无铅焊料的疲劳特性
无铅焊料的性能及作用

电子组装对无铅焊料的性能要求
• 1、无铅焊料的熔点要低:从前面的内容 知道,除Sn-Bi系及Sn-In合金外,所有的 无铅焊料的熔点温度都高于Sn63Pb37合 金的熔点温度,这将对工艺、设备、材 料等方面带来很大的不良影响,因此开 发出的无铅焊料,应当有较低的熔点温 度。
2、无铅焊料要有良好的润湿性;无铅焊料表面张力比 有铅焊料高,其扩散率比锡铅焊料低,不利于焊点的形 成,得到的焊点形状不圆润饱满,弯月面小,严重的还 会造成虚焊。润湿性差,这对锡膏印刷工艺的要求更高, 增加了工艺的难度。无铅焊料获得的焊点外观粗糙,表 面粗糙很难清洗干净,就会影响电性能。如果使用传统 的AOI进行检查,由于漫反射光无法正常识别。因此要 求无铅焊料要有良好的润湿性。一般情况下,再流焊时 焊料在液相线以上停留的时间为30-90秒,波峰焊时被焊 接组件管脚及线路板基板面与锡液波峰接触的时间为4 秒左右,使用无铅焊料以后,要保证在以上时间范围内 焊料能表现出良好的润湿性能,才能保证优质的焊接效 果。
Sn-Ag-Cu三元合金
• 在Sn-Ag合金里添加Cu,能够在维持SnAg合金良好性能的同时稍微降低熔点, 而且添加Cu以后,能够减少所焊材料中 铜的溶蚀,因此逐渐成为国际上标准的 无铅焊料。图5-12为Sn-Ag-Cu三元合金 状态图。锡银铜系焊料有着良好的物理 特性。
Sn-Bi系及Sn-In合金
•同时液固共存领域大,焊料易发生半月 面提升现象。另外Bi在焊接过程中会出现 枝装晶偏析。研究结果表明:在Sn-20Bi 为基体的合金,添加0.7%的Ag、0.1%的In 可以使Bi的偏析稍有改善,使Bi细小分散。 In虽然价格高,但是其自身的熔点为 156℃,可以用作低熔点焊料。该合金塑 性也非常好。含In合金的另一个特征是具 有抑制Ag或Au溶蚀的优点。在需要更低 熔点的情况下使用。
无铅焊料特性及应用研究

3.关于无铅焊锡要求 .专利权 .合适的熔接温度 <260℃的PCB回焊、波焊温度 .良好的润湿性 .氮气可以不使用 .加工性 锡丝制造等 .适当之Creep .适当焊接强度 .良好的耐热性 .焊接性能 空洞、桥连 .环保 不破坏环境、毒性 .价格低廉 价格=Sn/Pb
3.无铅焊锡之进程 1.从纯锡到Sn/Ag/Cu 2.各种无铅焊锡之优缺点 3.无铅焊锡Sn96.5/Ag3.0/Cu0.5与Sn63/Pb37共晶焊锡特性比较 4.温度与热 5.无铅化焊锡选择 6.结论
但是从经济方面考虑,则予以用在波峰焊接中,因为其润湿性和纯锡相 近,不是很好,故较难期待能有效通过“导通孔”,而仅适用于单面板。
粗大的Cu6Sn5结晶形成于焊锡内,也是机械性能劣化的主要原因,促使 Cu6Sn5结晶的细化,可加入Ag、Ni。Au等第三元素。
高温置放,结晶体也不会粗化,故Sn/Ag耐热性特优。 .Ag含量增加, Ag3Sn颗粒粗化且分散于β-Sn中,成为微细的网状结构 .但当Ag>4%时,机械性能开始劣化, Ag3Sn结晶粗化成>10μm,此尺寸
约等于龟裂大小。因此,性能度较高的合金组织,因避免结晶粗化成 >10μm。
(1)Bi的添加
(4)Zn的添加
在Sn/Ag无铅系统中,Zn的加入可以使结晶颗粒微细化,增加强度与 Creep特性,另一方面此合金表面容易形成氧化膜,促使润湿性降低, 焊接难度增加。
2.2.2Sn/Bi合金系统的组织与性质
