分式方程转化为一元二次方程
可化为一元二次方程的分式方程

可化为一元二次方程的分式方程为了满足字数要求,我将详细解释可化为一元二次方程的分式方程的概念、一些示例、解题步骤和技巧。
以下是一个关于分式方程的完整解释。
分式方程是一个方程,其中包含了分式表达式。
一元二次方程则是一个具有形如 ax^2 + bx + c = 0这种形式的方程,其中 a、b和c是实数,且a ≠ 0。
将分式方程化为一元二次方程可以使我们更容易解决和求解方程。
要将分式方程化为一元二次方程,我们需要遵循以下简单的步骤:步骤一:将分式方程的分子和分母的多项式部分展开。
这可能包括分布律、乘法法则和化简等操作。
步骤二:将方程两侧的分母相乘,以消除分母。
这可以通过将每个项乘以缺少的分母部分来完成。
步骤三:将分母相乘后,将等式的两侧约分。
这可以通过因子分解来完成。
步骤四:将等式的两侧移项并整理,使所有项在一侧,并将方程表示为 ax^2 + bx + c = 0的形式。
这样,分式方程就被转化为了一元二次方程。
为了更好地理解这些步骤,考虑以下示例:例1:将分式方程1/(x+2)+1/(x+3)=1/x化为一元二次方程。
步骤一:展开分子和分母,我们得到:(x+3)(x+2)+x(x+2)=(x+3)(x)步骤二:两侧相乘,我们得到:(x+3)(x+2)x+x(x+2)(x+3)=(x+3)(x)^2步骤三:约分两侧,我们得到:x(x+3)+x(x+2)(x+3)=(x+3)x^2步骤四:移项并整理,我们得到:x^2+3x+x^3+2x^2+3x^3=0合并同类项,我们得到:4x^3+3x^2+3x=0现在这个方程可以被看作一个一元二次方程,其中a=4,b=3,c=0。
例2:将分式方程(3x-7)/(x+2)+(x+1)/(x+3)=4/(x+3)化为一元二次方程。
步骤一:展开分子和分母,我们得到:(3x-7)(x+3)+(x+1)(x+2)=4(x+2)步骤二:两侧相乘,我们得到:(3x-7)(x+3)(x+2)+(x+1)(x+2)(x+3)=4(x+2)(x+3)步骤三:约分两侧,我们得到:(3x-7)(x+3)+(x+1)(x+3)=4(x+3)步骤四:移项并整理,我们得到:(3x^2-4x-19)(x+3)=4x+12展开和合并同类项中的项,我们得到:3x^3+5x^2-34x-57=4x+12现在这个方程可以被看作一个一元二次方程,其中a=3,b=5,c=-21解决这个一元二次方程可以使用一般的求解方法,例如,可以使用公式法、配方法、因式分解等方法来求解。
人教版数学九年级上学期课时练习-可化为一元二次方程的分式方程专题(人教版)

专题21.28 可化为一元二次方程的分式方程专题(专项练习)一、解答题1.下列哪些是分式方程?哪些是可化为一元二次方程的分式方程? (1)231x =+ (2)131x x =-(3)22x x+(4)2211x x x =--2.解方程:2311x x x =+-.3.解方程: (1)241142x x =--- (2)11222x x x-+=--4.解方程: (1)3222xx x=---; (2)4x 2-8x +1=0.5.解方程(1)21133x xx x =-++ (2)2227361x x x x x x +=+--6.解方程: (1)2430x x --= (2)213111x x x +-=--.7.解方程:(1)x 2+6x =﹣1(配方法) (2)263111x x -=--8.解方程:(1)2420x x --=; (2)53212x x =+-.9.解方程:(1)解方程:x 2-6x +9=(2x -1)2(2)化简:2122(1)x x x --÷.10.解方程(组):(1)28124x x x -=--(2)11232(3)3(2)x xx x -⎧->-⎪⎨⎪->-⎩11.解方程:(1)()()2240x x +-+=;(2)214123x x+=+.12.(1)计算:101|1()(2021)2π--+---(2)解不等式组:3(2)41213x x x x --≥⎧⎪+⎨>-⎪⎩;(3)解方程:322112x x x=---; (4)解方程:x 2﹣4x +4=3x ﹣6.13.解分式方程:224124xx x -=-+-14.解方程:2412x x x x--=-.15.解分式方程:252112x x x +-=3.16.解方程214124x x +=-+-.17.解方程: (1)2x -6x -4=0 (2)x -12x -=+23x +118.解方程: (1)13012x x+=++(2)22440x x +-=19.解方程: (1)2340x x +-=(2)2269(52)x x x -+=-(3)(1)(3)12x x -+= (4)221111x x +=--20.解分式方程21211x x x -=++21.解方程(组):(1)3423x y x y -=-⎧⎨-=-⎩(2)213111x x x --=+-;(3)x (x -7)=8(7-x ).22.解方程: (1)2230x x --=; (2)21124x x x -=--.23.解方程:22321=011x x x x x --+--.24.解方程:1y =25.解方程:2231224x xx --=--.26.解方程(1)21111x x x +=-- (2)x 2+4x -1=027.解方程: (1)225x x +=; (2)14733x x x-+=--.28.解方程: (1)24142x xx x +=-+ (2)22530x x +-=(3)2(2)36x x +=+29.解方程:(1)(x ﹣1)(x +3)=2x +4; (2)2311x x x x-+--=0.30.解方程: (1)31144x x x-+=--; (2)x 2﹣4x +2=0;(3)x (x ﹣1)=2(1﹣x ).31.解方程:(1)2(5)360x --=; (2)230x x +-=.(3)214111x x x +-=---.32.(1)化简:a b a b b a +-- (2)解方程:261393x x x x -=+--33.计算题(1)分解因式:x 3﹣2x 2y +xy 2;(2)解不等式组:()214137136x x x x ⎧++⎪⎨---≤⎪⎩<;(3)解方程:2411x x x =+--1; (4)解方程:x (2x +1)=8x ﹣3.参考答案1.(1)、(2)、(4)是分式方程,(4)是可化为一元二次方程的分式方程. 【分析】按照分式方程的定义:分母中含有未知数的方程叫做分式方程.逐一判断,去分母后再来判断是否能化成一元二次方程.解:(1)231x =+是分式方程,去分母可转化为3x +3=2,不是一元二次方程,(2)131x x =-是分式方程,去分母可转化为3x =x -1,不是一元二次方程, (3)22x x+是分式,不是分式方程,(4)2211x x x =--是分式方程,去分母可转化为x 2+x =2,是可化为一元二次方程的分式方程,∴(1)、(2)、(4)是分式方程,(4)是可化为一元二次方程的分式方程. 【点拨】本题考查了分式方程的定义,分母中含有未知数的方程叫做分式方程;熟练掌握分式方程的定义是解题的关键.2.x 1=-12,x 2=3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解:去分母得:2x (x -1)=3(x +1),整理得:2x 2-5x -3=0,即(2x +1)(x -3)=0, 解得:x 1=-12,x 2=3,检验:把x 1=-12,x 2=3代入得:(x +1)(x -1)≠0,∴x 1=-12,x 2=3都是方程的解.【点拨】本题考查了解分式方程,解一元二次方程,利用了转化的思想,解分式方程注意要检验.3.(1)1x =-;(2)无解 【分析】先去分母,把分式方程转化为整式方程,再解整式方程,最后检验即可. 解:(1)去分母,得()()()4222x x x =+-+-,整理,得220x x --=, 解得11x =-,22x =,经检验,11x =-是原方程的根,22x =是增根,故原方程的根为1x =-.(2)去分母,得()1221x x +-=-, 去括号,得1241x x +-=-, 移项,合并同类项,得2x =, 检验:把2x =代入20x -=, 所以此方程无解.【点拨】本题考查了解分式方程,解题关键是熟练运用分式方程的解法进行求解,注意:分式方程要检验.4.(1)73x =(2)x x ==【分析】(1)去分母,合并同类项,即可解出; (2)先配方,再求解(1)解:去分母得,32(2)()x x =---去括号得,334x =- 73x =(2)解:原方程变为,()22810x x -+=()222284410x x -+-+=()22415x -=x =x =x =【点拨】本题考查分式方程和一元二次方程的解法,掌握去分母、配方是本题关键. 5.(1)34x =;(2)37x = 【分析】(1)把分式方程转化为整式方程,即可求解,再验根即可.(2)两边同乘以最简公分母(1)(1)x x x +-,即可把分式方程转化为整式方程,即可求解,再验根即可.