新北师大版小学数学六年级第四单元正比例与反比例教学设计(教案)
《正比例与反比例》(教案)-六年级下册数学北师大版

《正比例与反比例》(教案)六年级下册数学北师大版作为一名经验丰富的教师,我深刻理解《正比例与反比例》这一课的重要性。
六年级下册的数学北师大版教材,将为我们展开正反比例的神秘面纱。
一、教学内容今天我们要学习的是北师大版六年级下册的数学教材中的第五章《正比例与反比例》。
这一章节主要内容包括正比例和反比例的定义,它们的性质以及如何判断两个相关联的量之间是成正比例还是反比例。
二、教学目标通过本节课的学习,我希望学生们能够理解正比例和反比例的概念,掌握它们的性质,并能够判断生活中的相关联的量之间的比例关系。
三、教学难点与重点本节课的重点是正比例和反比例的定义和性质,难点是判断两个相关联的量之间是成正比例还是反比例。
四、教具与学具准备为了帮助学生们更好地理解正比例和反比例,我准备了一些图片和生活中的实例,以及一些练习题。
五、教学过程1. 实践情景引入:我会先给学生展示一些生活中的实例,如行驶的汽车速度和时间的关系,商品的单价和数量的关系,让学生感受正比例和反比例的存在。
2. 讲解概念:然后我会根据教材内容,详细讲解正比例和反比例的定义和性质。
我会用PPT展示相关的图片和数据,让学生们更直观地理解。
4. 随堂练习:讲解完例题后,我会给学生们一些随堂练习题,让学生们及时巩固所学知识。
5. 板书设计:在讲解的过程中,我会根据教材内容,设计一些简洁明了的板书,帮助学生们记忆和理解。
六、作业设计(1) 行驶的汽车速度和时间;(2) 商品的单价和数量;(3) 一个人的年龄和他的身高。
答案:(1) 成反比例,因为速度×时间=路程(一定);(2) 成正比例,因为单价×数量=总价(一定);(3) 不成比例,因为年龄和身高之间没有固定的比例关系。
(1) 如果两个相关联的量的比值一定,那么它们之间是成____比例的;(2) 如果两个相关联的量的乘积一定,那么它们之间是成____比例的。
答案:(1) 正;(2) 反。
六年级下册数学教学设计-4.2《正比例》北师大版

六年级下册数学教学设计-4.2《正比例》北师大版一、教学目标1.知识目标:1)了解正比例的定义与性质;2)掌握利用表格和图像的方式描述正比例;3)能够进行正比例的计算和应用。
2.技能目标:1)具有观察能力,能够观察数据的变化规律;2)具有分析问题的能力,能够判断哪些变量是否成正比例;3)具有运算能力,能够进行简单的正比例计算。
3.情感目标:1)培养学生珍惜数学学习机会的意识;2)培养学生注重团队合作和互助的意识;3)培养学生学习数学的兴趣和信心。
二、教学重难点1.教学重点:1)正比例的定义与性质;2)如何利用表格和图像的方式描述正比例。
2.教学难点:1)如何判断哪些变量是否成正比例;2)如何进行正比例计算和应用。
3.1 教学准备1.教师准备好《正比例》课件和教具;2.学生准备好笔、纸。
3.2 导入新课1.课前自主学习:学生课前通过阅读课本、课件等材料,了解正比例的基本概念;2.课堂引导学习:(1)教师简要介绍正比例的概念和基本性质;(2)通过举例,让学生感受正比例与反比例的区别。
3.3 提高学习效果1.学生自主探究:让学生在小组内利用教具和纸笔,完成小组内的探究任务,从数据层面探究正比例的性质;2.教师引导探究:引导学生从图像层面探究正比例的性质和规律;3.教师解读原理:教师解读正比例与图像之间的关系,让学生更好地理解正比例的概念和性质。
3.4 作业布置1.小组内复习笔记;2.完成课后习题。
四、巩固练习1.试题练习:课堂上利用教具让学生进行正比例的计算和应用练习;2.课堂小结:教师对本节课的重点内容进行小结,帮助学生理清思路,掌握学习方法。
1.教学过程:通过分组探究和丰富图像展示的方式,激发学生的学习兴趣,让学生更深入地了解正比例的性质和规律。
2.教学效果:学生在理解概念、掌握方法和应用型题目上表现出了较好的能力,学习效果良好。