依据相图判断,Bi <2%时虽应该不会产生共晶组织,但是,Bi极易在 Sn中产生“偏析”。Bi即使是在低浓度的环境中,也容易出现共晶组 织。此即固、液相线温差,在焊料冷却时会产生“凝固偏析”现象。 在80℃时是十分安定的合金组织,超过140℃,Bi即形成极端粗化,变 脆,这是因为于139℃共晶反应,这很难从相图直接了解原因。
无铅焊料知识

无铅焊料力学性能电子装联中釺焊接头(或称焊点)不仅起到电连接(传输电信号)的作用,同时起到机械连接的作用,因此釺料合金须具备足够的力学性能。
结论:绝大多数无铅焊料的弹性模量、屈服强度、抗蠕变性能高于或相当于Sn-Pb焊料,但延伸率(即韧性)相对较低。
无铅焊料显微组织与Sn-Pb共晶(富Sn相+富Pb相)的显微组织不同,常用无铅焊料的显微组织为富Sn相基体+SnCu或SnAg或SnAgCu金属间化合物。
Sn_Pb共晶 Sn_Ag共晶Sn_Ag_Cu共晶Sn_Cu共晶无铅焊料润湿性能熔融态焊料合金在固态金属(如铜)表面的润湿与铺展是形成有效连接的必须条件。
焊料合金的润湿性能有多种表达方式,润湿角是其中一种。
润湿角越小,润湿性能越好。
结论:所有无铅焊料的润湿性能均低于Sn-Pb焊料。
因此无铅焊接工艺中釺剂的选择非常重要。
建议通过对不同焊剂进行充分测试来进行选择。
NCMS(美国国家制造科学研究中心)提出的无铅焊料性能的评价标准性 能 可接受水平液相线温度 <225℃熔化温度范围 <30℃润湿性(润湿称量法) F max>300μN,t0<0.6s,t2,3<1s 铺展面积 >85%的铜板面积热机疲劳性能 >Sn/Pb共晶相应值的75%热膨胀系数 <29ppm/℃蠕变性能(室温下167小时内导致失效所需的应力值)>3.5Mpa延伸率(室温,单轴拉伸) >10%无铅焊料的品种和特点分 类 规 格 熔点(o C) 特 点Sn-Ag系列 Sn96.5-Ag3.5 221 Sn-Ag系列 Sn95-Ag5 221-245 Sn-Ag系列 其它合金比例 220-245高强度,抗蠕变,力学性能良好,可焊性良好,热疲劳可靠性良好,最适宜用于含银件焊接Sn-Cu系列 Sn99.5-Cu0.5 200-227Sn-Cu系列 Sn99-Cu1.0 200-230 Sn-Cu系列 其它合金比例 200-230熔点最高,力学性能略差,但制造成本低Sn-Ag-Cu系列 Sn96.5-Ag3-Cu0.5 217熔点低,其可焊性和可靠性比前者两系列更好,应用较广泛Sn-Sb系列 Sn95-Sb 232-240Sn-Sb系列 Sn99-Sb 234高强度,可焊性好Sn系列 Sn100 232 针对工艺品的焊接合金成份 熔 点 评 价Sn/Cu0.7227℃成本低、熔点高,润湿性差、毛细作用力小、疲劳特性差,可用于较低要求的焊接场所Sn/Cu0.7/Ag0.3217-227℃Sn/Cu系列合金,润湿性较Sn/Cu0.7好,但各项性能仍劣于Sn/Ag3/Cu0.5系列合金Sn/Ag3.5221℃成本较高,在用传统无铅焊料,有可能因为银相变化而无法通过可靠性试验Sn/Ag3/Cu0.5-0.7 217-218℃成本较高,各项性能良好,目前选用厂家最多的无铅焊料(据统计,超过60%的在用厂家使用此合金)Sn/Ag2.5/Cu0.8/Sb0.5217℃AIM专利产品,CASTIN®合金,各项性能良好,熔点较Sn/Ag3/Cu0.5更低,且更细晶格的合金Sn/Ag4/Cu0.5-0.7 217-218℃无专利问题,成本较Cu/Ag3/Cu0.5高,各项性能良好,目前在用无铅焊料Sn/1.0Ag/4.0Cu217-353℃ 防止被Cu腐蚀,高温用Sn/2.5Ag/1.0Bi/0.5Cu214-221℃ SnAgCuBi系推荐产品,属Oatey专利产品。
