新人教版数学八年级上册13.3.2第2课时 含30°角的直角三角形的性质精品导学案
13.3.2 第2课时含30°角的直角三角形的性质人教版数学八年级上册同步课堂教案

第十三章轴对称13.3 等腰三角形13.3.2 等边三角形第2课时含30°角的直角三角形的性质一、教学目标1.掌握含有30°角的直角三角形的性质.2.经历探索含有30°角的直角三角形性质的过程,并运用其进行有关的证明和计算.二、教学重难点重点:含有30°角的直角三角形的性质.难点:运用含有30°角的直角三角形的性质进行计算和证明.三、教学过程【新课导入】[复习导入]教师带领学生复习等腰三角形和等边三角形的性质与判定,为本节课的学习做准备.【新知探究】知识点含30°角的直角三角形的性质[提出问题]用直尺量一量含有30°角的直角三角板的最短直角边(也即是30°角所对的直角边)与斜边的长度,你有什么发现吗?[动手操作]学生量一下自己手里的含有30°角的直角三角板,将所量得的结果记录在练习本上,由于每个学生的三角板并不完全一样,所以学生量得的结果会各不相同.教师点名5位学生回答他们的测量结果,并将测量结果写在黑板上.[课件展示]教师利用多媒体展示如下三位学生的结果:引导学生观察,斜边长与最短的直角边长存在什么关系(2倍关系).之后再验证黑板上学生的测量结果,发现也符合这样的倍数关系.[提出问题]如图,将两个相同的含30°角的三角尺摆放在一起.你能借助这个图形,找到Rt △ABC 的直角边BC 与斜边AB 之间的数量关系吗?[课件展示]教师利用多媒体展示如下动画过程:[小组讨论]学生之间讨论,教师引导学生观察,两个相同的含30°角的三角尺摆放在一起是什么图形,进而得到结论.之后教师点名,由代表回答小组间讨论的结果.教师纠正.[课件展示]教师利用多媒体展示如下证明过程:如图,△ADC 是△ABC 的轴对称图形,因此AB=AD, ∠BAD=2×30°=60°,从而△ABD 是一个等边三角形.再由AC ⊥BD,可得BC=CD= 12 AB.[提出问题]由此我们可以得到什么结论呢?[学生回答]学生的可能回答有:生甲:30°角所对的直角边的长度是斜边长度的一半.生乙:最短的直角边的长度乘以2就是斜边的长度.对于学生的回答,只要意思对,都给予肯定,但如乙同学的回答,这里教师应强调,应加上“含30°角的直角三角形中”.[提出问题]如何验证你们的猜想呢?[课件展示]教师利用多媒体展示如下已知与求证:已知:如图,在Rt △ABC 中,∠C=90°,∠A=30°.求证:BC= 12AB .[小组讨论]学生之间讨论,之后每位学生在练习本上书写证明过程,教师巡视,及时订正学生的错误.[课件展示]教师利用多媒体展示如下证明过程:证法一:证明:在△ABC 中,∵∠C=90°,∠A=30°, ∴∠B=60°.如图,延长BC 到点D ,使BD=AB ,连接AD ,则△ABD 是等边三角形.又∵AC ⊥BD, ∴BC=12BD .∴BC=12AB .证法二:证明:在BA 上截取BE=BC ,连接EC.∵∠B= 60°,BE=BC.∴△BCE 是等边三角形,∴∠BEC= 60°,BE=EC.∵∠A= 30°,∴∠ECA=∠BEC-∠A=60°-30° = 30°.∴AE=EC ,∴AE=BE=BC ,∴AB=AE+BE=2BC ,即BC=12AB .[归纳总结]在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.该性质的几何语言:在Rt △ABC 中,∵∠C=90°,∠A=30°,∴BC=12AB .并提醒学生注意:该性质是“含有30°角的直角三角形”所特有的,一般的直角三角形没有这个性质.[课件展示]教师利用多媒体展示如下例题:例1 如图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC ,DE 垂直于横梁AC ,AB=7.4m ,∠A=30°,立柱BC,DE 要多长?解:∵DE ⊥AC,BC ⊥AC,∠A=30 °,∴BC=12AB,DE=12AD.∴BC=12×7.4=3.7(m).又AD=12AB,∴DE=12AD=12×3.7=1.85(m).答:立柱BC 的长是3.7m ,DE 的长是1.85m.例2 如图,在Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°.(1)若CD=8cm ,则BC 的长度是多少?(2)若AD=3cm ,则AB 的长度是多少?解:(1)∵CD 是斜边AB 边上的高,∴∠BDC=90°.∵在Rt △BCD 中,∠B=30°,CD=8cm ,∴BC=2CD=16cm.(2)在Rt △ABC 中,∵∠B=30°,∴∠A=60°,∵CD 是斜边AB 边上的高,∴∠ADC=90°.∴∠ACD=30°.