解:(1)21133x xx x =-++,()()312131x xx x x +-=++ , ()()()3163131x x xx x +-=++ ,两边同时乘以()31x +得: 633x x x =+- , 43x = , 34x =, 经检验34x =是原方程的根. (2)2227361x x x x x x +=+--, ()()()()73611+11x x x x x x x +=+-- ,两边同乘以(1)(1)x x x -+得:()()()()()()()()71316111111x x x xx x x x x x x x x -++=+-+-+- ,7(1)3(1)6x x x x -++=, 277336x x x x -++= , 271030x x -+= ,()()1730x x --= ,10x -=或730x -=,解得:1231,7x x ==, ∴220,10x x x -≠-≠ , ∴1x ≠ , ∴37x =, 经检验37x =是原方程的根. 【点拨】本题考查求解分式方程,一元二次方程.把分式方程转化为整式方程是解题关键,且需要注意验根.6.(1)1x =22x =x =12【分析】(1)首先把常数项夫-3移项后,在方程左右两边同时加上一次项系数-4的一半的平方,配方完成后,开方求解即可求得答案;(2)首先去分母,将分式方程转化为整式方程,解整式方程,求得答案,再检验即可.(1)解:2430x x --=243x x -=24434x x -+=+2(2)7x -=∴2x -=∴1x =22x =(2)解:213111x x x +-=-- 方程两边同乘以(x +1)(x ﹣1)得:(x +1)2﹣3=(x +1)(x ﹣1),整理得:x 2+2x +1﹣3=x 2﹣1,解得:x =12 ,检验,当x =12时,(x +1)(x ﹣1)=(12+1)(12﹣1)≠0,∴x =12是原方程的解. 【点拨】此题考查了配方法解一元二次方程与分式方程的求解方法.解题的关键是注意配方法的步骤与分式方程需检验.7.(1)x 1=﹣,x 2=﹣3﹣(2)x =﹣4【分析】(1)利用配方法求出解即可;(2)按照解分式方程的步骤进行计算即可解答.(1)解:配方得:x 2+6x +9=8,即(x +3)2=8,开方得:x +3=,所以x 1=﹣,x 2=﹣3﹣; (2)263111x x -=-- 解:方程两边都乘(x +1)(x -1),得6-(x +1)(x -1)=3(x +1),解得:x =-4或x =1,检验:当x =1时,(x +1)(x -1)=0,所以x =1是原方程的增根,当x =-4时,(x +1)(x -1)≠0,所以x =-4是原方程的解,即原方程的解是x =-4.【点拨】此题考查了解一元二次方程-配方法,解分式方程,能把分式方程转化成整式方程是解(2)的关键.8.(1)12x =,22x =;(2)13x =-【分析】(1)按配方法解一元二次方程即可;(2)按照去分母,去括号,移项、合并同类项并系数化为1的步骤解分式方程,并对结果进行检验.解:(1)2420x x --=,24424x x -+=+,2(26)x -=,2x -=∴12x =,22x =;(2)解:53212x x =+-, 去分母,得 ()()52321x x -=+,去括号,得 51063x x -=+,移项、合并同类项并系数化为1,得 13x =-,经检验,13x =-是该方程的解.【点拨】本题主要考查了一元二次方程及分式方程的解法,熟练掌握一元二次方程与分式方程的解题方法和步骤是解题关键.9.(1)143x =,22x =-(2)2x 【分析】 (1)先对方程进行变形,用因式分解法解方程即可;(2)先根据异分母分式相加减对括号中的分式进行运算,然后用分式除法法则进行运算即可.(1)x 2-6x +9=(2x -1)2解:方程可变为:()()22321x x -=-,移项得:()()223210x x ---=,因式分解得:()()3420x x ---=,∴340x -=或20x --=, 解得:143x =,22x =-. (2)2122(1)x x x --÷ ()2211x x x x x -⎛⎫=-÷ ⎪⎝⎭ ()2121x x x x -=⋅- 2x =. 【点拨】本题主要考查了解一元二次方程和分式混合运算,选择合适的方法解一元二次方程是解题的关键.10.(1)1x =-(2)30x -<<【分析】(1)方程两边同时乘以()()22x x +-,然后解整式方程即可,(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.解:(1)28124x x x -=-- 2248x x +-+=220x x -+=()()210x x -+=解得122,1x x ==-经检验,1x =-是原方程的根,2x =是原方程的增根∴方程的解为1x =- (2)11232(3)3(2)x x x x -⎧->-⎪⎨⎪->-⎩①②解不等式∴得:3x >-解不等式∴得:0x <∴不等式的解集为:30x -<<【点拨】本题考查了解分式方程,解一元二次方程,解一元一次不等式组,正确的计算是解题的关键.11.(1)10x =,23x =-(2)113x =-,23x = 【分析】( 1)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可; ( 2)整理后求出24b ac -的值,再代入公式求出答案即可.解:(1)()()2240x x +-+=,24440x x x ++--=,230x x +=,(3)0x x +=, 0x =或30x +=,解得:10x =,23x =-; (2)214123x x +=+, 23386x x +=+,23830x x --=,这里3a =,8b =-,3c =-,()()22484331000b ac -=--⨯⨯-=>,x ∴==解得:113x =-,23x =. 【点拨】本题考查了解一元二次方程,能够选择适当的方法解方程是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法等.12.(1)4- ;(2)1x ≤;(3)13x =- ;(4)122,5x x == 【分析】(1)先根据绝对值的性质,二次根式的性质,零指数幂,负整数指数幂化简,再合并,即可求解;(2)先分别求出两个不等式,即可求解;(3)先去分母化为整式方程,解出整式方程,然后检验,即可求解;(4)先将方程整理为一般式,再利用因式分解法解答,即可求解.解:(1)101|1()(2021)2π--+---121=----4=- ;(2)3(2)41213①②--≥⎧⎪⎨+>-⎪⎩x x x x 解不等式∴,得:1x ≤ ,解不等式∴,得:4x < ,所以不等式组的解集为1x ≤;(3)322112x x x=--- 两边同时乘以21x - ,得:()2213x x =-+ , 解得:13x =- , 检验:当13x =-时,152121033x ⎛⎫-=⨯--=-≠ ⎪⎝⎭ , 所以原方程的解为13x =-; (4)x 2﹣4x +4=3x ﹣6整理得:27100x x -+= ,所以()()250x x --= ,解得:122,5x x == .【点拨】本题主要考查了解一元二次方程,分式方程,一元一次不等式组,二次根式混合运算等知识,熟练掌握相关运算法则是解题的关键.13.x =4【分析】两边都乘以x 2-4化为整式方程求解,然后验根即可. 解:224124x x x -=-+-, 两边都乘以x 2-4,得2(x -2)-4x =-(x 2-4),x 2-2x -8=0,(x +2)(x -4)=0,x 1=-2,x 2=4,检验:当x =-2时,x 2-4=0,当x =4时,x 2-4≠0,∴x =4是原分式方程的根.【点拨】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.14.x =4或x =1.【分析】设y =2x x -,方程变形为:y ﹣2y =1,将分式方程转化为整式方程,再解方程,注意结果要进行检验. 解:2412x x x x--=-, 整理,可得()2212x x x x --=- 设y =2x x -, 方程变形为:y ﹣2y=1, 去分母得:y 2﹣y ﹣2=0,即(y ﹣2)(y +1)=0,解得:y =2或y =﹣1, ∴2x x -=2或2x x -=-1, 解得:x =4或x =1,经检验x =4或x =1都为分式方程的解,∴原分式方程的解为x =4或x =1.【点拨】本题考查解分式方程,因式分解法解一元二次方程,应用换元法解方程,掌握解分式方程的步骤是解题关键,特别注意:分式方程结果要进行检验.15.x 1=56,x 2=18【分析】观察可得最简公分母是12x (2x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程的两边同乘12x (2x ﹣1),得24x 2+5(2x ﹣1)=36x (2x ﹣1),整理,得48x 2﹣46x +5=0,即()()65810x x --=解得x 1=56,x 2=18, 检验:当x =56或18时,x (2x ﹣1)≠0. 