无铅焊接的质量和可靠性分析报告

无铅焊接的质量和可靠性分析前言:传统的铅使用在焊料中带来很多的好处,良好的可靠性就是其中重要的一项。
例如在常用来评估焊点可靠性的抗拉强度,抗横切强度,以及疲劳寿命等特性,铅的使用都有很好的表现。
在我们准备抛弃铅后,新的选择是否能够具备相同的可靠性,自然也是业界关心的主要课题。
一般来说,目前大多数的报告和宣传,都认为无铅的多数替代品,都有和含铅焊点具备同等或更好的可靠性。
不过我们也同样可以看到一些研究报告中,得到的是相反的结果。
尤其是在不同PCB焊盘镀层方面的研究更是如此。
对与那些亲自做试验的用户,我想他们自然相信自己看到的结果。
但对与那些无能力资源投入试验的大多数用户,又该如何做出选择呢?我们是选择相信供应商,相信研究所,还是相信一些形象领先的企业?我们这回就来看看无铅技术在质量方面的状况。
什么是良好的可靠性?当我们谈论可靠性时,必须要有以下的元素才算完整。
1.使用环境条件(温度、湿度、室内、室外等);2.使用方式(例如长时间通电,或频繁开关通电,每天通电次数等等特性);3.寿命期限(例如寿命期5年);4.寿命期限内的故障率(例如5年的累积故障率为5%)。
而决定产品寿命的,也有好几方面的因素。
包括:1. DFR(可靠性设计,和DFM息息相关);2.加工和返修能力;3.原料和产品的库存、包装等处理;4.正确的使用(环境和方式)。
了解以上各项,有助于我们更清楚的研究和分析焊点的可靠性。
也有助于我们判断其他人的研究结果是否适合于我们采用。
由于以上提到的许多项,例如寿命期限、DFR、加工和返修能力等等,他人和我的企业情况都不同,所以他人所谓的‘可靠’或‘不可靠’未必适用于我。
而他人所做的可靠性试验,其考虑条件和相应的试验过程,也未必完全符合我。
这是在参考其他研究报告时用户所必须注意的。
您的无铅焊接可靠性好吗?因此,在给自己的无铅可靠性水平下定义前,您必须先对以下的问题有明确的答案。
§ 您企业的质量责任有多大?§ 您有明确的质量定义吗?§ 您企业自己投入的可靠性研究,以及其过程结果的科学性、可信度有多高?§ 您是否选择和管理好您的供应商?§ 您是否掌握和管理好DFM/DFR工作?§ 您是否掌握好您的无铅工艺?只有当您对以上各项都有足够的掌握后,您才能够评估自己的无铅可靠性水平。
电子设备无铅焊点的热疲劳工艺性分析与研究

内燃机与配件
电子设备无铅焊点的热疲劳工艺性分析与研究
党艳银
(江苏自动化研究所,连云港 222000)
摘要院 随着科学技术的不断进步,电子设备器件焊接的无铅化在经济社会中被广泛应用,但其使用过程中也产生了一些故障。其 中,表面贴装器件焊点失效,是造成电子设备故障的主要原因。本文对介绍了电子设备的无铅焊点的热疲劳情况,并进行了相关的工 艺性分析与研究。
