第7章超静定结构与弯矩分配法
结构力学 超静定结构总论

20kN/m
69.91 ↓↓↓↓↓↓↓↓↓↓↓↓ 例15-1
18.83 50.21 M图
37.65 12.55 (kN.M)
4m 6.28 8m
4m
4m 4m 3m
20kN/m
↓↓↓↓↓
D EI=3 EI=1
EI=3 A
B θ2
EI=1
C
11X1 122 1P 0 →110.3X1+7θ2+3400=0
20kN/m
↓↓↓↓↓↓↓↓↓↓↓↓↓
F1P
A 4I B
5I C 4I D
用力矩分配法, 并求出F1P、k11
3I
3I
E
F
Δ=1
k111F1P 0
再叠加M图。
A 4I B
5I C
3I
3I
E
F
4I D k11
例、联合应用力矩分配法与位移法求等截面连续梁结构的弯矩图。
20kN/m
100kN
20kN
A
B
变形条件:
11X1 12X 2 133 144 1P 0
21X1 22X 2 233 244 2P 0
X2 X1
平衡条件: M B 0, M BA M BC M BD 0
M D 0, M DB M DE M DF 0
六个多余 未知力, 两个结点 位移。用 位移法作。
A
θ3 B
C
θ4
DF E
0.25 -0.25
0.3i
0.25i
0.15i
0.275i k11 8 4
k11 0.1375i
(4)代入典型方程得
0.1375i1连续梁弯矩图 M 1 M1 M P
力矩分配法

q = 12kN / m
A
EI
B
EI
C
10m
q = 12kN / m
10m
u MB
A 2 ql / 12
B
u MB
C
M
C CB
=0
A
B
C
最终杆端弯矩: 最终杆端弯矩 M AB = −100 − 28.6 = −128.6 M BA = 100 − 57.1 = 42.9 M BC = 0 − 42.9 = −42.9 M CB = 0
B
d M BC
d u M BA = µ BA ( − M B )
d u M BC = µ BC ( − M B ) d d M BA M BC ---分配弯矩 分配弯矩
令
µ BA µ BC
S BA = S BA + S BC S BC = S BA + S BC
µ BA µ BC ---分配系数 分配系数
---传递系数 ---传递系数 1 1
A
i i i
B
2i C=1/2
传递弯矩
B
C=0 C=C=-1 与远端支承 情况有关
3i A 1
远端定向时: 远端定向时: i A
B
固定状态: 固定状态 F M AB = − ql 2 / 12 = −100kN .m F M BA = 100kN .m F F M BC = M CB = 0 放松状态: 放松状态 d u M BA = µ BA ( − M B ) = −57.1 d u M BC = µ BC ( − M B ) = −42.9
EI
B
EI
C
第7章静定结构的位移计算

P
A
ql2/2
B
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
EI Pl/4
MP
q B
l/2
l/2
MP
A
l
m=1
l 3l/4
M
P=1
1/2
M
1 1 Pl 1 Pl 2 B l EI 2 4 2 16EI
1 1 ql 2 3 ql 4 B l l EI 3 2 4 8EI
⑥当图乘法的适用条件不满足时的处理方法: a)曲杆或 EI=EI(x)时,只能用积 分法求位移; 35 b)当 EI 分段为常数或 M、MP 均非直线时,应分段图乘再叠加。
§3—3计算结构位移的虚力原理
3. 虚拟状态的设置
在应用单位荷载法计算时,应据所求位移不同,设置相应 的虚拟力状态。
例如:
求△
A
实际状态
AH
求
A
A
1
A
虚拟状态
1
虚拟状态
求△
A
AB
1
B
求
A
AB
B
1
广义力与 广义位移
25
1
虚拟状态
虚拟状态
1