即原方程的解为:x 1=56,x 2=18. 【点拨】本题考查了解分式方程,解一元二次方程,正确的计算是解题的关键. 16.1x =【分析】根据解分式方程的步骤,去分母,去括号,移项,合并同类项,因式分解法解一元二次方程,再检验即可. 解:214124x x +=-+-, 去分母,得x -2+4=-x 2+4,移项,合并同类项,得x 2+x -2=0,即(x +2)(x -1)=0,则x 1=-2,x 2=1.经检验,2x =-是原分式方程的增根,1x =是分式方程的解,所以1x =.【点拨】本题主要考查了解分式方程,掌握解分式方程的步骤是解题的关键.注意:解分式方程时要检验.17.(1)13x =23x =x =7【分析】(1)用一元二次方程的求根公式求解即可;(2)去分母、去括号、移项、合并同类项、把系数化为1,即可求得方程的解. 解:(1)∴2(6)41(4)52∆=--⨯⨯-=∴3x =即13x =23x =解:(2)去分母得:63(1)2(2)6x x x --=++去括号得:633246x x x -+=++移项得:632463x x x --=+-合并同类项得:x =7【点拨】本题考查了解一元一次方程及解二元一次方程,解二元一次方程时,要根据方程的特点灵活选取解方程的方法.18.(1)54x =-(2)11x ,21x = 【分析】(1)将分式方程转化为整式方程,然后解方程,注意结果要进行检验;(2)原方程化简后,使用配方法解一元二次方程.解:(1)13012x x+=++ 方程两边都乘以()()12x x ++,得()2310x x +++= 解得54x =-.检验:当54x =-时,()()120x x ++≠ 所以54x =-是原分式方程的解 解:(2)22440x x +-=整理,可得:2220x x +-=222x x +=x 2+2x +1=2+1,()213x +=1x +=11x =,21x =【点拨】本题考查解分式方程,解一元二次方程,掌握解分式方程的步骤,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有:直接开平方法、公式法、配方法、因式分解法.19.(1)1241x x =-=,(2)12823x x ==,(3)1253x x =-=,(4)12x x ==【分析】(1)利用因式分解法解方程即可;(2)方程左边利用完全平方公式变形,再直接开平方即得出两个一元一次方程,求解即可;(3)方程整理,再利用因式分解法解方程即可;(4)将分式方程改为整式方程,再根据公式法求一元二次方程的解,最后检验即可.(1)解:2340x x +-=(4)(1)0x x +-=∴1241x x =-=,;(2)解:2269(52)x x x -+=-整理,得:22(3)(52)x x -=-∴352x x -=-或3(52)x x -=-- ∴12823x x ==,; (3)解:(1)(3)12x x -+=整理,得:22150x x +-=(5)(3)0x x +-=∴1253x x =-=,;(4)解:221111x x +=-- 方程两边同时乘21x -,得:22(1)1x x ++=-,整理,得:240x x --=∴12x x ==经检验12x x =是原分式方程的根,∴原方程的解为12x x ==. 【点拨】本题考查解一元二次方程和解分式方程,掌握解一元二次方程和解分式方程的步骤和方法是解题关键.20.x =3【分析】将分式方程去分母化为整式方程,解整式方程求出解并检验即可. 解:21211x x x -=++ 化为整式方程得()2211x x -+=,整理得2230x x --=,解得123,1x x ==-,检验:当x =3时,x +1≠0;当x =-1时,x +1=0,∴原分式方程的解是x =3.【点拨】此题考查了解分式方程,正确掌握解分式方程的法则及步骤是解题的关键.21.(1)11x y =-⎧⎨=⎩(2)x =-12(3)x 1=7,x 2=-8 【分析】(1)根据代入消元法,可得方程组的解;(2)根据等式的性质,化为整式方程,根据解整式方程,可得答案;(3)先移项,再提公因式,再求解即可.(1)3423x y x y -=-⎧⎨-=-⎩①②解:由∴,得y =3x +4∴将∴代入∴,得x -2(3x +4)=-3,解得x =-1,将x =-1代入∴,解得y =1.所以原方程组的解为11x y =-⎧⎨=⎩; (2)213111x x x --=+-; 解:方程两边都乘(x +1)(x -1),得(x -1)2-3=(x +1)(x -1),解得x =-12.经检验,x =-12是原方程的解.(3)x (x -7)=8(7-x ).解:原方程可变形为x (x -7)+8(x -7)=0,(x -7)(x +8)=0.x -7=0,或x +8=0.∴x 1=7,x 2=-8.【点拨】本题考查了解二元一次方程组、分式方程及一元二次方程,利用等式的性质得出整式方程是解题关键,要检验分时方程的根.22.(1)11x =-;23x =(2)32x =- 【分析】(1)利用因式分解法求方程的根.(2)化成整式方程,计算,注意验根.解:(1)2230x x --=,因式分解,得(3)(1)0x x -+=,解得11x =-;23x =,故方程的两个根为11x =-;23x =.解:(2)21124x x x -=--, 去分母,得2(2)14x x x +-=-, 解得32x =-, 经检验,32x =-是原方程的根. 【点拨】本题考查了一元二次方程的解法,分式方程的解法,熟练选择正确的解法是解题的关键.23.x =13- 【分析】观察可得最简公分母是(x +1)(x -1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:因式分解得:()()()321=0111x x x x x x --++-- 方程的两边同乘(x +1)(x -1),得:()()()32110x x x x -+-+=整理得23210x x --=,因式分解得:(1)(31)0x x -+= 解得1211,3x x ==-.检验:把x =1代入(x +1)(x -1)=0,x =1是增根,把x =13-代入(x +1)(x -1)≠0. ∴原方程的解为:x =13-. 【点拨】本题考查了分式方程的解法:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.24.y =2【分析】利用平方法整理方程,进而再根据因式分解法求一元二次方程的解.解:1y =1y =-两边进行平方,得23(1)y y -=-2321y y y -=-+220y y --=∴(y -2)(y +1)=0解得y 1=2,y 2=-1又3-y ≥0,y -1≥0∴1≤y≤3∴ y =2综上可知∴ y =2【点拨】本题考查了平方法解方程,利用因式分解法求一元二次方程的解,二次根式有意义的条件.25.3x =-【分析】由去分母、去括号、移项合并,求出分式方程的解,然后进行检验,即可得到答案. 解:2231224x xx --=--, 去分母,得:223(2)2(4)x x x -++=-,去括号,得:223228x x x -++=-,移项合并,得:260x x +-=,整理得:(3)(2)0x x +-=,解得:13x =-,22x =; 检验:当22x =时,240x -=,则22x =是增根;当13x =-时,240x -≠;∴原分式方程的解为3x =-.【点拨】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,正确地进行解题,注意解分式方程需要检验.26.(1)2x =-(2)12x =-22x =-【分析】(1)确定方程最简公分母后,方程两边乘最简公分母,可以把分式方程转化为整式方程求解;(2)利用配方法求解即可.(1)解:(1)方程两边同乘(1)(1)x x +-得:2(1)11x x x ++=-,整理得:2x =-,经检验2x =-是原方程的根;(2)解:2410x x -=+,241x x +=,24414x x ++=+,即2(2)5x +=,2x ∴+=12x ∴=-22x =-【点拨】本题主要考查解分式方程、解一元二次方程的能力,熟练掌握解一元二次方程和分式方程的方法是解题的关键.27.(1)11x =-21x =-2)无解.【分析】(1)利用配方法解一元二次方程即可;(2)去分母将分式方程化为整式方程,解方程,检验即可.解:(1)225x x +=,2(1)6x ∴+=,1∴+=x∴11x =-21x =-(2)去分母得,17(3)(4)x x +-=--,解得3x =,检验:当3x =时,30x -=,∴3x =是方程的增根,所以,原分式方程无解.【点拨】本题考查用配方法解一元二次方程,分式方程的解法,掌握用配方法解一元二次方程,分式方程的解法与步骤是解题关键.28.