3.教学不足:需要更多地利用案例分析和练习题让学生加深对正比例应用的理解。
北师大版小学六年级下册数学《正比例》教案

【导语】正⽐例的知识,是在学⽣已经学习了⽐和学会了分析基本数量关系的基础上进⾏学习的,是学⽣学习反⽐例知识以及进⼀步研究数量关系的基础,®⽆忧考⽹准备了以下内容,供⼤家参考!篇⼀ 教学⽬标: 1、使学⽣了解表⽰成正⽐例的量的图象特征,并能根据图象解决相关简单问题。
2、通过练习,巩固对正⽐例意义的认识。
3、情感、态度与价值观:初步渗透函数思想。
重点难点: 能根据数量关系式或图象判断两种量是否成正⽐例。
教学准备: 投影仪。
教学过程: ⼀、新课讲授 教学第46页内容。
教师出⽰表格(见书),依据表中的数据描点。
(见书) 师:从图中你发现了什么? ⽣:这些点都在同⼀条直线上。
看图回答问题 ①如果铅笔的数量是7⽀,那么铅笔的总价是多少?②总价是4.0的铅笔,数量是多少?③铅笔的数量是3⽀,那么铅笔的总价是多少?描出这⼀对应的点,它们是否在同⼀直线上? 你还能提出什么问题?有什么体会? 组织学⽣分⼩组汇报,学⽣汇报时可能会说出 ①正⽐例关系的图象是⼀条经过原点的直线。
②利⽤正⽐例图象不⽤计算,可以由⼀个量的值,直接找到对应的另⼀个量的值。
⼆、练习讲授 1、基本练习。
(1)投影出⽰教材第49页第1题。
教师引导学⽣回顾正⽐例的意义及判断是否成正⽐例的⽅法。
学⽣独⽴完成练习。
教师要求学⽣从两个⽅⾯说明为什么成正⽐例。
a.电是随着⽤电量的增加⽽增加;b.电费与⽤电量的⽐值总是相等的。
师⽣共同订正。
(2)投影出⽰:⼀列⽕车1⼩时⾏驶90km,2⼩时⾏驶180km,3⼩时⾏驶270km,4⼩时⾏驶360km,5⼩时⾏驶450km,6⼩时⾏驶540km,7⼩时⾏驶630km,8⼩时⾏驶720km…… ①出⽰下表,填表。
⼀列⽕车⾏驶的时间和路程 ②填表并思考发现了什么? ③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。
(板书:两种相关联的量) ④教师:根据计算你们发现了什么?指出:相对应的两个数的⽐值固定不变,在数学上叫做⼀定。
2023六年级数学下册四正比例与反比例第3课时正比例(2)教案北师大版

各组代表依次上台展示讨论成果,包括主题的现状、挑战及解决方案。
其他学生和教师对展示内容进行提问和点评,促进互动交流。
教师总结各组的亮点和不足,并提出进一步的建议和改进方向。
6. 课堂小结(5分钟)
目标: 回顾本节课的主要内容,强调正比例的重要性和意义。
过程:
简要回顾本节课的学习内容,包括正比例的基本概念、案例分析等。
3. 实例分析:采用讨论法和问题驱动法,引导学生分析教材中的实例,培养学生运用正比例关系解决实际问题的能力。
4. 动手实践:利用教学软件和多媒体设备,让学生观察正比例函数图像,并进行实物演示,增强学生的实践操作能力。
5. 小组讨论:组织学生进行小组讨论,分享解题思路和心得,提高学生的合作能力和表达能力。
- 对学生设计的数学游戏或活动,给予肯定和鼓励,并提出改进意见。
注意事项:
1. 作业布置要适量,既要保证学生能够巩固所学知识,又不过度增加学生负担。
2. 作业反馈要及时,针对学生的错误和不足,给出具体的改进建议。
3. 鼓励学生积极参与创新实践题,培养他们的创新意识和团队合作能力。
4. 定期对学生的作业情况进行总结,关注学生的学习进步和问题所在,调整教学策略。
5. 正比例关系在实际问题中的应用:
- 速度、时间和路程的关系:当速度恒定时,路程与时间成正比;
- 价格和数量的关系:当单价恒定时,总价与数量成正比;
- 面积和边长的关系:当形状固定时,面积与边长的平方成正比。
6. 判断正比例关系的方法:
- 观察两种量的变化趋势,是否同增同减;
- 计算两种量的比值(商),看是否恒定。
2023六年级数学下册 四 正比例与反比例第3课时 正比例(2)教案 北师大版
小学数学正反比例教案