4、静定结构在荷载作用下的位移计算 当结构只受到荷载作用时,求K点沿指定方向的位移△KP, 此时没有支座位移,故式(7—15)为
3. 计算位移的目的 (1)为了校核结构的刚度。
(2)结构制造和施工的需要。
(3)为分析超静定结构打下基础。 另外,结构的稳定和动力计算也以位移为基础。
起拱高度
△
结构力学中计算位移的一般方法是以虚功原理为 基础的。本章先介绍变形体系的虚功原理,然后讨论 静定结构的位移计算。
结构力学第七章计算超静定梁结构力学

(b) A
q X 1
C
"基 本 体 系 "
法中把原超静定结构称为原 (c) A
结构,去掉多余联系后的静
11
B X 1
C
定结构称为基本结构。所去
q
(d)
掉的多余联系,则以相应的
A
B
C
ip
多余未知力X1来代替。
图7-4
这样,基本结构就同时承受着荷载和多余未知力X1的作用, 基本结构在原有荷载和多余未知力X1共同作用下的体系称为力 法的基本体系。现在分析一下如何计算X1 。对原结构讲它代 表B支座反力,是一个被动力,而对基本结构来讲它是一个主
1P
M1MP ds EI
1[1l(2lFllPl)]
EI 6 2
2 22
5Fl3 48EI
(5) 解力法方程。
X1
1P
11
5F 16
所得正号说明X1的实际方向与假设方向相同。
结构力学第七章计算超静定梁结构力 学
2.求解超静定结构要考虑的条件
求解任何超静定结构,都要考虑三个方面的条件: (1)平衡条件;(2)几何条件(变形条件或位移条件); (3)物理条件。
力法和位移法是超静定结构计算的两种基本方法。力法 是以多余联系的约束力——多余未知力作未知量,位移法则是 以结点的某些位移作为基本未知量。计算超静定结构除上述 两种方法外,常用的还有力矩分配法、有限单元法等。
力法的基本特点可归纳如下: 1.以多余未知力(被撤消多余联系处的约束力)为基本未 知量。 2.根据所去掉的多余联系处的变形协调条件建立力法方 程,从而求出多余未知力。 3.根据平衡条件求出全部反力及内力。 4.一切计算均在基本结构上进行。
例7-1 用力法计算图7-5(a)所 (a) A
第七章 结构位移计算

W=FP△ = FP△`cosa
第七章 结构位移计算(Displacement)
2、静力实功 在静外力FP1作用下,变形体在力的作用点沿力的 方向发生位移△11 。静力实功为: 式中的“1/2” ? W=(1/2)FP1△11
静力概念: 静力荷载加载到结构上是 有一个过程的,在这个加载 过程中,荷载从零增加到最 后值,结构的内力和位移也 达到最后值; 在整个加载过程中,外力 和内力始终保持静力平衡。
第七章 结构位移计算(Displacement)
⒋ 本章在全课程中的地位 想求静定结构的位移,必先求出静 定结构的内力。因此本章可以说是对前 面所学的各类静定结构的内力计算的复 习与巩固。同时,位移计算又是下章即 将开始学习的超静定结构的基础。 因而,从全课程来看,本章是承上启 下的一章,也是十分重要的内容。希望 每个同学重视起来。
D
变形位移
ABDC ABD”C” 刚体位移
C
D
ABD’C’ 变形位移
位移状态
第七章 结构位移计算(Displacement)
§7-2 变形体系的虚功原理
⒉ 着眼于位移:
dW = dW dW dW = dW
总 总 刚 刚
变
微段平衡,由刚体虚功原理
dW刚 0
W总 W变
第七章 结构位移计算(Displacement)
(a) 根据叠加原理,图(a)可 分解为图(b)、(c)两种情 况。 ※一个结构的两种状态。
(b)
(c)
第七章 结构位移计算(Displacement) §7-2 变形体系的虚功原理 一、刚体系的虚位移原理
刚体系处于平衡的充要条件是:在具有理想约束的
⒋ 用于动力计算和稳定性计算。
土木工程力学(本)综合练习2

说明:为了帮助大家复习,这份辅导材料一共有两部分内容。
第一部分为课程的考核说明,大家看完以后能明确考试重点和要求。
第二部分为综合练习和答案,供大家复习自测用。
