示本小区每个PRB上受到的上行干扰情况。
相邻小区通过交换该消息了解对方的负载情况。 高干扰指示HII(主动):指示本小区每个PRB对于上行干扰的敏感 程度。反映了本小区的调度安排,相邻小区通过交换该信息了解对方将 要采用的调度安排,并进行适当的调整以实现协调的调度。
提高参考信号的发射功率-Power Boosting
对于PDSCH信道的EPRE可以由下行小区专属参考信号功率EPRE 以及每个OFDM符号内的PDSCH EPRE和小区专属RS EPRE的比值ρA 或ρB的得到。 PDSCH_EPRE =小区专属RS _ EPRE ×ρA PDSCH_EPRE =小区专属 RS_ EPRE ×ρB 下行小区参考信号EPRE定义为整个系统带宽内所有承载下行小区专 属参考信号的下行资源单元(RE)分配功率的线性平均。UE可以认为 小区专属RS_EPRE在整个下行系统带宽内和所有的子帧内保持恒定, 直到接收到新的小区专属RS_EPRE。小区专属RS_EPRE由高层参数 Reference-Signal-power通知。
) 在j=0或者1时, PO _ PUSCH ( j) PO_NOMINAL_ PUSCH ( j) PO_UE_ PUSCH ( j,PO_NOMINAL_ PUSCH ( j) 为针对一个
lte网络优化知识点总结

lte网络优化知识点总结LTE(Long Term Evolution)是一种高速数据传输技术,其优化是为了提高网络性能、增强覆盖范围和提供更好的用户体验。
LTE网络优化需要考虑多个方面,包括网络规划、参数调整、邻区优化、干扰管理等。
本文将从这些方面对LTE网络优化知识点进行总结。
一、 LTE网络规划LTE网络规划是整个LTE网络优化的起点,它涉及到基站位置、天线方向、频点规划等方面。
在LTE网络规划中,需要考虑以下几个关键点:1. 基站位置:基站的位置对网络性能有重要影响,应根据覆盖需求、干扰情况和用户分布等因素来确定基站的位置。
2. 天线方向:LTE网络中的MIMO技术可以提高频谱利用率和覆盖范围,因此天线方向的规划对网络性能至关重要。
3. 频点规划:LTE网络中的频点规划需要考虑到频谱资源的利用、干扰管理等因素,以提高网络性能和覆盖范围。
二、 LTE参数调整LTE网络中有许多参数可以调整,如功率控制、资源分配、调度算法等。
通过合理调整这些参数可以提高网络性能,降低干扰,改善用户体验。
1. 功率控制:LTE网络中的功率控制是保证基站覆盖范围和保证用户的数据传输速率的重要手段。
2. 资源分配:LTE网络中的资源分配需要根据不同的业务需求和网络负载情况来调整,以提高网络效率和用户体验。
3. 调度算法:LTE网络中的调度算法可以影响用户的接入速率、传输速率和接入延迟等,合理调整调度算法可以提高网络性能。
三、邻区优化邻区优化是LTE网络优化的重要内容,它涉及到邻区关系的建立、邻区列表的优化、邻区切换的控制等方面。
1. 邻区关系的建立:邻区关系的建立是LTE网络优化的基础,它影响到切换的成功率、数据传输速率等关键指标。
2. 邻区列表的优化:LTE网络中的邻区列表需要根据覆盖范围、干扰情况、负载情况等因素进行优化,以提高网络性能。
3. 邻区切换控制:LTE网络中的邻区切换需要根据用户的移动速度、信号质量等因素进行控制,以提高用户体验。
LTE功率控制要点

功率控制功率控制是无线系统中重要的一个功能。
UE 在不同的区域向基站发送信号,这样发送的功率就会有不一致。
远的UE 发送的功率应该大一些,近的稍微小一些,这样以便基站能够更好的将不同的UE 能够解调出来。
功率控制也通常分为开环功率控制和闭环功率控制。
开环功率控制通常不需要UE 反馈,基站通过自身的一些测量或者其他信息,来控制UE 的功率发送或者自身的功率发送。
闭环功率控制通常需要UE 的一些相应的信息,包括信噪比(SIR/ SINR) 或者是BLER/FER 等信息,来调整UE 的发送功率。
闭环功率控制又一般分为两种,一种是内环功率控制,一种是外环功率控制。