2.3 Ag3Cu 颗粒分析 在电子设备的无铅焊点中,包含 Ag3Cu 颗粒,其颗粒 的形貌、组成结构以及数量等,都是影响 SnAgCu 焊点的 重要部分。实践表明,当 Ag3Cu 颗粒之间的距离比较大、颗 粒数量比较少,焊点的可靠性很难得到保障;而 Ag3Cu 颗 粒之间的距离比较小,颗粒的数量比较多,则可以抑制混 乱的状况,从而保障焊点的稳定性。现阶段有关 Ag3Cu 颗 粒对于焊点影响的完整理论体系仍不完善,Ag3Cu 颗粒与 焊点性能的内在联系也没有得到证实。 2.4 Sn 晶体取向及形貌分析 在电子设备的无铅焊点中,SAC 这种无铅焊点类型, 其主要是由 Sn 组成的。Sn 的主要结构为四边形,其在组 成 Sn 晶体的过程中,由于晶体方向难以控制,这种钎料的 物理性质及机械表现也存在很大的差异。总之,Sn 晶体的 取向问题,是影响 SAC 焊点性质的主要问题。同时,实验 表明 Sn 晶体的形状、大小以及其他性质,都会对 SAC 焊 点的热疲劳产生一定的影响。技术人员童工温度加速试 验,分析 Sn 晶体的性质,了解焊点早期与晚期的失效情 况。此外,应建立有关焊点的微观模型,为计算出焊点的热 疲劳寿命提供有价值的参考。 2.5 参数监测及特征损伤产量提取 通常情况下,在对相关参数进行检测以及提取焊点损 伤特征的过程中,都会使用电子显微镜对焊点部位进行扫 描。通过显微镜的观测的试验结果,对焊点部位出现裂纹 的情况及其拓展情况进行分析。同时,技术人员应对晶体
无铅焊接技术的工艺特点

1. 无铅焊接技术的工艺特点:电子产品制造业实施无铅化制程需面临以下问题;1)焊料的无铅化;2)元器件及PCB板的无铅化; 3)焊接设备的无铅化、焊料的无铅化.到目前为止,全世界已报道的无铅焊料成分有近百种,但真正被行业认可并被普遍采用是Sn-Ag-Cu三元合金,也有采用多元合金,添加In,Bi,Zn等成分。
现阶段国际上是多种无铅合金焊料共存的局面,给电子产品制造业带来成本的增加,出现不同的客户要求不同的焊料及不同的工艺,未来的发展趋势将趋向于统一的合金焊料。
(1)熔点高,比Sn-Pb高约30度;(2)延展性有所下降,但不存在长期劣化问题;(3)焊接时间一般为4秒左右;(4)拉伸强度初期强度和后期强度都比Sn-Pb共晶优越。
(5)耐疲劳性强。
(6)对助焊剂的热稳定性要求更高。
(7)高Sn含量,高温下对Fe有很强的溶解性2. 鉴于无铅焊料的特性决定了新的无铅焊接工艺及设备1)元器件及PCB板的无铅化在无铅焊接工艺流程中,元器件及PCB板镀层的无铅化技术相对要复杂,涉及领域较广,这也是国际环保组织推迟无铅化制程的原因之一,在相当时间内,无铅焊料与Sn-Pb的PCB镀层共存,而带来 "剥离(Lift-Off)"等焊接缺陷,设备厂商不得不从设备上克服这种现象。
另外对PCB板制作工艺的要求也相对提高,PCB板及元器件的材质要求耐热性更好。
2)焊接设备的无铅化(1)波峰焊设备:由于无铅焊料的特殊性,无铅焊接工艺进行要求无铅焊接设备必须解决无铅焊料带来的焊接缺陷及焊料对设备的影响,预热/锡炉温度升高,喷口结构,氧化物,腐蚀性,焊后急冷,助焊剂涂敷,氮气保护等。
A)无铅焊接要求的温度曲线分析:通过上述曲线图和金属材料学知识,我们了解到为了获得可靠、最佳的焊点,温度T2最佳值应大于无铅锡的共晶温度,锡液焊接温度控制在2500C±20度(比有铅锡的温度要求更严),一般有高可靠要求的军用产品,△T<300C,对于普通民用产品,建议温差可放宽到△T2<50度(根据日本松下的要求);预热温度T1比有铅焊要稍高,具体数值根据助焊剂和PCB板工艺等方面来定,但△T1必须控制在50度以内,以确保助焊剂的活化性能的充分发挥和提高焊锡的浸润性;焊接后的冷却从温度T3(250度)降至温度T4(100~150度),建议按7~11度/S的降幅梯度控制;温度曲线在时间上的要求主要是预热时间t1、浸锡时间t2、t3及冷却时间t4,这些时间的具体数值的确定要考虑元器件、PCB板的耐热性及焊锡的具体成份等多方面因素,通常t1在1.5分钟左右,t2+t3在3~5S之间。