土木工程力学(本)课程考核说明一、课程的性质土木工程力学(本)是中央广播电视大学土木工程专业的一门必修课,课程为5学分,开设一学期。
通过本课程的学习,使学生了解各类杆件结构的受力性能,掌握分析计算杆件结构的基本概念、基本原理和基本方法,为后续有关专业课程的学习及进行结构设计打下坚实的力学基础。
二、关于课程考核的有关说明1.考核对象中央广播电视大学土木工程(专科起点本科)专业的学生。
2.考核方式本课程采用形成性考核与终结性考试相结合的方式。
总成绩为100分,及格为60分。
形成性考核占总成绩的30%;终结性考试占总成绩的70%。
形成性考核由中央电大统一组织编写形成性考核册。
形成性考核册由4次形成性考核作业组成。
学员应按照教学进度及时完成各次计分作业。
每次形成性考核作业满分为100分,由教师按照学员完成作业的情况评定成绩,并按4次作业的平均成绩计算学员的形成性考核成绩。
学员形成性考核完成情况由中央电大和省电大分阶段检查。
终结性考试为半开卷笔试,由中央电大统一命题,统一组织考试。
3.命题依据本考核说明是依据2007年7月审定的土木工程力学(本)课程教学大纲编写的。
本课程所采用的文字教材为贾影主编,中央广播电视大学出版社出版的《土木工程力学(本)》教材。
本考核说明及本课程所采用的文字教材是课程命题的依据。
4.考试要求本课程考试重点是考核学员对结构分析的基本概念,基本理论和基本方法的掌握情况。
本考核说明对各章都规定了考核要求,按了解、理解和掌握三个层次说明学员应达到的考核标准。
了解是最低层次的要求,凡是属于了解的部分内容,要求对它们的概念、理论及计算方法有基本的认识。
理解是较高层次的要求,凡是属于理解的部分内容,要求在理解的基础上,能运用这一部分知识对结构的受力和变形有一正确的分析和判断。
西南大学网络教育在线作业答案[0729]《结构力学》
![西南大学网络教育在线作业答案[0729]《结构力学》](https://img.taocdn.com/s3/m/108d19187cd184254b3535b5.png)
结构力学1:[论述题]简答题1、简述刚架内力计算步骤。
答:(1)求支座反力。
简单刚架可由三个整体平衡方程求出支座反力,三铰刚架及主从刚架等,一般要利用整体平衡和局部平衡求支座反力。
(2)求控制截面的内力。
控制截面一般选在支承点、结点、集中荷载作用点、分布荷载不连续点。
控制截面把刚架划分成受力简单的区段。
运用截面法或直接由截面一边的外力求出控制截面的内力值。
(3)根据每区段内的荷载情况,利用"零平斜弯”及叠加法作出弯矩图。
作刚架Q、N图有两种方法,一是通过求控制截面的内力作出;另一种方法是首先作出M 图;然后取杆件为分离体,建立矩平衡方程,由杆端弯矩求杆端剪力;最后取结点为分离体,利用投影平衡由杆端剪力求杆端轴力。
当刚架构造较复杂(如有斜杆),计算内力较麻烦事,采用第二种方法。
(4)结点处有不同的杆端截面。
各截面上的内力用该杆两端字母作为下标来表示,并把该端字母列在前面。
(5)注意结点的平衡条件。
2、简述计算结构位移的目的。
答:(1) 验算结构的刚度。
校核结构的位移是否超过允许限值,以防止构件和结构产生过大的变形而影响结构的正常使用。
(2) 为超静定结构的内力分析打基础。
超静定结构的计算要同时满足平衡条件和变形连续条件。
(3) 结构制作、施工过程中也常需先知道结构的位移。
3、如何确定位移法基本未知量。
答:(1)在刚结点处加上刚臂。
(2)在结点会发生线位移的方向上加上链杆。
(3)附加刚臂与附加链杆数目的总和即为基本未知量数目。
确定线位移的方法(1)由两个已知不动点所引出的不共线的两杆交点也是不动点。
(2)把刚架所有的刚结点(包括固定支座)都改为铰结点,如此体系是一个几何可变体系,则使它变为几何不变体系所需添加的链杆数目即等于原结构的线位移数目。
4、简述力法的基本思路。