小学数学正反比例教案【篇一:新北师大版小学数学六年级第四单元正比例与反比例教学设计(教案)】第四单元:正比例与反比例1、变化的量学习目标:1、结合具体目标,体会生活中存在着大量互相依存的变量。
2、在具体情境中,尝试用自己的语言描述两个变量之间的关系。
学习重点:结合具体目标,体会生活中存在着大量互相依存的变量。
学习难点:在具体情境中,尝试用自己的语言描述两个变量之间的关系。
教学过程:一、温故互查:1、观察表中所反映的内容,搞清楚表中所涉及的量是哪两个量?2、上表中哪些量在发生变化?3、说一说妙想6周岁前的体重是如何随年龄增长而变化的?4、体重一直会随年龄的增长而变化吗?这说明了什么?教育学生要合理饮食,适当控制自己的体重。
二、合作交流:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。
观察书上统计图:1、图中所反映的两个变化的量是哪两个?2、横轴表示什么?纵轴表示什么?同桌两人观察并思考,得出结论后,记录在书上,然后再在全班汇报说明。
3、一天中,骆驼的体温最高是多少?最低是多少?4、一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?5、第二天8时骆驼的体温与前一天8时的体温有什么关系?6、骆驼的体温有什么变化的规律吗?三、汇报点评:1、学生讨论汇报。
2、教师归纳总结:今天我们研究的两个量都是相关联的。
它们之间在变化的时候都具有一定的关系。
下一节课我们将深入研究具有相关联的两个量,在变化时有相同的变化特征,这样的知识在数学上的应用。
四、巩固练习:完成课本40页第1--3题五、拓展延伸:你还发现生活中有哪两个量之间具有变化的关系?它们之间是怎样变化的?板书设计:变化的量()随着()变化而变化。
教学反思:本课通过用表格、图像、关系式呈现变量之间的系,使学生体会生活中存在大量互相关联的变量;教学效果好。
2、正比例正比例(一)学习目标:1、利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
《正比例与反比例》复习课(教案)六年级下册数学北师大版

《正比例与反比例》复习课(教案)六年级下册数学北师大版作为一名经验丰富的教师,我将以第一人称,我的口吻,为你呈现一堂六年级下册数学北师大版的《正比例与反比例》复习课教案。
一、教学内容今天我们要复习的是北师大版六年级下册数学的第100页至102页的正比例与反比例相关内容。
这部分主要包括正比例和反比例的定义、性质以及它们在实际问题中的应用。
二、教学目标通过本节课的复习,使学生能够熟练掌握正比例和反比例的定义及性质,提高他们在实际问题中应用数学知识解决问题的能力。
三、教学难点与重点本节课的重点是正比例和反比例的定义及性质,难点是正比例和反比例在实际问题中的应用。
四、教具与学具准备为了帮助学生更好地理解和应用正比例和反比例知识,我准备了PPT、黑板、粉笔以及一些实际问题相关的道具。
五、教学过程1. 情景引入:我拿出两样物品,一个是一本书,另一个是一个苹果,让学生观察它们之间的比例关系。
2. 讲解正比例:我通过PPT展示正比例的定义和性质,然后用黑板和粉笔举例说明。
3. 讲解反比例:我同样通过PPT展示反比例的定义和性质,然后用黑板和粉笔举例说明。
4. 实践环节:我给学生发放一些实际问题,让他们分组讨论并解决这些问题,运用正比例和反比例知识。
6. 随堂练习:我给出一些关于正比例和反比例的题目,让学生在课堂上完成。
六、板书设计我在黑板上设计了一个简单的板书,包括正比例和反比例的定义、性质以及一些实际问题中的应用。
七、作业设计(1)一个长方形的长是10cm,宽是5cm,求它的面积。