∵在Rt △ACD 中,∠ACD=30°,AD=3cm ,∴AC=2AD=6cm.∵在Rt △ABC 中,∠B=30°,AC=6cm ,∴AB=2AC=12cm.[归纳总结]注意:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.[课件展示]教师利用多媒体展示如下例题:例3 (2021•宣城模拟)如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,AE=6cm,则AC=( D )A.6cmB.5cmC.4cmD.3cm[归纳总结]含30°角的直角三角形的性质是求线段长度和证明线段之间倍分关系的重要工具,解题时,一般先是寻找30°角所在的直角三角形,得到斜边与直角边的关系,当30°角不在一个直角三角形中时,可考虑作辅助线构造含30°角的直角三角形,如:作垂线得到含30°角的直角三角形,或作等腰三角形构造顶角的邻补角为60°.当三角形中含有15°,30°,60°,120°角时,也可通过添加辅助线,构造含30°角的直角三角形求解.常见的模型有如下几种(图中所标的红色的角均为30°):【课堂小结】【课堂训练】1.如图,在△ABC中, AD是边BC的垂直平分线,∠B=60°,BD=2 ,那么AC的长度是( D )A.1B.2C.3D.42.如图,在△ABC中,∠C=60°, AD是BC边上的高,点E为AD的中点,连接BE并延长交AC于点F .若∠AFB=90°, EF=2,则BF长为( D )A.4B.6C.8D.103.(2021•乌苏市二模)如图,在等边△ABC中, D是AB的中点,DE⊥AC于点E,EF⊥BC于点F ,已知AB=8,则BF的长为( C )A.3B.4C.5D.64.如图,∠AOP=∠BOP=15°,PC∥OA交OB于点C,PD⊥OA于点D,若PC=3,则PD等于( ) A.3 B.2C.1.5 D.1【解析】如图,过点P作PE⊥OB于点E.∵PC∥OA,∴∠AOP=∠CPO=15°,∴∠PCE=∠BOP+∠CPO =15°+15°=30°.又∵PC=3,∴PE=1.5.∵∠AOP=∠BOP,PD⊥OA,∴PD=PE=1.5.故选C.5.在△ABC中,∠A: ∠B: ∠C=1:2:3,若AB=10,则BC= 5 .6.如图,在△ABC中,AB=BC ,∠ABC=120°,过点B作BD⊥BC,交AC于点D,若AD=1 ,则CD的长度为 2 .7.在△ABC中,AB=AC,∠BAC=120°,D是BC的中点,DE⊥AB于点E,求证:BE=3EA.证明:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.∵D是BC的中点,∴AD⊥BC.∴∠ADC=90°,∠BAD=∠DAC=60°.∴AB=2AD.∵DE⊥AB,∴∠AED=90°,∴∠ADE=30°,∴AD=2AE.∴AB=4AE,∴BE=3AE.8.求证:有一个锐角是30°的直角三角形斜边上的高把斜边分成1:3的两条线段.已知:如图,在Rt△ABC中,∠C=90°,∠A=30°, CD⊥AB.求证:BD:AD=1:3.证明:在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC , ∠B=90-30°=60° ,∵CD⊥AB ,∴∠CDB=90° ,∴∠BCD=30° ,∴BC=2BD .∴AB=4BD,∴BD:AD=1:3.故有一个锐角是30°的直角三角形斜边上的高把斜边分成1:3的两条线段.9.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN//BC交AC于点N,且MN平分∠AMC,若AN=1,求BC的长.解:∵CM平分∠ACB,MN平分∠AMC,∴∠NCM=∠BCM,∠AMN=∠NMC.∵MN//BC,∴∠AMN=∠B,∠NMC=∠BCM.∴∠AMN=∠B=∠NMC=∠BCM=∠NCM. ∴NM=NC.∵∠ACB=∠NCM+∠BCM,∴∠ACB=2∠B.∵∠A=90°,∴∠ACB+∠B=90°,∴∠B=30°.∴∠AMN=∠B=30°.∵∠A=90°,∠AMN=30°,AN=1,∴MN=2.∵AC=AN+NC=AN+MN=3,∴BC=2AC=6.【教学反思】本节课我采用动手测量含30°角的直角三角板的最短直角边长和斜边长的方式入手,因为学生的三角尺尺寸不用,所以学生测量了不同大小的含30°的直角三角板,再将测量数据进行比较,从而直观、快捷地找出它们的关系.这样就避免了以往由于知识比较抽象学生无从下手,无法理解的情况。
人教版数学八年级上册13.3.2 第2课时 含30°角的直角三角形的性质 课件

又AC= AC ,∴△ABC≌△ADC(SAS),
∴AB= AD ,∴△ABD是 等边 三角形,
∴BC=
1 2
BD=12AB.