内环功率控制是通过SIR 来进行相应的功率控制,基站通过接收到UE 的SIR ,发现与预期的SIR 有差距,然后产生功率控制命令,指示UE 进行调整发送功能,以达到预期的SIR 。
外环功率通常是一种慢功率调整,主要是通过链路的质量来调整SIR ,通过测量链路的BLER ,来指示SIR 的调整情况。
LTE 的功率控制,有别于其他系统的功率控制。
LTE 在一个小区是一个信号正交的系统,所以小区内相互干扰比较小,LTE 主要是在小区之间的干扰。
所以LTE 对于小区内的功率控制的频率相对比较慢。
LTE 有个概念下行功率分配时要使用到,the energy per resource element (EPRE),可以立即为每个RE 的平均功率。
1上行功率控制1.1PUSCH1.1.1 PUSCH 的功率控制UE 需要根据eNB 的指示设置每个子帧的PUSCH 的发射功率PUSCH P :)}()()()())((log 10,m in{)(TF O_PUSCH PUSCH 10CMAX PUSCH i f i PL j j P i M P i P +∆+⋅++=α [dBm]以下对于各个参数进行相应的解析。
CMAX P 是UE 的发射的最大的功率,在协议36101中定义的,)(PUSCH i M 是UE 在子帧i 所分配的PUSCH 的RB 的数目或者PUSCH 的RB 带宽,用RB 数目来表示;)(O_PUSCH j P 是预期的PUSCH 的功率,包括两部分,一部分是小区属性的参数)( PUSCH O_NOMINAL_j P ,一个是UE 属性的参数)(O_UE_PUSCH j P 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下行功率控制
下行发射功率
DL功率设置是为了给DL无线信道和信号认证一个功率级别,优化小区中任何位置的UL 解码质量 DL功率控制设置不用于小区专用信道(PBCH、PCFICH)和物理信号(RS、PSS、SSS)。 PHICH最多为8个UE编码。PDSCH是UE专用的,但不承载临界控制信息。DL功率控制仅 用于PDCCH 。 参数cellDLTotalPower(LteCell)给出了每个天线端口的小区许可的输出功率
每帧中,半静态调度为PCCH预约了一组连续的RB •PCCH资源在子帧9中预约 •为PCCH预约的RB的数量有赖于MCS,在10MHZ时限制在6以内,在20MHZ时限制在8以内
DL动态调度
DL中,动态调度负责对所有非严格定时限制的逻辑信道和无资源使用规律的逻辑信道进行 调度。 •因为无定时限制,所有没有预约阶段(每20ms)(使用静态调度、半静态调度和半永久 调度余下的资源) 通过3个连续的功能进行调度(每个子帧1 ms): 1.测量处理(CQI,RI等)和TM模式的选择,在每个TTI中进行更新,然后用在后两个功能 中。 2. HARQ重发处理功能,HARQ的重发按优先级管理用户 3. 初始重发过程功能,将余下资源分配给新的传输。 管理以下资源: Non-VoIP DTCH(GBR2、GBR3、GBR4和non-GBRs)和DCCH(SRB1和SRB2)逻辑信道 CCCH SRB0 (RACH Msg4) VoIP DTCH (GBR2)逻辑信道 定时超前控制消息
调度算法有3种+1种: 轮询算法(Round Robin,RR) :一种典型的追求公平最大化的调度算法,实现起来比较简单 (三种之中最简单的算法)。 优点:所有UE都可以得到服务 缺点:恶劣无线条件下的UE将会重发,从而降低小区的吞吐量 最大载干比算法(Maximum C/I) :最优无线条件的UE将得到服务(最优CQI),第二简单算法 (三种算法中) 优点:提高了有效吞吐量(较少的重发) 缺点:恶劣无线条件下的UE永远得不到服务 比例公平算法(Proportional Fair,PF) :所有UE都获得相同的吞吐量,是一种性能较优的算法, 但是算法最复杂(三种算法中) 。 优点:所有UE都可以得到服务 缺点:分配的资源无法根据发送到每个UE的数据量进行调整 轮询算法保证了用户间的公平性,但损失系统吞吐量;最大载干比算法获得了最大的系统吞吐量, 但丧失了公平性。因此,为了在这两种算法间取得一定的折衷,提出了比例公平算法。