(1)原方程无解;(2)112x =,23x =-;(3)12x =-,21x =. 【分析】(1) 方程两边都乘以公分母得()2424x x x x +-=-,解方程得2x =-检验分母为零即可;(2)因式分解得()()2310x x +-=分别解每一个一元一次方程即可;(3)先因式分解()()210x x +-=在分别解每一个一元一次方程即可.解:(1)24142x x x x +=-+ , 方程两边都乘以()()22x x +-得()2424x x x x +-=-,整理得24x =-,解得2x =-,当2x =-时,()()()()2222220x x +-=-+--=,∴2x =-时原方程的增根,∴原方程无解;(2)22530x x +-=,因式分解得()()2130x x -+=,当210x -=,解得112x =, 当30x +=,解得23x =-;∴方程的解为112x =,23x =-; (3)2(2)36x x +=+,()2(2)320x x -++=,()()2230x x ++-=,()()210x x +-=,当20x +=,解得12x =-,当10x -=,解得21x =.∴方程的解为12x =-,21x =.【点拨】本题考查可化为一元一次方程的分式方程与一元二次方程的解法,掌握可化为一元一次方程的分式方程与一元二次方程的解法与步骤是解题关键.29.(1)x 1x 2;(2)原分式方程无解【分析】(1)先将方程整理成一般式,再利用直接开平方法求解即可;(2)两边都乘以x (x ﹣1),将分式方程化为整式方程,再进一步求解即可. 解:(1)整理,得:x 2﹣7=0,∴x 2=7,则x =,即x 1x 2(2)两边都乘以x (x ﹣1),得:2x 2﹣4x +3=0,∴Δ=(﹣4)2﹣4×2×3=﹣8<0,∴方程无解,故原分式方程无解.【点拨】此题考查计算能力:解一元二次方程,解分式方程,正确掌握各自的特点及解法是解题的关键.30.(1)3x =;(2)1222x x ==3)121,2x x ==-【分析】(1)根据解分式方程的步骤求解即可;(2)根据配方法解一元二次方程;(3)根据因式分解法解一元二次方程.解:(1)31144x x x-+=-- 两边同乘以最简公分母(4)x -,得:314x x --=-解得:3x =当3x =时,43410x -=-=-≠所以3x =是原方程的解;(2)x 2﹣4x +2=02442x x -+=2(2)2x -=2x -=解得1222x x =+=(3)x (x ﹣1)=2(1﹣x )(1)(2)0x x -+=解得121,2x x ==-.【点拨】本题考查了解分式方程,配方法和因式分解法解一元二次方程,正确的计算是解题的关键.31.(1)1211,1x x ==-;(2)12x x ==;(3)2x =- 【分析】(1)根据直接开平方法解方程;(2)利用配方法解方程;(3)根据分式方程的步骤化简为整式方程,再解一元二次方程.解:(1)2(5)360x --=2(5)36x -=56x -=±解得1211,1x x ==-(2)230x x +-=211344x x ++=+ 2113()24x +=12x +=解得:12x x == (3)214111x x x +-=--- 去分母得:22(1)41x x +-=-220x x +-=21944x x ++= 219()24x += 1322x +=± 解得:121,2x x ==-当1x =时,210x -=当2x =-时,2130x -=≠∴原方程的根为2x =-【点拨】本题考查了解一元二次方程,解分式方程,掌握解方程的方法是解题的关键.32.(1)1;(2)x =1【分析】(1)直接利用分式的性质化简即可得到答案;(2)先利用平方差公式去分母,然后利用因式分解的方法解方程即可.解:(1)a b a b b a +-- a b a b a b =--- a b a b-=- 1=;(2)∴261393x x x x -=+--, ∴()()336133x x x x x +=+-+-, ∴()363x x x -+=+,∴2430x x -+=,∴()()130x x --=,解得1x =或3x =,经检验3x =是方程的增根,故3x =不符合题意;经检验1x =是方程的根,∴1x =.【点拨】本题主要考查了解一元二次方程和解分式方程,解题的关键在于能够熟练掌握相关知识进行求解.33.(1)x (x ﹣y )2;(2)﹣1≤x <2;(3)x =3;(4)x 112=,x 2=3. 【分析】(1)先提公因式x ,再利用完全平方公式分解即可;(2)根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.(3)根据解分式方程的步骤依次计算可得.(4)先将方程整理成一般形式,再运用因式分解法转化为两个一元一次方程求解. 解:(1)原式=x (x 2﹣2xy +y 2)=x (x ﹣y )2; (2)()214137136x x x x ⎧++⎪⎨---≤⎪⎩<①② 解不等式①得:x <2,解不等式②得:x ≥﹣1,∴不等式组的解集为﹣1≤x <2,(3)两边都乘以(x +1)(x ﹣1),得:x (x +1)=4+(x +1)(x ﹣1), 解得:x =3,经检验x =3是分式方程的解.(4)将方程整理,得2x 2-7x +3=0,将方程左边因式分解,得(2x -1)(x ﹣3)=0,所以2x -1=0或x ﹣3=0,所以x 112=,x 2=3. 【点拨】本题主要考查解分式方程、解不等式组、一元二次方程及因式分解,熟练掌握解运算法则是解题的关键.。
可化为一元二次方程的分式方程

例1 解方程.解:原方程就是去分母,得整理后,得 022=--x x解这个方程,得经检验,2=x 是增根,1-=x 是原方程的根.说明 去分母前的排列,变号(如本题中的x -22变为22--x ),去分母时分母为1的整式或常数漏乘最简公母以及去括号时符号是否改变,都是解方程中容易出错的地方,解题过程中都要认真对待.例 2 解方程x x x x +=-+222322 解法一:原方程可化为设y x x =+2,则原方程化为去分母,得解这个方程,得 当21-=y 时,212-=+x x ,,021<-=∆ ∴ 此方程无实根. 当2=y 时,22=+x x .解这个方程,得经检验,1,221=-=x x 都是原方程的根.解法二:去分母,整理,得02=+x 或 01=-x .方程01222=++x x 的084<-=∆,无实数根.经检验,1,221=-=x x 都是原方程的根.说明 从两种解法看到分式方程转化为整式方程的两种途径.解法一用的是换元法,因为)(22222x x x x +=+,设y x x =+2,经过换元使方程得到化简.解法二用的是去分母,其后在解的过程中也是一种换元的思想,是把x x +2看成一个整体,当成一个未知数,只是没有显现出换元,如果换元方法掌握较好,对于这样的题采用解法二是否更为简捷些.例 3 当a 取何值时,方程)1)(2(21221+-+=+----x x a x x x x x 去分母,得解这个方程,得∵ 方程的解为负数,∴025<+a ,解得 5-<a . ∴ 1,2-≠≠x x . 即 125,225-≠+≠+a a . ∴ 当5-<a 且7-≠a 时,方程的解为负数.说明 分式方程的解必使是各分式的分母不等于零,在求适合某种条件的字母系数的值时,要特别注意这一点.例 4 某工厂计划生产480个零件,在实际生产中每小时多做了10个,结果不仅提前1小时完成任务,而且还比原计划多生产了10个零件.求原计划每小时做多少个零件?预计用多少时间?分析 设原计划每小时做x 个零件,那么预计用的时间就是x480小时,实际每小时生产了)10(+x 个零件,共计生产了)10480(+个,所以实际所用的时间是1010480++x 小时.根据“实际比原计划提前1小时完成”这个等量关系列方程.解:设原计划每小时做x 个零件.根据题意,有去分母,整理,得解这个方程,得经检验,60,8021=-=x x 都是原方程的根,但生产零件的个数不能为负数,所以只取60=x .当60=x 时,860480480==x . 答:原计划每小时生产60个零件,预计用8小时完成任务. 例5 甲、乙二人分别从相距27千米的A 、B 两地同时出发,相向而行,3小时相遇.相遇后两人各用原来速度继续前进,甲到达B 地比乙到达A 地早1小时21分.求两人的速度.分析 本题中的主要等量关系是走完全程甲比乙少用1小时21分,可用等式602112727=-甲速乙速表示.题目的前一句话中隐含了二人速度之间的关系,27千米的路程,二人用3小时相遇,就是说二人的速度与是每小时9千米,如果设甲每小时走x 千米,那么乙每小时走(x -9)千米.解:设甲每小时走x 千米,那么乙每小时走(x -9)千米. 依题意,有化简得201191=--x x 去分母,整理,得解这个方程,得 经检验,5,3621=-=x x 都是原方程的根,但速度不能为负数,所以只取5=x .当5=x 时,4599=-=-x .答:甲每小时走5千米,乙每小时走4千米.说明 本题也可以把题中的两句话看成两个等量关系,列方程组求解.