答案:面积 = 长× 宽= 10cm × 5cm = 50cm²(2)一个人以6km/h的速度走了30分钟,他走了多远?答案:距离 = 速度× 时间= 6km/h × 0.5h = 3km(1)一个水果店以每公斤10元的价格进货,以每公斤15元的价格出售,请问该水果店的利润是多少?答案:利润 = (售价进价) × 销售量 = (15元/公斤 10元/公斤) × 销售量(2)一个水池,注水时每小时注水200升,排水时每小时排水100升,请问水池排水多长时间才能排空?答案:排水时间 = 排水量 / 排水速度 = 200升 / 100升/小时= 2小时八、课后反思及拓展延伸本节课通过复习正比例和反比例的知识,使学生能够更好地理解和应用这些知识。
北师大版《正比例》的教学设计(通用5篇)

北师大版《正比例》的教学设计(通用5篇)北师大版《正比例》的教学设计(通用5篇)作为一位不辞辛劳的人民教师,时常需要用到教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
我们应该怎么写教学设计呢?下面是小编收集整理的北师大版《正比例》的教学设计(通用5篇),仅供参考,欢迎大家阅读。
《正比例》的教学设计1【教学目标】1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
【教学重难点】重点:成正比例的量的特征及其断方法。
难点:理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。
【教学过程】一、四顾旧知,复习铺垫商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。
哪种袜子更便宜?学生独立完成后师提问:你们是怎样比较的?生:我先求出每种袜子的单价,再进行比较。
师:你是根据哪个数量关系式进行计算的?生:因为总价=单价×数量,所以单价=总价÷数量。
师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。
(板书:正比例)二、引导探索,学习新知1、教学例1,学习正比例的意义。
(1)结合情境图,观察表中的数据,认识两种相关联的量。
师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。
全班交流。
(2)认识相关联的量。
明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。
2、计算表中的数据,理解正比例的意义。
(1)计算相应的总价与数量的比值,看看有什么规律。
学生计算后汇报:===…=3、5,每一组数据的比值一定。
(2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)(3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。
2023-2024学年六年级下学期数学第四单元正比例与反比例-画一画(教案)

2023-2024学年六年级下学期数学第四单元正比例与反比例-画一画(教案)教学目标1. 知识目标:使学生能辨识正比例和反比例关系,理解它们在图像上的表现。
2. 技能目标:培养学生通过绘制图表来分析和解决问题的能力。
3. 情感目标:激发学生对数学学习的兴趣,培养其合作探究的精神。
教学内容- 正比例关系:当两个变量中的一个增加时,另一个也以相同的比例增加。
- 反比例关系:当两个变量中的一个增加时,另一个以相同的比例减少。
- 图像表示:利用坐标系来表示正比例和反比例关系。
教学重点与难点- 重点:学生能够通过实例识别正比例和反比例关系,并能在坐标系中正确绘制。
- 难点:理解正比例和反比例关系的数学本质,以及它们在图像上的不同表现。
教具与学具准备- 教具:多媒体投影仪、坐标系图表。
- 学具:直尺、圆规、坐标纸。
教学过程1. 导入:通过日常生活中的实例引入正比例和反比例的概念。
2. 探究活动:- 分组讨论,让学生分享他们理解的实例。
- 引导学生通过坐标系来表示这些关系。
3. 示范与讲解:教师通过示例,展示如何在坐标系中表示正比例和反比例关系。
4. 学生练习:学生独立或在小组中完成练习题,绘制相应的图表。