无铅焊锡制程及其特性

无铅焊锡制程及其特性锡/铅(Ti n/Lead)成分的焊锡是电子装配中最常用的焊锡,可是,在去年,整个工业出现一股推动力向无铅焊锡转换。
其理由是人们越来越了解有关铅的使用及其对人类健康的不良影响。
与铅有关的健康危害包括神经系统和生育系统紊乱、神经和身体发育迟缓。
铅中毒特别对年幼儿童的神经发育有危害。
已有法律来控制铅的使用,例如,铅在铅锤、汽油和油画中的使用有严格的规范,在美国从1978年起,铅在消费油画中的使用已被禁止,其它相关的法规在美国、欧洲和日本正在孕育之中。
表一显示了铅在各种产品中的使用量,蓄电池占铅用量的80%,电子焊锡大约占所有铅用量的0.5%,即使铅在电子焊锡中的使用被禁止,也不能解决全部的铅中毒问题。
可是,电子焊锡中的0.5%的铅数量上还是可观的。
代替铅的元素电子工业正在寻找无铅焊锡,能够取代普遍接受和广泛使用的锡/铅焊锡。
研究与开发的努力集中在潜在的合金上面,这种合金要提供与锡/铅共晶焊锡相似的物理、机械、温度和电气性能。
表二是可以取代铅的金属及其相对成本。
表二、替代铅的材料及其相对价格除了成本之外,还必须了解考虑作为铅替代的元素的供需情况。
如表三所示, 含铋合金从可利用资源的出发点上是无希望的,现在可利用得铋供应可能被全部用完,如果将此合金广泛用于正在蓬勃发展的电子工业。
表三、美国矿产局有关不从表二所显示的潜在替代金属的相对价格看,很明显,许多无铅焊锡将比其替代的锡/铅焊锡贵得多。
例如,铟(In)是用来取代铅的主要元素之一,但它是一种次贵重金属,几乎和银一样贵。
可是应该注意,所建议的焊锡合金的高成本在决定最终产品价格时,并不象最初所显示的那么重要。
因为所需的量少,在装配中,和其它成本因素如:元件、电路板及装配相比,焊锡成本几乎不重要。
所选合金的性能是非常重要的。
无铅焊锡及其特性和温度、机械、蠕变、疲劳特性一样,熔化温度点是最重要的焊锡特性之一。
表四提供了现时能买到的无铅焊锡一览表。
无铅BGA焊点的疲劳寿命评估技术研究

无铅BGA焊点的疲劳寿命评估技术研究在热循环过程中,焊点受到芯片端和PCB端各组件及本身热膨胀不匹配效应的影响,局部位置会产生大的应力应变,过度疲劳后会有裂纹产生并且扩展直至断裂,引起焊点失效。
利用有限元分析工具对焊点进行建模仿真,得出应力应变的分布状态、时间历程及迟滞回线,可以理解焊点的热循环疲劳过程,根据相关的疲劳寿命预测准则,可以对焊点的寿命进行评价,从而指导焊点的可靠性设计。
这种方法是现代微电子封装领域内经常使用的手段,它可以在工艺制作完成前对焊点的疲劳寿命作出前瞻性地预测。
本文针对无铅焊料Sn.3.5Ag的BGA焊点进行了有限元模拟仿真的研究,主要内容及成果如下:1.利用有限元分析工具ANSYS建立了PBGA封装的1/4组件模型,并采用统一的粘塑性Anand本构方程来描述焊点的力学行为,之后对模型施加一定约束条件并加载温度循环载荷经ANSYS求解器计算,提取其计算结果来研究焊点的疲劳性能;考虑到热循环过程中焊点所受的复杂应力情况,依照第四强度理论,提取von Mises应力应变作为研究对象,同时将第三强度理论要求的最大剪切应力应变也作为研究对象来与第四强度理论的分析结果进行对比。