答:力法的基本思路:将超静定结构的计算转化为静定结构的计算,首先选择基本结构和基本体系,然后利用基本体系与原结构之间在多余约束方向的位移一致性和变形叠加列出力法典型方程,最后求出多余未知力和原结构的内力。
超静定结构的力矩分配法计算

M
F B
)
M B D
BD(
M
F B
)
5、传递系数 远端为固定支座:
1 C= 2 远端为铰支座: C =0
远端为双滑动支座: C = -1
6、远端传递弯矩 近端杆端分配弯矩可通过固端弯矩按比例分配得到, 而远端传递弯矩则可通过近端分配弯矩得到。
M AB CBAM B A
M CB CBCM B C
BC
S BC SB
BD
S BD SB
一个杆件的杆端分配系数等于自身杆端转动刚度 除以杆端结点所连各杆的杆端转动刚度之和。
各结点分配系数之和等于1 BA BC BD 1
4、近端分配弯矩
将不平衡力矩变号后按比例分配得到各杆的近端分 配弯矩。
M B A
BA (
M
F B
)
M B C
BC (
M D B CBDM B D
建筑力学
力矩分配法中结点弯矩正负号规定: 结点弯矩使结点逆时针转为正 。
1.2 力矩分配法的要素
1、固端弯矩、固端剪力 固端弯矩是荷载引起的杆件在分配结点处固定时产 生的杆端弯矩 固端剪力是荷载引起的杆件在分配结点处固定时产 生的杆端剪力
固端弯矩、固端剪力可通过查表13.1获得 i称为线刚度: i EI
l
其中:EI是杆件的抗弯刚度;l 是杆长。
序 号
梁的简图
1
2
3
杆端弯矩
MAB
MBA
4i
i EI
2i
l
ql2
ql 2
12 12
杆端剪力
FQAB
FQBA
6i 6i
l
l
ql 2
ql 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A MAB
多结点的弯矩分配 ——渐近运算
B
C C
B
MBA MBC
MCB
MCD
D
第一节 超静定结构和静定结构的差别
一、几何组成分析 静定梁:
几何可变
静定结构是没有多余约束的几何不变体系
超静定梁:
有多余支座
超静定结构是有多余约束的几何不变体系
二、超静定结构的优缺点
1.超静定结构的优点 1)超静定结构在抵抗外荷载时具有较大的刚度。 刚度:力在所作用点产生单位位移时所需的力。
SAB = 4i
D
MA
B
如用位移法求解:
于1 是可得
iAD
i A AB
iAC
M AB 4iAB A SAB A
M AC iAC A S AC A
SAB= 3i
M A1B
S AB M S
SAB= i A
MAD
C
M
MAB
m0
M AD 3iAD A SAD A
M (S AB S AC S AD ) A
小结:
1、超静定结构是有多余约束的几何不变体系; 2、超静定结构的全部内力和反力仅有平衡条件求不出,还 必须考虑变形条件;
如在力法计算中,多余未知力由力法方程(变形条件)计
算。再由M=∑MiXi+MP 叠加内力图。如只考虑平衡条件画出单 位弯矩图和荷载弯矩图,Xi是没有确定的任意值。
因此单就满足平衡条件来说,超静定结构有无穷多组解答。 3、超静定结构的内力与材料的物理性能和截面的几何特征
有关,即与刚度有关。 荷载引起的内力与各杆的刚度比值有关。因此在设计超静
定结构时须事先假定截面尺寸,才能求出内力;然后再根据内 力重新选择截面。
另外,也可通过调整各杆刚度比值达到调整内力的目的。
5、超静定结构的多余约束破坏,仍能继续承载。具有较
高的防御能力。
6、超静定结构的整体性好,在局部荷载作用下可以减小
1 d
P
P
K1 1 Kd d
静定梁
超静定梁
1 d
P
P
K1 1 Kd d
2)超静定结构与静定结构相比具有较低的应力 连续性
2.超静定结构的缺点 连续性
1)支座沉降会引起内力和变形
超静定三跨连续梁 支座B相对沉降
可能导致超载
对于超静定结构,可以导致结构变形的任何原因,如相
对的沉陷、温度改变引起的杆件长度变化或者制造误差等, 都会使整个结构产生内力。
1 2
B
CAB
M BA M AB
0
MAB= iABA