即设甲的速度为每小时x 千米,乙的速度为每小时y 千米. 根据题意,有方程组用代入消元法求解.典型例题六例 若解分式方程x x x x m x x 1)1(112+=++-+产生增根,则m 的值是( ).分析 解分式方程可能产生增根的原因是去分母时两边都乘以最简公分母——含未知数的整式.当这个整式的值为0时,就产生增根,所以解这类题目的方法是先去分母,将分式方程化为整式方程,再将所有可能的增根代入这个整式方程,求出m 的值.解 原方程即是x x x x m x x 1)1(112+=++-+ 去分母,得 .)1()1(222+=+-x m x这个方程可能地增根是 .10-==x x 或把0=x 代入整式方程,得.1)1(0=+-m 解得2-=m ;把1-=x 代入整式方程,得.)11()1()1(222+-=+--⨯m 解得.1=m .21 -=∴或m 故选D.典型例题七例 已知x 是实数,且2)3(3322=+-+x x xx ,那么x x 32+的值为( ) A .1 B .-3或1 C .3 D .-1或3误解 设y x x =+32,则原方程可变为23=-y y ,即.0322=-+y y 剖析 332-=+x x 时,即是0332=++x x ,此时031432<⨯⨯-=∆,方程无实数解,即x 不是实数,与题设不符,应舍去;当132=+x x 时,即是0132=-+x x ,此时,0)1(1432>-⨯⨯-=∆方程有实数解,即x 是实数,符合题设,故.132=+x x正确答案:选A.说明 此题由解分式方程演变而来,大大增加了成就机会,解题时,若忽视“实数”这个题设条件,将求得的值不加检验直接写出,则前功尽弃.还有一类题目由无理方程演变而来,如“已知x 为实数,且3246222++=++x x x x ,则x x 22+的值等于_________”.典型例题八例 阅读理解题:关于x 的方程:c c x x 11+=+的解是cx c x 1,21==; c c x x 11-=-(即c c x x 11-+=-+)的解是cx c x 1,21-==; c c x x 22+=+的解是cx c x 2,21==; c c x x 22-=-(即c c x x 22-+=-+)的解是cx c x 2,21-==; c c x x 33+=+的解是c x c x 3,21==; (1)请观察上述方程与解的特征,比较关于x 的方程c m c x m x +=+(0≠m )与它们的关系,猜想这个方程的解是什么,并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的与,方程右边的形式与左边完全相同,只是把其中的未知数换成了某个常数.那么这样的方程可以直解.请你试用上述结论解关于x 的方程:解:(1)cm x c x ==21,. 验证,当c x =1时,左边=右边,=+c m c ∴ c x =1是原方程的解. 当c m x =2时, 左边==+=+cm c cm m c m 右边 ∴ cm x =2是原方程的解. (2)原方程可化为由以上结论可知:,11-=-a x 或121-=-a x . ∴ 11,21-+==a a x a x 均为原方程的解. 典型例题九例 解分式方程:分析:由于本例中分子的次数不低于分母的次数,首先可将分式化为整式部分与真分式部分之与的形式,以简化运算. 解 1021108-+=--x x x ,(这种变形要注意借鉴) ∴原方程化为左右两边分别通分,并整理,得经检验,8=x 是原方程的根.说明:先化简再求解是本例的关键所在.把一个分子次数不低于分母次数的分式化为整式部分与真分式之与的一般方法是带余除法.典型例题十例 解关于x 的方程:分析:利用换元法求解.解 设m b a x =-,n ab x =-,则原方程可变形为 nm n m 11+=+,即 整理,得∴0=+n m 或01=-mn当0=+n m 时,即0=-++ab x b a x当01=-mn 时,即01=--⋅-a b x b a x解之,得02=x ,b a x +=3 经检验:b a b a x ++=221,02=x ,b a x +=3都是原方程的根.说明:本例的求解中用了两次换元,使解法显得巧妙,望能适当利用.典型例题十一例 解关于x 的分式方程:分析:本例是含有字母参数的分式方程,先去分母化分式方程为整式方程,求出用a 表示x 的根,再给以讨论.解 去分母,得)(5))((22x a a x a x a ax -=+-+,即解之,得a x 31=,a x 212=由原方程可知0≠a ,0≠-x a ,即0≠≠a x检验:把a x 3=,a x 21=分别代入原方程,分母均不为零. ∴原方程的根是a x 3=,a x 21= 说明:解含有字母参数的分式方程与一般的分式方程的方法相同,但应特别注意从题目中识别字母系数的取值范围,并根据情况进行讨论.典型例题十二例 解方程:1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x 分析:注意到211222-⎪⎭⎫ ⎝⎛+=+x x x x ,于是可采取换元法解之.解 把原方程化为1132122=⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+x x x x ,即 设y x x =+1,则原方程可化为解之,得11-=y ,252=y .当1-=y 时,11-=+x x ,即该方程的判别式0341<-=-=∆,所以,它无实数解. 当25=y 时,251=+x x ,即解之,得21=x ,212=x 经检验,21=x ,212=x ∴原方程的根是21=x ,212=x 说明:该例中,211222-⎪⎭⎫ ⎝⎛+=+x x x x ,切莫把221x x +看作2)1(xx +求解,否则,将会造成错误.选择题1. 使分式122+--x x x 的值为零的x 的值为( ).A .2B .-1C .2或-1D .1或-22. 如果方程x x m x x x x +=+-+2112有增根,则m 的值等于( ).A .1或-2B .-1或-2C .-1或2D .1或23. 方程22144212-+=-++x x x x 的解的个数为(). A .1个 B .2个 C .0个 D .3个4. 下列方程①053212=-+x x ②251=+x ③22312=++x x ④0112=--xx是分式方程的个数为().A .4B .3C .2D .15. 用换元法解方程25211322=-+-x x x x ,下列变形正确的是(). A .设y x x =-132,变形,为251=+y y B .设y x x =-132,变形,为2511=-+y y C .设y x x =-12,变形,为2513=-y y D .设y xx =-12,变形,为2523=+y y . 6. 方程2224164x x x =--的解的个数有(). A .3个B .2个C .1个D .0个 7. 如果09612=+-x x ,那么x 3的值等于() A .1- B .1 C .2- D .1±8. 若每人每天工效相同,a 个人b 天可做s 个零件,则b 个人做a 个零件需要的天数为().A .s a 2B .a s 2C .2a sD .sa 答案:1. A ;2. C.3. A4. B5. D6. D7. B8. A.填空题1.方程1412112-=--+-x x x x x x 可以采用左边通分后得方程_________,由等式性质只要解整式方程___________;2. 方程112353=-++x x x 如果有增根,则x 的值是_________; 3.当x =_________时,分式23--x x 与23-x 相等; 4. 方程2224222+=+x x x 的根是___________; 5. 方程2216x x xx ++=+,可用_________法,设________,化简原方程为________;6. 甲、乙两组加工零件,甲在a 天内可加工c 个零件,乙在b 天内可加工d 个零件,若两人同时加工t 个零件,则需要的天数是_________;7. 当k =_________时,方程551-=--x k x x 无实根 答案: 1.14113222-=-+x x x x ;x x 4132=+; 2. 5-或21; 3. 2135±; 4. 2±=x ; 5.换元法2x x y +=,y y +=16; 6. ad bc abt +; 7. 4.解答题1.解下列方程:(1)31346=+-x x ;(2)3353112-+=--+x x x x x x ;(3)21122442++=-+-x x x x ; (4)71)1(61)1(2=-+++-x x x x ;(5)02366)1(2321222=+-+-+-+-++x x x x x x x x x . 2.用换元法解下列方程:(1)025311322=--+-x x x x ;(2)xx x x +=++2221; (3)022*********=++---+x x x x ;(4)1)1(61=+-+xx x x ;(5)05161=--+-x x x x ;(6)025615622=+-+-xx x x ; (7)07432122=+--x x ;(8)223825493x x x x x x --+=--; (9)0293912=-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+x x x ;(10)0677122=++-⎪⎭⎫ ⎝⎛-x x x x . 3.某工厂计划在数天内制造1000台机床,后来在实际生产时,每天比原计划多生产25台,结果提前两天完成,这个工厂实际生产的天数是多少天?4.一项工程,甲队单独完成比乙队单独完成少15天,如果甲队单独工作10天后,乙队再单独工作15天,就可以完成这项工程的32,求甲乙两队单独完成这项工程各需多少天? 5.A 、B 两地相距km 99,甲骑自行车由A 地驶向B 地,经过min 30后乙骑自行车以每小时比甲快km 3的速度由B 地驶往A 地,两人在相距km 54处相遇,求甲、乙两人的速度。