2.研究显示:随着温度循环载·荷的施加,焊点阵列会产生不均匀的应力应变分布,局部位置会产生应力集中和大的塑性应变,考虑此两方面的因素,得知阵列的内侧焊点为疲劳失效最易首先发生的所在;进一步分析了这些疲劳失效点处的应力和应变的时间历程和相应的迟滞回线,从分析中得知随循环时间的增加,应力变化比较平稳,但在高温保持段的两侧出现了大的瞬间波动;而塑性应变有明显增大的趋势,从迟滞回线的分析中得知随着循环次数的增加,回线会逐渐趋于平稳,这是疲劳失效的显著特征。
3.建立了带空洞的BGA返修台焊点模型,并对其进行有限元分析。
通过研究得出:中心空洞的存在对焊点的底部和项部的高应力区向焊点内部的延伸有阻碍作用,但若空洞和焊点的截面积比超过20%,高的应力会出现在空洞内部靠近焊点顶部的位置;若空洞位于无空洞的模型分析里焊点本身的高应力区(焊点顶部),会使应力分布发生很大的改变,在降低了空洞所在焊点处应力应变的同时,原本的高应力区已经扩散进入空洞区域,随着空洞尺寸的增大,扩散区会越来越大;若空洞位于无空洞的模型分析里焊点本身的低应力区(焊点底部),同样会对原本的应力分布产生大的影响,使高应力区的范围向焊点内部延伸,但此位置空洞的尺寸对应力分布的改变作用不大;不论空洞出现在高应力区,还是低应力区,都使得阵列中原本存在最大应力和最大塑性应变的点从空洞所在的焊点处转移到了别的与此焊点受力完全不同的焊点上,这体现了存在空洞的焊点表现出的与完整无空洞的焊点在力学性能上的区别;最后,通过对带空洞的焊点进行寿命评估,得出不论空洞存在于焊点中的哪个部位,都会使整个组件的寿命下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无铅焊料的疲劳特性 Document number:PBGCG-0857-BTDO-0089-PTT1998
无铅焊料的疲劳特性
焊料的等温疲劳试验
各类电子产品是在温度不断地变化状态下使用的,由lC 封装、印制基板、各种各样元件工作时的热涨差所引起的变动位移,其应力通常都会作用于最薄弱环节― 焊料接合部,造成热疲劳损伤。
因此,进行高可靠的焊料接合部设计,首先要理解无铅焊料的等温疲劳特性。
焊料接合部的结构在硅芯片和陶瓷基板等刚性比较高的场合,例BGA ( ball grid array 等)焊球的应力松驰速度快,给接合部的最大应变是高温时的保持时间及应变控制的往返变形负荷。
对QFP、PLCC等使用场合,焊料的应力松驰速度比前者慢,到达高温时是暂时性的间断变形,属应变控制与荷载控制混合形态下的往返变形负荷,然而,不管哪一种场合,应变控制的疲劳是主要的,在实验室进行上述疲劳试验时,应变控制方式是可实现的。
试件经受的负荷样式,BGA类主要是剪切应变负荷,QFP、SOP类不仅是剪切应变、是与拉伸压缩棍在一起的复合模式。
在多轴应力/应变条件下,一般采用VonMises 等效应力和等效应变。
对于单轴拉伸模式的等价应力/应变,可利用有限单元法等的模拟方式求得接合部疲劳破坏等效应变,用拉伸压缩模式由焊料的疲劳试验结果,来推算其疲劳寿命。
由于焊料接合部存在脆性金属化合物状的接合界面,需通过重迭接合评价反映接合界面的影响,S 焊料的拉伸疲劳试验结果和Cu 铜接合体的剪切疲劳试验结果比较由图表示(组成单位mass%、下同)图上纵坐标根据下式求得VonMises 等效应变,横坐标为疲劳寿命。