5. 总结:全班一起总结正比例和反比例关系的特点及其在图表中的表现。
板书设计- 正比例与反比例-画一画- 坐标系图示- 关键点摘要- 示例图表作业设计- 绘制特定正比例和反比例关系的图表。
- 解释正比例和反比例在生活中的应用实例。
课后反思- 学生对正比例和反比例概念的理解程度。
- 学生在绘制图表时的准确性。
- 教学方法和材料的有效性,以及如何改进。
教案总结本教案旨在通过直观的图像绘制活动,帮助学生深入理解正比例和反比例关系的数学本质。
通过实例分析、小组讨论和绘制练习,学生将能够更好地掌握这两种关系,并能在实际问题中应用。
通过这个过程,我们期望培养学生分析问题和解决问题的能力,同时增强他们对数学学习的兴趣。
教学重点与难点重点:学生能够通过实例识别正比例和反比例关系,并能在坐标系中正确绘制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四单元:正比例与反比例1、变化的量学习目标:1、结合具体目标,体会生活中存在着大量互相依存的变量。
2、在具体情境中,尝试用自己的语言描述两个变量之间的关系。
学习重点:结合具体目标,体会生活中存在着大量互相依存的变量。
学习难点:在具体情境中,尝试用自己的语言描述两个变量之间的关系。
教学过程:一、温故互查:1、观察表中所反映的内容,搞清楚表中所涉及的量是哪两个量?2、上表中哪些量在发生变化?3、说一说妙想6周岁前的体重是如何随年龄增长而变化的?4、体重一直会随年龄的增长而变化吗?这说明了什么?教育学生要合理饮食,适当控制自己的体重。
二、合作交流:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。
观察书上统计图:1、图中所反映的两个变化的量是哪两个?2、横轴表示什么?纵轴表示什么?同桌两人观察并思考,得出结论后,记录在书上,然后再在全班汇报说明。
3、一天中,骆驼的体温最高是多少?最低是多少?4、一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?5、第二天8时骆驼的体温与前一天8时的体温有什么关系?6、骆驼的体温有什么变化的规律吗?三、汇报点评:1、学生讨论汇报。
2、教师归纳总结:今天我们研究的两个量都是相关联的。
它们之间在变化的时候都具有一定的关系。
下一节课我们将深入研究具有相关联的两个量,在变化时有相同的变化特征,这样的知识在数学上的应用。
四、巩固练习:完成课本40页第1--3题五、拓展延伸:你还发现生活中有哪两个量之间具有变化的关系?它们之间是怎样变化的?板书设计:变化的量()随着()变化而变化。
教学反思:本课通过用表格、图像、关系式呈现变量之间的系,使学生体会生活中存在大量互相关联的变量;教学效果好。
2、正比例正比例(一)学习目标:1、利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
3、结合丰富的事例,认识正比例。
学习重点:结合丰富的事例,认识正比例。
学习难点:能根据正比例的意义,判断两个相关联的量是不是成正导学过程:一、温故互查:1、一种汽车行驶的速度为90千米/小时。
汽车行驶的时间和路程如下:2、请把下表填写完整。
3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。
二、自学感悟:完成课本43页第4题仔细观察:从表格中你发现了什么规律?三、合作交流:结合两个实例,四人小组内说一说:两个例子有什么共同的特点?小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买邮票的数量变化而变化,在变化过程中应付的钱数与数量的比值相同。
四、汇报点评:正比例的量的特征:一个量随另一个量的变化而变化,在变化过程中这两个量的比值相正比例关系:y/x =k (一定)五、巩固练习 :判断下面各题中的两个量,是否成正比例,并说明理由。