·导学建议· 知识点由等边三角形的性质,得到直角三角形中30度角所对 的直角边等于斜边的一半的性质,培养学生学会从已掌握的知 识探究新知识的方法. 定理的证明可以鼓励学生应用不同的方法进行证明,培养学 生的发散思维.
·真实情境· 《2022年版数学课程标准》中指出:情境创设的真实性.本 题以轮船航行为背景,将直角三角形30度角的性质融入其中.
解:如图,过点P作PC⊥BC于点C. ∵∠PAB=15°,∠PBC=30°,∴∠APB=15°,
∴∠PAB=∠APB,∴PB=BA,∴PC=1AB=15,即
2
点C距小岛P只有15海里,而小岛周围18海里
内有暗礁,
∴轮船继续向前航行,会有触礁的危险.
方法归纳交流 当题目中有15°的角出现时,常构造 含30°角的直角 三角形解决问题.
·导学建议· 与实际生活有关的问题,要提醒学生先从实际问题中抽象出 数学问题,然后再借助所学的数学知识加以解决.通过这些题目 可培养学生的数学建模能力及解决问题的能力.
是轴对称图形,沿AD折叠后,B与C重合,则BD= CD =
1 BC
2
,∠ADB=∠ADC= 90°,∠BAD=∠CAD= 30° .又
AB=BC,∴BD= 1 AB.
2
2.上述结果我们也可以采用如下方法证明:
如图2,在△ABC中,∠ACB=90°,∠BAC=30°, 则∠B= 60° .
如图3,延长BC至D,使CD=BC,连接AD,
要把一块三角形的土地均匀分给甲 、乙、丙三家农户去 种植,如果∠C=90°,∠B=30°,要使这三家农户所得土地的大 小和形状都相同,请你试着分一分,在图上画出来.
人教版八年级上数学课件13.3.2第2课时含30°角的直角三角形的性质.

∴CD= AC= ×20=10.
、 点,立柱BC DE 垂直于横梁AC,AB (3)直角三角形中较短的直角边是斜边的一半。
从而△ABD是一个等边三角形.
=7.4
cm,∠A
解析:在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°.
2
理由如下:∵DE⊥AB, ∴∠AED=∠BED=90°. ∵DE是∠ADB的平分线, ∴∠ADE=∠BDE. 又∵DE=DE, ∴△AED≌△BED(ASA),
∴AD=BD,∠DAE=∠B.
∵∠BAD=∠CAD= 1 ∠BAC, 2
∴∠BAD=∠CAD=∠B.
∵∠BAD+∠CAD+∠B=90°,
证明:∵AB=AC,∠BAC=120°, ∴∠B=∠C=30°.
∵ D是BC的中点,∴AD⊥BC,
∴∠ADC=90°,∠BAD=∠DAC=60°,∴AB=2AD. ∵DE⊥AB,∴∠AED=90°,∴∠ADE=30°,
∴AD=2AE,∴AB=4AE,∴BE=3AE.
课堂总结
∴CD= AC= ×20=10.
▼应用格式:
A
∵ 在Rt△ABC 中,
∠C =90°,∠A =30°,
∴
1
BC =
AB.
2
B
C
判断下列说法是否正确: (1)直角三角形中30°角所对的直角边等于另一直角 边的一半. (2)三角形中30°角所对的边等于最长边的一半. (3)直角三角形中较短的直角边是斜边的一半。
(4)直角三角形的斜边是30°角所对直角边的2倍.√
人教版初中数学八年级上册第十三章13.3.2含30度角的直角三角形13.3.2含30度角的直角三角形

例题精讲
变式一、如图,在ΔABC中,∠ACB=90°,∠A=30°CD是斜
边AB上的高,CE是斜边AB上的中线,若AB=8,求DE的长.
例题精讲
变式二、 如图,△ABC中,∠BAC=120°,AB=AC,
AD⊥AC交BC于点D,求证:BC=3AD.