知识卡片-解分式方程--可化为一元二次方程

解分式方程——可化为一元二次方程能量储备●解可化为一元二次方程的分式方程的基本思想把分式方程转化为整式方程(一元二次方程),解这个整式方程,然后验根,从而确定分式方程的解.●解化为一元二次方程的分式方程的一般方法和步骤:方法一:去分母法.(1)去分母:方程两边同乘最简公分母,把分式方程化为整式方程.(2)解整式方程:即解一元二次方程,去括号、移项、合并同类项等.(3)检验:最后进行检验,有増根,舍掉。
简称为一化,二解,三检验.方法二:换元法.结构上有一定特点,若用常规去分母法求解比较麻烦,可从整体思想出发,采用换元法设辅助未知数,把原方程转化为一个简单的分式方程或正式方程再求解。
如(x−1)2x2−x−1x−2=0即可设x−1x= t换元求解。
●检验的方法(1)直接检验法.将解的值分别代入原分式方程的左边和右边进行检验.直接检验法不仅能检验求得的解是不是原分式方程的解,而且能检验求得的解是否正确. (2)公分母检验法.把求得的解代入最简公分母中进行检验,使最简公分母为0的解不是原分式方程的解.公分母检验法比较简单,因此被广泛运用.通关宝典★★易混易误点易混易误点1:用分式方程中的最简公分母同乘方程的两边时,要注意用最简公分母乘方程两边各项时,不要漏乘不含分母的项.例1解方程:11−x =2+3x−x21−x2解法1:方程两边乘1−x2,得1+ x=2(1−x2) + 3x−x2,整理后,得3x2−2x−1=0. 解得:x1=1,x2=−13,检验:将x1=1代入原方程,1-x=0,所以x=1是方程的增根,舍去x2=−13带入原方程,左边=右边,所以x2=−13是原分式方程的解.易混易误点2:解分式方程可能产生不适合原方程的解,所以检验是解分式方程的必要步骤.例2 解方程:x +1x -1-4x 2-1=1 解:方程两边乘(x +1)(x -1),得(x +1)2-4=(x +1)(x -1),解得x =1. 检验:当x =1时,(x +1)(x -1)=0,所以x =1不是原分式方程的解,所以原分式方程无解. 蓄势待发考前攻略分式方程的解法是中考的热点,其题型主要是解答题. 完胜关卡。
中考数学专题复习4分式、分式方程及一元二次方程(解析版)

分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。
可化为一元二次方程的分式方程的应用题

可化为一元二次方程的分式方程的应用题可化为一元二次方程的分式方程是八年级代数的一个重点内容,它的应用题作为初中阶段围绕方程的一系列知识的终结点,是中考的一个主要考察对象,也是一个难点。
本课中的例题及练习题都给出了三种解法,目的是增加解题手段,并附有专门用于解特殊一元二次方程的变形的求根公式,帮你解决困难。
解答中出现的“同类量”是指与所设未知数有相同单位的量,“相关量”是指由已知数据和所设未知数及其同类量能表示的量. 一般情况下,由“相关量”得出方程.例题1、在高速公路上,A 、B 两地间的距离为300千米. 中巴车每小时比大客车多跑20千米, 因而行驶全程少用半小时. 求这两种车速度.解法1:(直接法)设大客车每小时行驶x 千米,(同类量)中巴车每小时行驶(相关量)大客车跑完全程需,300小时x 中巴车需,20300小时 x 则(x +20)千米,例题1、在高速公路上,A 、B 两地间的距离为300千米.中巴车每小时比大客车多跑20千米, 因而行驶全(解法1:).2120300300=+-x x 根据题意, 得去分母, 得600x +1200–600x= x2+20x ,整理得x 2+20x –1200=0,解得x 1=100,x 2= –120.(解法1:)经检验,x1=100, x2= –120都是原方程的根,但速度为负不符合题意,∴只取x=100,这时,100+20=120.答:中巴车每小时行驶120千米,大客车每小时行驶100千米.例题1、在高速公路上,A、B两地间的距离为300千米.中巴车每小时比大客车多跑20千米, 因而行驶全解法2:(间接法)设大客车行驶全程需y 千小时,(同类量)中巴车行驶全程需(相关量)大客车速度为,/300小时千米y 中巴车速度为,)21(小时-y ,/21300小时千米-y 则例题1、在高速公路上,A 、B 两地间的距离为300千米.中巴车每小时比大客车多跑20千米, 因而行驶全(解法2:).2030021300=--y y 根据题意, 得去分母, 得30y –15(2y –1)=2y 2–y ,整理得2y 2–y –15=0,解得y 1=3,y 2= –2.5.例题1、在高速公路上,A 、B 两地间的距离为300千米.中巴车每小时比大客车多跑20千米, 因而行驶全(解法2:)经检验,y1=3, y2= –2.5都是原方程的根,但时间为负不符合题意,∴只取y=3,100+20=120.这时,300÷3=100,答:中巴车每小时行驶120千米,大客车每小时行驶100千米.例题1、在高速公路上,A、B两地间的距离为300千米.中巴车每小时比大客车多跑20千米, 因而行驶全解法3:(方程组法)设大客车每小时行驶x 千米,则中巴车每小时行驶(x +20)千米,行驶全程需y 千小时,行驶全程需,)21(小时 y 例题1、在高速公路上,A 、B 两地间的距离为300千米.中巴车每小时比大客车多跑20千米, 因而行驶全(解法3:)①,300=xy 根据题意, 得展开②式, 得把①式代入并化简得∵y ≠0,两边都乘以y,得②.300)21)(20(=-+y x ,300102021=-+-y x xy ,0102021=-+-y x {例题1、在高速公路上,A 、B 两地间的距离为300千米.中巴车每小时比大客车多跑20千米, 因而行驶全(解法3:),01020212=-+-y y xy 再次把①式代入并整理得2y 2–y –15=0,解得y 1=3,y 2= –2.5.但时间为负不符合题意, ∴只取y =3,这时,300÷3=100,答:(略.)100+20=120.例题1、在高速公路上,A 、B 两地间的距离为300千米.中巴车每小时比大客车多跑20千米, 因而行驶全程少用半小时. 求这两种车速度.评:本题是四年制代数课本第三册(2002年版)解法1的优点是直接得到所求, 解法2的优点是方程比较容易解, 解法3的优点是不需检验, 第116页例3的“现代版”.缺点是由于得数绝对值大, 因而方程的常数项绝对值也大, 使解方程的难度加大;但必须注意所得结果不是所求, 还需再计算一步;并且适合有两问缺点是解方程组的过程稍麻烦.的题目;课本例4某农场开挖一条长960米的渠道, 开工后每天比原计划多挖20米, 结果提前4天完成任务. 原计划每天挖多少米?解法1:设原计划每天挖x 米,则(同类量)实际每天挖(相关量)原计划工期为,960天x 实际工期为.20960天 x (x +20) 米,课本例4某农场开挖一条长960米的渠道, 开工后每天比原计划多挖20米, 结果提前4天完成任务.原计划每天挖多少米?(解法1:).420960960=+-x x 根据题意, 得去分母, 得960x +19200–960x= 4x 2+80x ,整理得x 2+20x –4800=0,解得x 1=60,x 2= –80.(解法1:)经检验,x1=60, x2= –80 都是原方程的根,但工效为负不符合题意,∴只取x=60.答:原计划每天挖60米.课本例4某农场开挖一条长960米的渠道, 开工后每天比原计划多挖20米, 结果提前4天完成任务.原计划每天挖多少米?解法2:(间接法)设原计划工期为y 天,(同类量)实际工期为(相关量)原计划每天挖,960米y实际每天挖,)4(天-y ,4960米-y 则课本例4某农场开挖一条长960米的渠道, 开工后每天比原计划多挖20米, 结果提前4天完成任务.原计划每天挖多少米?.209604960=--yy 根据题意, 得去分母, 得960y –(960y –3840)=20y 2–80y ,整理得y 2–4y –192=0,解得y 1=16,y 2= –12.