(1)每袋大米的质量一定,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长与长。
六、拓展延伸:知识巧记正比例,好脾气,两量相关要谨记。
同扩同缩好兄弟,比值永远不变异。
板书设计:正比例x y =k (一定) 导学反思:分析比较,总结出成正比例量的意义,把这意义从局部的路程和时间、数量和总价以及高度和体积推广到其他数量之间的关系,从而让学生水到渠成地理解了正比例的意义。
然后,老师用例子说明,并且请学生互动找例子,最后让学生学会用字母表示正比例关系式。
正比例(二)学习目标:加深对正比例意义的理解,能正确判断两个相关联的量是不是成正比例。
学习重点:进一步掌握正比例的意义。
学习难点:能正确判断两个相关联的量是不是成正比例。
教学过程:一、温故互查:1、正比例的意义是什么?2、如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以怎样表示?3、齐读正比例儿歌。
二、自学感悟:“想一想”(1)正方形的周长与边长成正比例吗?面积与边长呢?为什么?(2)父子的年龄成正比例吗?为什么?三、合作交流:在组内交流以上问题的解决过程。
四、展示点评:正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以两个量成正比例;正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以两个量不成正比例。
虽然乐乐岁数增加,爸爸岁数也增加,但是乐乐岁数与爸爸岁数的比值不是一个确定的值,所以父子的年龄不成正比例。
五、巩固练习:判断:(1)减数一定,被减数和差成正比例。
(2)三角形的底一定,三角形的面积和它的高成正比例。
(3)成正比例的两个量,一种量扩大,另一种量也随着扩大。
六、拓展延伸:找一找生活中成正比例的例子,并与同伴交流。
板书设计:正比例xy =k (一定) 教学反思:我认为本节课最大的特点便是提供了丰富的材料,选择了师生互动,以教师的“引”为主导,学生为主体,呈现给学生丰富的感性材料,让学生在互动交流中去理解成正比例的量这一概念。
3、画一画 学习目标:1、在具体情境中,通过“画一画”的活动,初步认识正比例图象。
2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。
3、利用正比例关系,解决生活中的一些简单问题。
学习重点:在具体情境中,通过“画一画”的活动,初步认识正比例图象。
学习难点:利用正比例关系,解决生活中的一些简单问题。
教学过程:一、自主尝试:判断下面的量是否成正比例关系?1、每行人数一定,总人数和行数。
2、长方形的长一定,宽和面积。
3、长方体的底面积一定,体积和高。
4、分子一定,分母和分数值。
5、长方形的周长一定,长和宽。
6、一个自然数和它的倒数。
7、正方形的边长与周长。
8、正方形的边长与面积。
9、圆的半径与周长。
10、圆的面积与半径。
11、什么样的两个量叫做成正比例的量?二、合作探究:小组合作完成课本44页例题重点找出正比例图像的特征。
三、汇报点评:小组汇报,集体点评。
四、归纳总结:1、表示成正比例关系的两个相对应量中的各点在同一直线上,即正比例关系的图像是一条经过原点的直线。
2、从图像中可以直观看到两种量的变化情况。
五、巩固练习:完成课本45页“练一练”第1、2、题六、拓展延伸:完成课本45页“练一练”第3题板书设计:画一画正比例关系的图像是: 一条经过原点的直线。
教学反思:在本节课教学设计中我本着以下几个要求:1、正比例是研究两个量之间的一种关系。
2、知道正比例是一种怎样的图像。
3、我们为什么要认识正比例图像在利用图像解决问题这一环节,我着重让学生利用图像解决一个又一个问题中体会认识正比例图像的好处,从而使学生充分感受到我们所学的知识是与我们的生活密切相关的。
4、反比例反比例(一)学习目标:1、结合丰富的实例,认识反比例。