拓展探究
例2 如图所示,一艘轮船以15海里/时的速度由南向北航行,在A处测得
BC 1 AB 2
BC
例题精讲
例1.下图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、 DE
垂直于横梁AC,AB=7.4m,∠A=30°立柱BC 、 DE要多长?
例题精讲
解:∵DE⊥AC, BC⊥AC, ∠A=30° 可得 2BC=AB, 2DE=AD ∴BC=1/2 ×7.4=3.7m 又 AD=1/2 AB ∴DE=1/2 AD=1/2 ×3.7=1.85m 答:立柱BC的长是3.7m,DE的长是1.85m.
思考:要把一块三角形的土地均匀分给甲 、 乙、丙三家农户去种植,
如果∠C=90°∠B=30°,要使这三家农户所得土地的大小和形状都相 同,请你试着分一分,在图上画出来.
A
┓
C
B
小岛P在北偏西15°方向上,两小时后,轮船在B处测得小岛P在北偏西30°
方向上,已知在小岛周围18海里内有暗礁,若轮船继续向前航行有无触礁 的危险?
当堂检测
Байду номын сангаас
1.如图,在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D,若BD=1,则
B AD的长为 ( )
A.2
B.3
C.4
D.5
2.某市为了美化环境,计划在如图所示的三角形空地上种植草皮,已知这
新人教版八年级上册第十三章含有30度角的直角三角形的性质

1.三个边都相等的三角形是等边三角形; 2.三个角都相等的三角形是等边三角形; 3.有一个内角等于60 °的等腰三角形是等边三角形.
学习目标
? 1、理解“在直角三角形中,如果一 个锐角等于300,那么它所对的直角 边等于斜边的一半”。
? 2、会用添加辅助线的不同方法证明 含有30度角的直角三角形的性质。
那么∠BCD=_3_0__0_, BC=__2_c_m_. A
DB
4、如图所示,已知△ ABC中,∠ACB=90 0,
CD⊥AB于D, ∠A=30 0,且AB=8cm,
C
则BD=BC=--2---c--4--mc----m------,-AD,=∠--B-C6--Dc-=-m-------3-,0--0---,
A
几何语言
∵在Rt △ABC中,∠C=90 °,∠A= 30°
30°
1 ∴ BC= 2 AB
B
C
判断
1)直角三角形中30°角所对的直角边等于另一直角边的一半.
2)三角形中30°角所对的边等于最长边的一半。
3)直角三角形中最小的直角边是斜边的一半。
4)直角三角形的斜边是30°角所对直角边的2倍.
√
1、如图,在Rt△ABC 中∠C=900 ,∠B=2 ∠A,
操 作探 究
? 探究1 用直尺量一量含 30 °角的直角三角板的最短直角边 (即30 0 角所对的直角边 ) 与斜边 ,记录下数据,你有什么发现?
操 作探 究
? 猜一猜 在直角三角形中, 30°角所对的直角边与斜边有怎样的大小关系?
在直角三角形中,如果一个锐角等于30 0,那 么它所对的直角边等于斜边的一半。
∴ ∠BEC= 60°,BE=EC
13.3.2(2) 含30度角的直角三角形的性质(课件)八年级数学上册(人教版)

120°﹣90°=30°,∴∠CAD=
∠C,∴AD=CD,在Rt△ABD中,
∵∠B=30°,BD=10,
∴AD= BD=5
∴CD=AD=5.
一半,反之亦然.在△ABC中,∠A=30°,∠B=90°,AC=8,点D在边AB
上,且BD= ,点P是△ABC边上的一个动点,若AP=2PD时,则PD的
长是 3
3.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,CD是△ABC的高,
且BD=1,则AD的长是 3 .
图1
图3
当堂测试
4.如图,已知△ABC是等边三角形,D,E分别为BC、AC上的点,且CD=AE,AD、
证明:在Rt△ABC中,∠ACB=90°,∠B=30°,
1
∴∠BAC=60°,AC= AB
2
∵DE是AB的垂直平分线
∴AD=DB= AB
∴AD=AC,∴△ADC是等边三角形;
分层作业
【基础达标作业】
5.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,DE是AB的垂直平分线,交AB、
BC于点D、E连接CD、AE.求证:点E在线段CD的垂直平分线上.
∵∠C=90º,
1
1
∴AC= 2 AE=2
BE=2.5.
B
E
C
随堂练习
2.在△ABC中,AB=AC,∠BAC=120º,D是BC的中点,DE⊥AB于E
点,求证:BE=3EA.