A
A
MBA = - iAB A
B
CAB
M BA M AB
1
在结点上的外力矩按各杆分配系数分配给各杆近端截面,各杆远端 弯矩分别等于各杆近端弯矩乘以传递系数。
四、杆端弯矩 :支座对靠近支座的杆件这一端的弯矩 1.计算杆端弯矩的目的 2.近端弯矩和远端弯矩 3.杆端弯矩一律以顺时 针方向为正
局部的内力幅值和位移幅值。
P
P
P
P
Pl/4 P
P Pl/4 l/2 l/2
l
μ=1
μ=1/2
多余约束约束的存在, 使结构的强度、刚度、稳 定性都有所提高。
第二节 超静定结构的计算方法概述
1.力法是将超静定结构的多余未知力作为首先解决的对象,通 过把多余未知力计算出未成为已韧力以后,剩下的问题便可归 结为静定结构的计算。
五、固端弯矩
固端弯矩:对单跨超静定梁仅由荷载引起的杆端弯矩,称为
固端弯矩,用 M表示。
M
M
将每相邻两节点之间的杆件视为一根两端支座为固定支座 的单跨梁,这样的梁在各种外荷载作用下的杆端弯矩叫做固 端弯矩。
单结点的弯矩分配 ——基本运算
A M AB
B
M BA
M BC
固端弯矩带本身符号 C
MB
=
MB
20 62 8
90kN m
200kN 60 20kN/m
MB= MBA+ MBC= 60kN m
(2)放松结点B,即加-60进行分配
A -150
A -17.2 A -150
B
150
-90
-60 0.571 0.429
-34.3 B -25.7
0.571 0.429 150 B -90
=
+
0
C 设i =EI/l
M BA
M BC
A M AB
M BA B M BC
+
C
-MB
M B M BA M BC
-MB
A
M AB
M B A B M B C
最后杆端弯矩:
C 0
MBA = M BA M B A
MBC = M BC M B C
M B A
M B C
M B A BA (M B ) M B C BC (M B )
2.位移法是通过向原结构中沿独立位移方向人为地添加约束, 并引入未知位移作为首先解决的现象,当把未知的节点位移 计算出来以后,剩下的问题就可以把杆件的杆端弯矩求出, 又使问题成为静定结构的计算。
3. 有限元法或称结构矩阵分析。
4.渐进法
弯矩分配法的基本概念
理论基础:位移法;
弯矩分配法
计算对象:杆端弯矩; 计算方法:逐渐逼近的方法;
MAB= M AB M AB 然后各跨分别叠加简支梁的弯矩图,即得最后弯矩图。
例1. 用弯矩分配法作图示连续梁
的16弯7.2矩图。 200kN 115.7 300
M图(kN·m) 20k9N0/m
A
EI
B
EI
3m
3m
6m
(1)B点加约束
MAB=
200 8
6
150kN
m
C
MBA= 150kN m
MBC=
1
M AC
S AC M S
A
MAC
A
A
S AB
M S AC
S AD
M S
M AD
S AD M S
A
Aj
S Aj S
A
M Aj Aj M
A
1
分配系数
三、传递系数
MAB = 4 iAB A
近端 A
A l
MAB = 3iABA
A
A
MBA = 2 iAB A
远端 B
CAB
M BA M AB
计算转动刚度:
SBA=4i
SBC=3i
C
分配系数:BA
4i 4i 3i
0.571
BC
3i 7i
0.429
分配力矩:
C
M B A 0.571 (60) 34.3
-17.2 -167.2
-34.3 -25.7 115.7 -115.7
0
M B C 0.429 (60) 25.7
0 (3) 最后结果。合并前面两个过程
适用范围:连续梁和无侧移刚架。
一、转动刚度S : 表示杆端对转动的抵抗能力。
在数值上 = 仅使杆端发生单位转动时需在杆端施加的力
SAB=4i
矩。
SAB=3i
1
1
SAB=i
1
SAB=0
SAB与杆的i(材料的性质、横截面的形状和尺寸、杆长)及远 端支承有关, 而与近端支承无关。
二、分配系数 设A点有力矩M,求MAB、MAC和MAD