2、能根据反比例的意义,判断两个相关联的量是不是成反比例。
3、利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。
学习重点:认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
学习难点:能根据反比例的意义判断两个相关联的量是不是成反比例。
教学过程:一、温故互查:1、什么是正比例的量?2、判断下面各题中的两种量是否成正比例?为什么?(1)工作效率一定,工作时间和工作总量。
(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。
(3)正方形的边长和它的面积。
二、自学感悟:完成课本46页第3题,仔细观察:从表格中你发现了什么?三、合作交流:结合实例题,四人小组内说一说:例子中的两个变量关系有什么特点?四、汇报点评:反比例的量的特征:两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。
这两种量之间是反比例关系。
反比例关系:X×Y=K(一定)五、巩固练习:完成课本47页“试一试”六、拓展延伸:想一想:课本46页第一题中哪对变量关系成反比例?并说明理由。
板书设计:反比例X×Y=K(一定)教学反思:本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的思维上与前面学习的正比例相比有明显的提高。
反比例(二)学习目标:加深对反比例意义的理解,能正确判断两个相关联的量是不是成反比例。
学习重点:加深对反比例意义的理解。
学习难点:能正确判断两个相关联的量是不是成反比例。
教学过程:一、温故互查:1、反比例的意义是什么?2、如果用字母x和y表示两种相关联的量,用字母k表示它们的乘积(一定),反比例关系可以怎样表示?二、自主尝试:学生独立完成课本47页第1题。
学生独立填表,然后根据表中两种量相对应的数的乘积,判断它们是否成反比例,最后,根据表中的信息回答问题。
三、合作探究:四人小组订正答案,然后借助表格中数据交流:在书的总页数不变的情况下,平均每天看的页数和看完全书所需天数是否成反比例,并说明理由。
四、汇报点评:根据反比例意义,可以知道:在书的总页数不变的情况下,平均每天看的页数和看完全书所需天数成反比例。
五、巩固练习:判断两种量是否成反比例。
(1)分子一定,分数值和分母。
(2)生产摩托车的总数量一定,每天生产的辆数和所用的天数。
(3)出勤率一定,应出勤的人数和实际出勤的人数。
六、拓展延伸:找一找生活中成反比例的例子,并与同伴交流。
板书设计:反比例X×Y=K(一定)教学反思:通过本节课的教学,让我知道深入分析教材,弄懂教材对教学来说是多么重要。
如果老师能够很好的驾驭教材,就能有事半功倍的效果。
5、练习四练习四(一)学习目标:1、通过具体问题进一步认识成正比例、反比例的量。
2、能找出生活中成正比例和反比例量的实例,并进行交流。
学习重点:判断实例是否成比例,成什么比例。
学习难点:生活中比例知识的应用。
教学过程:一、温故互查:1、什么是正比例?什么是反比例?2、正比例和反比例的相同点和区别是什么?3、正比例和反比例的图像是什么?二、自主尝试:独立完成“练习四”第1、2、3题三、合作交流:在组内交流每个题的解答过程。
四、汇报点评:分组汇报解答过程以及小组存在的问题。
第3题(1),每块地砖的面积和所需地砖的数量,这两个相关联的变量,它们的乘积(地面面积)一定,所以它们成反比例。
五、巩固练习:完成“练习四”第4题,学生分析图像,根据信息逐一解决各问题。
六、拓展延伸:2y =x7(x ,y 不为0),x 和y 是否成比例?成什么比例? 板书设计:练习四正比例:xy =k (一定)反比例 : x ×y=K (一定)教学反思:反比例关系是一种重要的数量关系,它渗透了初步的函数思想。
我在教学本节课时体现了以下两点:1、温故知新,渗透难点。