证明∵AB=AC,∠BAC=120º,
∴∠B=∠C=30º.
∵D是BC的中点, ∴AD⊥BC
B
∴∠ADC=90º,∠BAD=∠DAC=60º.
人教版八年级数学上册 导学案:13.3.2 第2课时 含30°角的直角三角形的性质【精品】

第十三章 轴对称等腰三角形13.3.2 等边三角形含30°角的直角三角形的性质30°角的直角三角形的性质.30°角的直角三角形的性质进行有关的证明和计算.30°角的三角尺摆放在一起,你能借助这个图形,找BC 与斜边AB 之间的数量关系吗?DFBCA (D ) BC (F )E填一填:∠A=∠D=_______,⇒∠BAC=___________;AB=DE,⇒△ABE 是__________三角形;⇒2BC=BE=________.要点归纳: 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 证一证:已知:如图,在Rt △ABC 中,∠C =90°,∠A =30°. 求证:BC=12AB. 方法一:倍长法【提示:延长BC 至D ,使CD=BD ,连接AD 】 证明:方法二:截半法【提示:在BA 上截取BE=BC ,连接EC 】 证明:方法总结在证明线段之间的和差倍分关系时,倍长法与截半法是常用的两种作辅助线的方法.例1:如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,CD 是斜边AB 上的高,AD =3cm ,则AB 的长度是( )A .3cmB .6cmC .9cmD .12cm注意:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.ABC例2:如图,∠AOP =∠BOP =15°,PC ∥OA 交OB 于C ,PD ⊥OA 于D ,若PC =3,则PD 等于( )A .3B .2 C.1.5 D .1方法总结:含30°角的直角三角形与角平分线、垂直平分线的综合运用时,关键是寻找或作辅助线构造含30°角的直角三角形.例3 如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线.CD 与DB 有怎样的数量关系?请说明理由.方法总结:含30°角的直角三角形的性质是表示线段倍分关系的一个重要的依据,如果问题中出现探究线段倍分关系的结论时,要联想此性质.例4:已知等腰三角形的底角为15°,腰长为20.求腰上的高.方法总结:在求三角形边长的一些问题中,可以构造含30°角的直角三角形解决.本题的关键是作高,而后利用等腰三角形及外角的性质,得出30°角,利用含30°角的直角三角形的性质解决问题.1.在Rt △ABC 中,CD 是斜边AB 上的高,∠B =30°,AD =2cm ,则AC 的长是( ) A .2 cm B .4 cm C .6 cm D .8 cm2.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB ,交BC 于点D ,若CD =1,则BD =____.第2题图第3题图3.如图是某商场一楼与二楼之间的手扶电梯示意图,其中AB,CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h=____ m.4.如图所示,已知△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=30°.求证:AB=4BD证明:∵△ABC中,∠ACB=90°,∠A=30∴BC= AB∠B=又∵△BCD中,CD⊥AB∴∠BCD=∴BD= BC∴BD= AB即.5.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4.求PD的长.二、课堂小结含30°角的直角三角形的性质:应用的前提在三角形中,结论是30°角所对的直角边是的一半,而不是任一直角边是斜边的一半.第1题图第2题图2.某市在旧城改造中,计划在一块如图所示的△ABC空地上种植草皮以美化环境,8.如图,已知△ABC是等边三角形,D,E分别为BC、AC上的点,且CD=AE,AD、BE相交于点P,BQ⊥AD于点Q,求证BP=2PQ.。
人教版八年级数学上册 导学案:13.3.2 第2课时 含30°角的直角三角形的性质【精品】

第十三章 轴对称等腰三角形13.3.2 等边三角形含30°角的直角三角形的性质30°角的直角三角形的性质.30°角的直角三角形的性质进行有关的证明和计算.30°角的三角尺摆放在一起,你能借助这个图形,找BC 与斜边AB 之间的数量关系吗?DFBCA (D ) BC (F )E填一填:∠A=∠D=_______,⇒∠BAC=___________;AB=DE,⇒△ABE 是__________三角形;⇒2BC=BE=________.要点归纳: 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 证一证:已知:如图,在Rt △ABC 中,∠C =90°,∠A =30°. 求证:BC=12AB. 方法一:倍长法【提示:延长BC 至D ,使CD=BD ,连接AD 】 证明:方法二:截半法【提示:在BA 上截取BE=BC ,连接EC 】 证明:方法总结在证明线段之间的和差倍分关系时,倍长法与截半法是常用的两种作辅助线的方法.