课本例4某农场开挖一条长960米的渠道, 开工后每天比原计划多挖20米, 结果提前4天完成任务.原计划每天挖多少米?经检验,y1=16, y2= –12都是原方程的根,但工期为负不符合题意,∴只取y=16,这时,960÷16=60.答:(略.)课本例4某农场开挖一条长960米的渠道, 开工后每天比原计划多挖20米, 结果提前4天完成任务.原计划每天挖多少米?解法3:(方程组法)设原计划每天挖x 米,则实际每天挖(x +20)米,工期为y 天,工期为,)4(天-y ①,960=xy 根据题意, 得②.960)4)(20(=-+y x {课本例4某农场开挖一条长960米的渠道, 开工后每天比原计划多挖20米, 结果提前4天完成任务.原计划每天挖多少米?展开②式, 得把①式代入并化简得∵x ≠0,两边都乘以x,得,96080204=-+-y x xy ,0205=+-y x (解法3:),02052=+-x xy x 课本例4某农场开挖一条长960米的渠道, 开工后每天比原计划多挖20米, 结果提前4天完成任务.原计划每天挖多少米?(解法3:)再次把①式代入并整理得x2+20x–4800=0,解得x1=60,x2= –80.∵工期为负不符合题意,∴只取x=60.答:(略.)课本例4某农场开挖一条长960米的渠道, 开工后每天比原计划多挖20米, 结果提前4天完成任务.原计划每天挖多少米?课本第118页练习题3某工厂贮存350吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,使贮存的煤比原计划多用20天,贮存的煤原计划用多少天?每天烧多少吨?解法1:设原计划用x 天,则(同类量)实际用了(相关量)原计划每天用煤,350吨x .20350吨 x (x +20) 天,实际每天用煤.220350350=+-x x 根据题意, 得去分母并整理得x 2+20x –3500=0,解得x 1=50,x 2= –70.课本第118页练习题3某工厂贮存350吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,使贮存的煤比原计划多用20天,经检验,, x1=50, x2= –70都是原方程的根.∵时间为负不符合题意,∴只能取x=50.这时,350÷50=7.答:原计划用50天, 每天用7吨.课本第118页练习题3某工厂贮存350吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,使贮存的煤比原计划多用20天,解法2:(间接法)设原计划每天用y 吨,(同类量)实际每天用(相关量)原计划和实际分别用,350天y ,)2(吨-y .2350天-y 则课本第118页练习题3某工厂贮存350吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,使贮存的煤比原计划多用20天,.203502350=--yy 根据题意, 得去分母并整理, 得y2–2y –35=0,解得y 1=y 2=,7.5-课本第118页练习题3某工厂贮存350吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,使贮存的煤比原计划多用20天,经检验,y1=7,y2= –5都是原方程的根.∵每天用量为负不符合题意,∴只能取y=7.这时,350÷7=50.答:原计划用50天, 每天用7吨.课本第118页练习题3某工厂贮存350吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,使贮存的煤比原计划多用20天,解法3:(方程组法)则实际用了每天用.)2(吨-y (x +20)天,设原计划用x 天,每天用y 吨,①,350=xy 根据题意, 得②.350)2)(20(=-+y x {课本第118页练习题3某工厂贮存350吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,使贮存的煤比原计划多用20天,展开②式, 得,35040220=--+x y xy 把①式代入并化简得∵x ≠0,两边都乘以x,得③,01020=-+y x ,03500202=-+x x 课本第118页练习题3某工厂贮存350吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,使贮存的煤比原计划多用20天,解得x 1=50,x 2= –70.代入③式, 得y 1=y 2=,7.5 ∵负数不符合题意,舍去.∴{x =50,y =7.答:原计划用50天, 每天用7吨.课本第118页练习题3某工厂贮存350吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,使贮存的煤比原计划多用20天,课本第118页练习题4甲、乙两班学生绿化校园. 如果两班合作,6 天可以完成. 如果单独工作,甲班比乙班少用5天. 两班单独工作各需多少天完成?解法1:设乙班单独工作需x 天完成,则(同类量)甲班单独工作需(相关量)两班的效率分别为,1x.51 x (x –5) 天,.61151=+-x x 根据题意, 得去分母并整理得x2–17x +30=0,解得x 1=15,x 2=2.课本第118页练习题4甲、乙两班学生绿化校园. 如果两班合作,6 天可以完成. 如果单独工作,甲班比乙班少用5天. 两班单独工作经检验,, x1=15, x2=2都是原方程的根.当x=15 时, x–10=5.当x=2 时, x–10= –8.∵时间为负不合题意,∴只能取x=15.答:单独工作甲班需10小时完成,乙班需15小时.课本第118页练习题4甲、乙两班学生绿化校园. 如果两班合作,6 天可以完成. 如果单独工作,甲班比乙班少用5天. 两班单独工作解法2:(间接法)设乙班的效率为y ,(同类量)甲班的效率为(相关量)单独完成工作两班分别需要,611天y -),61(y -.1天y 则课本第118页练习题4甲、乙两班学生绿化校园. 如果两班合作,6 天可以完成. 如果单独工作,甲班比乙班少用5天. 两班单独工作(解法2:).56111=--yy 根据题意, 得去分母并整理, 得30y2–17y +1=0,课本第118页练习题4甲、乙两班学生绿化校园. 如果两班合作,6 天可以完成. 如果单独工作,甲班比乙班少用5天. 两班单独工作解得y 1=y 2=,151.21(解法2:)经检验,y 1=y 2= 都是原方程的根.,15121,151时当=y ,151=y =-y 611.10课本第118页练习题4甲、乙两班学生绿化校园. 如果两班合作,6 天可以完成. 如果单独工作,甲班比乙班少用5天. 两班单独工作(解法2:)答:(略.),41时当=y ,3611,21-=-=y y.,舍去不合题意课本第118页练习题4甲、乙两班学生绿化校园. 如果两班合作,6 天可以完成. 如果单独工作,甲班比乙班少用5天. 两班单独工作解法3:(方程组法)则甲班需每天完成).61(y 设单独工作乙班需x 天完成,乙班的每天完成的工作量为y ,(x –5)天,课本第118页练习题4甲、乙两班学生绿化校园. 如果两班合作,6 天可以完成. 如果单独工作,甲班比乙班少用5天. 两班单独工作①,1=xy 根据题意, 得②.1)61)(5(=--y x {展开②式, 得,156561=+--y xy x 课本第118页练习题4甲、乙两班学生绿化校园. 如果两班合作,6 天可以完成. 如果单独工作,甲班比乙班少用5天. 两班单独工作把①式代入并化简得∵x ≠0,两边都乘以x,得,03017=+-y x ,030172=+-x x 解得x 1=15,x 2=2.课本第118页练习题4甲、乙两班学生绿化校园. 如果两班合作,6 天可以完成. 如果单独工作,甲班比乙班少用5天. 两班单独工作(解法3:)当x=15 时, x–5=10.当x=2 时, x–5= –3.∵时间不能是负数,∴只能取x=15.答:(略.)课本第118页练习题4甲、乙两班学生绿化校园. 如果两班合作,6 天可以完成. 如果单独工作,甲班比乙班少用5天. 两班单独工作课本118页练习题5甲、乙两组工人合做某项工作, 10天以后,甲班组另有任务, 乙组再单独做2于才完成.如果单独完成这项工作, 甲组比乙组可以快4 天. 求各组单独完成这项工作所需的天数.解法1:设单独完成工作乙组需x 天,则(同类量)单独完成甲组需(相关量)两组的效率分别为,1x .41 x (x –4) 天,.112410=+-xx 根据题意, 得去分母并整理得x 2–26x +48=0,解得x 1=24,x 2=2.课本118页练习题5甲、乙两组工人合做某项工作,,10天以后,甲班组另有任务, 乙组再单独做2于才完成. 如果单独完成这项工作, 甲组比乙组可以快4 天.经检验,, x1=24, x2=2都是原方程的根.当x=24 时, x–4=20.当x=2 时, x–10= –8.∵时间为负不合题意, ∴只能取x=24.这时,x–4=20.答:单独完成, 甲组需20天,乙组需24天.课本118页练习题5甲、乙两组工人合做某项工作,,10天以后,甲班组另有任务, 乙组再单独做2于才完成. 