承载类型 功能
信令承载SRB0 信令承载SRB1 信令承载SRB2 数据承载DRB默认承载 数据承载DRB专用承载
主要用于RRC建立的过程 映射到CCCH信道,不经过加密和完整性保护 主要用于RRC重配的过程 映射到DCCH信道,经过加密和完整性保护 主要用于NAS层信令 映射到DCCH信道,经过加密和完整性保护 NON GBR承载,映射到PDSCH信道, RLC层处理模式是AM, GBR承载或NON GBR承载,映射到PDSCH信道,视频和语音 是GBR,RLC层处理模式是UM
SI消息可在除MBSFN子帧和SIB1子帧外的其他任何子帧中传输 SI消息提供了3个优先级来降低DL调度的复杂性 SI消息的周期性=调度类别的周期性(SI消息包括相同周期的SIB) 调度类别周期:80、160、320、640、1280、2560和5120 ms SI消息必须使用QPSK进行传输(允许MCS 0到9) 目标MCS指出了SI消息最稳定的MCS(0最稳定) 较高的MCS使用的资源较少,但稳健性也较差,所以需要调度重发 SIB 2到3由SI消息承载(包含了相同调度类别的多个SIB ) •SI窗口定义了SI消息发送和重传的周期 •SI窗口值固定为20ms,由SIB1进行广播 •不同SI消息的SI窗口不允许重叠 •SI消息#0必须在第一个位置包含SIB2 •允许在除SIB1外的任何子帧中调度SI消息的转发
名称 描述 周期 调度类别 最基本系统信息,包括DL带宽,PHICH配置,系统 MIB MIB固定的周期是40ms 帧号(SFN) SIB1 固定的周期是80ms 或者 8 个无 SIB1 小区接入信息,其它SI的调度信息等 线帧(rf8) SIB2 SIB3 SIB4 SIB5 公共和共享信道信息:ACB信息,无线公共资源相调度类别周期:80、160、320、 关配置,UE定时器和常量,UL频点,上行带宽 640、1280、2560和5120 ms 小区重选信息:包含同频、异频和RAT间小区重选调度类别周期:80、160、320、 的公共信息 640、1280、2560和5120 ms 用于同频小区重选的有关信息,包括小区黑名单调度类别周期:80、160、320、 等 640、1280、2560和5120 ms 调度类别周期:80、160、320、 用于异频小区重选的有关信息 640、1280、2560和5120 ms 调度类别周期:80、160、320、 RAT间小区重选UTRAN信息,WCDMA网络 640、1280、2560和5120 ms 调度类别周期:80、160、320、 RAT间小区重选GERAN信息,GSM网络 640、1280、2560和5120 ms 调度类别周期:80、160、320、 RAT间小区重选HRPD信息,CDMA2000网络 640、1280、2560和5120 ms 包含家庭eNB标识(HNBID) 包含ETWS主通知信息 调度类别周期:80、160、320、 640、1280、2560和5120 ms 调度类别周期:80、160、320、 640、1280、2560和5120 ms 状态 总是激活 总是激活
调度
DL UE上下文
•为了在UE间共享无线资源,DL调度为每个UE组使用了一套参数,称为DL UE上下文 •DL UE上下文是在进入到RRC连接状态时与UEX相关联的。eNB维护RRCConnectedUserList, 该参数包含了所有的DL UE上下文 •DL UE上下文包括: UE种类 UE DL AMBR(汇聚最大比特速) UE承载列表UeBearerList UE MG状态(测量间隔) eNodeB支持下述承载配置: 信令无线承载(SRB1和SRB2) 每个用户专用的和默认的承载的混合 专用承载可以是non-GBR或GBR承载 默认承载是non-GBR 如果在IMS中包括了VoLTE ,则需要1个IMS信令承载 每个UE最多8个无线承载