例1:如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,CD 是斜边AB 上的高,AD =3cm ,则AB 的长度是( )A .3cmB .6cmC .9cmD .12cm注意:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.ABC例2:如图,∠AOP =∠BOP =15°,PC ∥OA 交OB 于C ,PD ⊥OA 于D ,若PC =3,则PD 等于( )A .3B .2 C.1.5 D .1方法总结:含30°角的直角三角形与角平分线、垂直平分线的综合运用时,关键是寻找或作辅助线构造含30°角的直角三角形.例3 如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线.CD 与DB 有怎样的数量关系?请说明理由.方法总结:含30°角的直角三角形的性质是表示线段倍分关系的一个重要的依据,如果问题中出现探究线段倍分关系的结论时,要联想此性质.例4:已知等腰三角形的底角为15°,腰长为20.求腰上的高.方法总结:在求三角形边长的一些问题中,可以构造含30°角的直角三角形解决.本题的关键是作高,而后利用等腰三角形及外角的性质,得出30°角,利用含30°角的直角三角形的性质解决问题.1.在Rt △ABC 中,CD 是斜边AB 上的高,∠B =30°,AD =2cm ,则AC 的长是( ) A .2 cm B .4 cm C .6 cm D .8 cm2.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB ,交BC 于点D ,若CD =1,则BD =____.第2题图第3题图3.如图是某商场一楼与二楼之间的手扶电梯示意图,其中AB,CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h=____ m.4.如图所示,已知△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=30°.求证:AB=4BD证明:∵△ABC中,∠ACB=90°,∠A=30∴BC= AB∠B=又∵△BCD中,CD⊥AB∴∠BCD=∴BD= BC∴BD= AB即.5.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4.求PD的长.二、课堂小结含30°角的直角三角形的性质:应用的前提在三角形中,结论是30°角所对的直角边是的一半,而不是任一直角边是斜边的一半.第1题图第2题图2.某市在旧城改造中,计划在一块如图所示的△ABC空地上种植草皮以美化环境,8.如图,已知△ABC是等边三角形,D,E分别为BC、AC上的点,且CD=AE,AD、BE相交于点P,BQ⊥AD于点Q,求证BP=2PQ.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时含30°角的直角三角形的性质
一、学习目标
1、理解含30°锐角的直角三角形的性质;
2、能利用含30°锐角的直角三角形的性质解决简单的实际问题。
二、温故知新(口答)
1、等边三角形三边,三个角都等于,
2、等边三角形是轴对称图形,它有条对称轴,它的对称
轴。
三、自主探究合作展示
探究(一)
1、如图(1),将两个含有30°角的三角形放在一起,你能借助这个图形,找
到Rt△ABC的直角边BC与斜边AB之间的数量关系吗?
2、你能用所学的知识验证以上结论吗?
方法1:如图(2),△ABC是等边三角形,AD⊥BC于D,∠BAD= °,BD= BC= AB。
方法2:如图(3),△ABC中,延长BC到D使BD=AB,连接AD,则△ABD是
三角形,
BC=1
2
=
1
2。
A
C
B
D
图(2)
B C D
图(1)
B
A
D
C
图(3)
探究(二)
例题:如图(4)是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB=7.4m ,∠A=30°,立柱BC 、DE 要多长?
分析:观察图形可以发现在Rt △AED 与Rt △ACB 中,由于∠A=30°,所以DE= ,BC= ,又由D 是AB 的中点,所以DE= .
例题反思:
探究(三)
例题:如图(5),要把一块三角形的土地均匀分给甲、乙、丙三家农户去种植,如果∠C =90°,
∠A =30°,要使这三家农户所得土地的大小和形状都相同,请你试着分一分,在图上画出来.
例题反思:
四、双基检测
1、等腰三角形中,一腰上的高与底边的夹角为30°,则此三角形中腰与底边的关系( )
A 、腰大于底边
B 、腰小于底边
A
┓
C A
图(5)
D C
A
E
B
图(4)
C 、腰等于底边
D 、不能确定
2、在Rt △ABC 中,∠C=90度,∠A=30°,CD ⊥AB 于点D ,AB=8cm,则BC= ,
BD= , AD=
3、如图(6),在△ABC 中∠C=90°,∠B=15°,AB 的垂直平分线交BC 于D,交AB 于M,且BD=8㎝,求AC 之长.
五、学习反思
请你对照学习目标,谈一下这节课的收获及困惑。
图(6)
M C
B
D
A M
D
B
C
A。