如果单独完成这项工作, 甲组比乙组可以快4 天.解法2:(间接法)设乙组的效率为y ,(同类量)甲组的效率为(相关量)单独完成分别需,12110天y -,10121y -.1天y则课本118页练习题5甲、乙两组工人合做某项工作,,10天以后,甲班组另有任务, 乙组再单独做2于才完成. 如果单独完成这项工作, 甲组比乙组可以快4 天.(解法2:).4121101=--yy 根据题意, 得去分母并整理, 得48y2–26y +1=0,课本118页练习题5甲、乙两组工人合做某项工作,,10天以后,甲班组另有任务, 乙组再单独做2于才完成. 如果单独完成这项工作, 甲组比乙组可以快4 天.解得y 1=y 2=,241.21(解法2:)经检验,y 1= y 2= 都是原方程的根.,24121,241时当=y ,241=y .2012110=-y课本118页练习题5甲、乙两组工人合做某项工作,,10天以后,甲班组另有任务, 乙组再单独做2于才完成. 如果单独完成这项工作, 甲组比乙组可以快4 天.(解法2:)答:(略.),21时当=y .,,212110,21舍去不合题意-=-=yy 课本118页练习题5甲、乙两组工人合做某项工作,,10天以后,甲班组另有任务, 乙组再单独做2于才完成. 如果单独完成这项工作, 甲组比乙组可以快4 天.解法3:(方程组法)则甲组需每天完成.10121y 设单独完成工作乙组需x 天,乙组每天完成的工作量为y ,(x –4)天,课本118页练习题5甲、乙两组工人合做某项工作,,10天以后,甲班组另有任务, 乙组再单独做2于才完成. 如果单独完成这项工作, 甲组比乙组可以快4 天.①,1=xy 根据题意, 得②.110121)4(=--y x {(解法3:)展开②式并整理, 得,0144812=-+-y xy x 把①式代入并化简得∵x ≠0,两边都乘以x,得,04826=+-y x ,048262=+-x x 课本118页练习题5甲、乙两组工人合做某项工作,,10天以后,甲班组另有任务, 乙组再单独做2于才完成. 如果单独完成这项工作, 甲组比乙组可以快4 天.。
一元二次方程讲义——绝对经典实用

一元二次方程讲义——绝对经典实用一元二次方程是指方程中只含有一个未知数,而且未知数的最高次数是2.一般地,这样的方程都整理成为形如ax2+bx+c=0(a≠0)的一般形式,我们把这样的方程叫做一元二次方程。
其中ax2,bx,c分别叫做一元二次方程的二次项、一次项和常数项,a、b分别是二次项和一次项的系数。
如果方程中含有字母系数在讨论是否是一元二次方程时,则需要讨论字母的取值范围。
一元二次方程的求根方法有直接开平方法、配方法、公式法和因式分解法。
直接开平方法是指形如x=m(m≥0)的方程都可以用开平方的方法写成x=±m,求出它的解。
配方法是通过配方将原方程转化为(x+n)2=m(m≥0)的方程,再用直接开平方法求解。
配方是组成完全平方式的变形过程。
公式法是指一元二次方程ax2+bx+c=0(a≠0)的求根公式为x=(-b±√(b2-4ac))/2a。
因式分解法是把一元二次方程整理为一般形式后,方程一边为零,另一边是关于未知数的二次三项式,如果这个二次三项式可以作因式分解,就可以把这样的一元二次方程转化为两个一元一次方程来求解。
一元二次方程根的判别式的定义为b2-4ac,运用配方法解一元二次方程过程中得到显然只有当b2-4ac≥0时,才能直接开平方得到实数根。
这里b2-4ac叫做一元二次方程根的判别式。
只有当系数a、b、c满足条件b2-4ac≥0时才有实数根。
一元二次方程的根由其系数a、b、c确定,其根的情况(是否有实数根)由判别式Δ=b²-4ac确定。
设一元二次方程为2ax²+bx+c=0(a≠0),其根的判别式为Δ=b²-4ac,则解为x1,2=(-b±√Δ)/(2a)。
判定方程的根的情况有三种:①Δ>0,方程有两个不相等的实数根;②Δ=0,方程有两个相等的实数根;③Δ<0,方程没有实数根。
若a、b、c为有理数,且Δ为完全平方式,则方程的解为有理根;若Δ为完全平方式,同时-b±√Δ是2a的整数倍,则方程的根为整数根。
一元二次方程单元知识复习与总结

一元二次方程单元知识复习与总结一、引例瑞士的列昂纳德.欧拉(1707~1783),既是一位伟大的数学家,也是一位教子有方的父亲,他曾亲自编过许多数学趣题用以启发孩子们思考。
如下题:“父亲临终时立下遗嘱,要按下列方式分配遗产:老大分得100克朗和剩下的110;老二分得200克朗和剩下的110;老三分得300克朗和剩下的110;……;以此类推分给其他的孩子,最后发现,遗产全部分完后所有孩子分得的遗产相等;遗产总数、孩子人数和每个孩子分得的遗产各是多少?"这道题需要列方程求解。
解析设孩子数为x人,则最后一个孩子分得遗产为100x克朗,老大分得遗产[100+110(100x2-100)]克朗,得方程100+110(100x2—100)=100x.同学们,你会解此方程吗?整理方程得 x2-10x+9=0.(x-9)(x-1)=0,∴x1=9,x2=1(舍去)。
遗产总数是8100克朗;有9个孩子,每个孩子分得的遗产是900克朗。
点评:二、一元二次方程的解法运用因式分解法时,首先应将右边各项移到方程的左边,使方程右边为0;然后再将方程左边的式子分解因式,使原方程化为两个一元一次方程,常借助于提公因式法、公式法、十字相乘法等来分解因式。
例1:用适当的方法解下列一元二次方程:(1)(2x-1)2—9=0; (2)x2+x-1=0; (3)x2-4x=1; (4)3x2-16x+5=0;(5)(3x+2)2=4(x—3)2; (6)(y-1)2=2y(1-y);(7)3a2x22=0(a≠0) (8)x2+2mx=(n+m)(n—m).解析 (1)两边开平方,得 2x-1=3或2x-1=—3,∴ x1=2,x2=-1;(2)已知:a=1,b=1,c=—1。
∴ x1,x2;(3)整理原方程,得 x2-4x—1=0,∴ (x—2)2=5。
∴ x12=2(4)原方程可化为(3x-1)(x-5)=0,∴ x1=13,x2=5;(5)两边开平方,得3x+2=2(x-3)或3x+2=—2(x —3),∴ x 1=—8, x 2=45. (6)原方程可化为(y-1)(3y —1)=0,∴ y 1=1, y 2=13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.5一元二次方程的应用(5)
学习目标:1.掌握分式方程的计算方法;
2.进一步掌握列一元二次方程解应用题的方法和技能;
学习重点:分式方程转化为一元二次方程
学习难点:用换元法解分式方程
一. 学前准备
1. 分式方程的定义:_________________________________________________;
2. 解分式方程的思想是______________,步骤有__________________________
3. 解下列分式方程
6710(1);453x x -=-+ 221(2);11x x =--- 1(3)0;22y y y y --=+- 2233(4)111x x x x +-=-+-
二. 探究活动
(一) 师生互动·合作交流
1. 某校组织学生春游,预计共需费用120元,后来又有2人参加进来,费用不变,这样每人可少分摊3元。
问原来这组学生的人数是多少?
本题的等量关系是:原来这组学生每人分摊的费用-加人后该组学生每人分摊的费用=3元,由此可得方程。
2. 印刷一张矩形的张贴广告,如图。
它的印刷面积是322
dm ,上下空白各1dm ,两边空白
各0.5dm 。
当要求四周空白处的面积是182dm 时,求用来印刷这张广告的纸张的长和宽。
思路分析:根据图形知:
广告纸的面积=印刷面积+四周空白处的面积=____+____=____
广告纸的长=印刷部分的长+____dm
广告纸的宽=印刷部分的宽+_____dm
由印刷部分和广告纸都是矩形,且面积已知。
因而,可确定它们的长和宽的关系,再借助图形的面积关系就可列出方程。
(二) 步步高升·解决问题
请同学们思考一下下面的这个分式方程我
们该如何去解决呢? 221512
x x x x ++=+ 思路分析:本方程在求解时如直接去分母,就会得到一个次数高于二次的整式方程,不易求解。
这时,可考虑如下面所采用的换元的方法求解:用一个未知数y 替换方程中某个含原未知数x 的式子,然后,先解出y ,再去解x,这种方法叫做换元法。
解:
三. 自我测试
1. 解方程22315132x x x x +-+=-+时,设231
x y x +=-,则原方程化成整式方程就是_____________________;
2. 方程241x x x
=+的解是__________. 3. 如果用换元法解分式方程2214301x x x x +-+=+,并设21x y x
+=,那么原方程可化为____________________;
4. 用换元法解方程2(
)2()8011
x x x x +-=++
5. 用换元法解方程223433x x x x +-=+。