参考信号功率设置
参数referenceSignalPower配置每个资源元(RE)和每个天线端口的DL RS绝对功率 增大referenceSignalPower值扩大小区的覆盖范围,降低则为数据保留更多的功率。 参数primarySyncSignalPowerOffset(PowerOffsetConfiguration)和 secondarySyncSignalPowerOffset为每个天线端口每个RE的同步信号配置发射功率 参数pBCHPowerOffset(PowerOffsetConfiguration)为PBCH信道配置每个天线端口的每 个RE的发射功OffsetConfiguration)为PCFICH信道配置每个天线端口的 每个RE的发射功率 参数pHICHPowerOffset(PowerOffsetConfiguration)为PHICH信道配置每个天线端口的 每个RE的发射功率 如果pDCCHPowerControlActivation= False,则PDCCH发射功率从以下参数中获得: pDCCHPowerOffsetSymbol1,用于时限0,OFDM标识0的PDCCH pDCCHPowerOffsetSymbol2and3用于OFDM标识1和2的 •若pDCCHPowerControlActivation= True, PDCCH发射功率从上述参数的初始化中获得, 然后由PDCCH功率控制机制进行更新
参数名称 Q_Rxlevmin S-NonIntraSearch threshServingLow s-Intrasearch threshX-High threshX-Low 需要注意 最小接入电平值,真实值=SIB消息读取值*2=-64*2=-128 异频点测量门限,真实值=SIB消息读取值*2=7*2=14-128=-114 重选到低优先级小区的门限,真实值=SIB消息读取值*2 同频测量门限,真实值=SIB消息读取值*2=21*2=42-128=-84 重选到高优先级门限值,真实值=SIB消息读取值*2 重选到低优先级门限值,真实值=SIB消息读取值*2 对应的SIB 在SIB1內提取 在SIB3內提取 在SIB3內提取 在SIB3內提取 在SIB5內提取 在SIB5內提取
功率放大器HW能力 40 40 40 40 输出功率(W)许可 10 20 30 40 TM2/3中参数cellDLTotalPower(dBm)的最大值 40 43 44.7 46
1、下行功率分配确定了每个RE上的能量(EPRE:Energy Per Resource Element ); 2、所有的功率都是参考Cell-Specific RS(Reference Signal)的发射功率; 3、下行Cell-Specific RS发射功率是对用于Cell-Specific RS信号能量的线性平均,并且 在整个系统带宽上RS发射功率都是恒定的。
增强调度策略(Enhanced PF) :相对于PF,考虑用户差异化 。
用于VoIP的DL半永久调度
VoIP可以由动态调度(FDS模式中)进行管理,也可以由新定义的半永久调度(SPS) 进行管理 •SPS基本原理:VoIP具有较小的分组、非常严格的延时和抖动要求、大量的并发用户: 因此,系统PDCCH过程PDSCH(VoIP分组)必须包括大的控制开销 •SPS解决方案: PDCCH(DCI)只处理第一个VoIP分组 DCI(格式# 0、1、1A、2、2A)提供专门的字段来验证SPS 在SIB2中提供调度时间间隔(20ms) •如果SPS是激活的(isSpsConfigAllowed (activationService)= „True‟): • 第一个VoIP承载可以由半永久性调度进行处理 • 任何第二个VoIP承载都由动态调度来管理