由图看到,拉伸模式的疲劳试验结果与剪切模式疲劳试验结果差不多在同一条直线上,这意味着,采用VonMises 的等效应变方式,可对焊料拉伸模式疲劳结果和接合体剪切疲劳结果进行直接比较。
下面说明的是利用应变控制方式对Sn-Ag 系无铅焊料铜接合体的等温疲劳试验结果。
Sn-Ag 系无铅焊料的疲劳寿命范围影响。
图是和无铅焊料、图是和三元系无铅焊料利用拉伸模式的疲劳寿命及塑性应变范围的影响表示,图上纵坐标是塑性应变范围的对数,横坐标是负载降低到50%时往返数的对数、这里控制波形为对称三角波,应变速度是不含蠕变影响的5×10^(-3)*5^(-l)。
一般10^4周期以下的破坏称为低循环疲劳,由Coffin Manson法则成立的下式可以确认。
△εp*Nf^a=C----------------------------------(2)
上式△εp印塑性应变范围,N为疲劳寿命,a、c 为材料常数。
不同合金的等温疲劳特性略有差别,有良好的疲劳特性,其寿命是现行Sn-37Pb的10倍左右,在添加Bi形成三元合金后,焊料的疲劳寿命随Bi的浓度增加而降低,添加比率2%时约1 / 10 , 5 %Bi 约1 / 100、10 % Bi约1 / 200。
添加其他元素例h、Cu、Zn等对疲劳寿命不会产生大的影响,通常比率在2%时,可与具同样优良的疲劳特性。
这种倾向可由图表示,与拉伸断裂伸长性的减少很相似,拉伸断裂伸长性 D = In [100 / ( 100-RA )] ,RA为断面减少百分率,总之添加元素对低循环疲劳寿命的影响、由各种合金的断裂伸长性(D)来支配。
图表示的是各合金的疲劳寿命(断裂伸长性标准为ZD )存在factor 三种程度的偏差,也可用一条直线来表示,说明系无铅焊料的低循环疲劳寿命,不考虑合金组成所支配的断裂伸长性,还可用 Coffin-Manson 来给予预测。
图是铜接合体的剪切疲劳寿命对塑性应变范围的影响,纵坐标是剪切塑性应变范围的对数,横坐标是载荷降低至50%时的往返循环数对数,控制波形为对称三角波、应变速度5×10^(-3)*5^(-l)。
各接合体的疲劳寿命及塑性应变范围的影响与原来的焊料结果相同,随着Bi 浓度的增加而降低疲劳寿命。
接合体在接合界面形成脆性Cu6Sn5 金属间化合物层,这个化合物层将影响到焊料的疲劳特性。
与无铅焊料剪切疲劳试验后的接合体断面照片由图5. 7 展示,从接合体断面Cu6Sn5观察发现,疲劳后的开裂在金属间化合物层内部展开,显示了与焊料的强度关系。
在含Bi 较多、因焊料层强度高,焊料层负荷应变松弛前的脆性
金属化合物层是发生破坏的起因,Bi 伸长性的降低,不会使焊料的疲劳特性降低,是由于强度显着升高而导致接合界面的破坏,从而降低了接合体的疲劳寿命,因此,Bi 添加量的多少是需要注意的。
无铅焊料的疲劳寿命及应变速度对保持时间的影响
在高温(大于)应变速度慢的场合,即最大应变时长时间保持状态会发生应力松弛和蠕变,这时,蠕变和疲劳损伤的重叠,将形成疲劳开裂与蠕变空穴的混合破坏模式。
作为蠕变疲劳相互作用的基本研究方法,对应变控制疲劳频率和保持时间的影响、这里以钢铁材料(黑色金属)作为研究中心。
经研究发现,采用钢铁材料与焊料经过基本的高温疲劳,试验后的结果基本相同。
图是
在总应变范围1% , 疲劳寿命及应变速度的影响,5×10^(-3)*5^(-l)以上的应变速度区域,疲劳寿命是固定的,在此以下会随其应变速度疲劳寿命逐步减少,这个倾向在Sn-Pb 系提供的报告中基本一致。
应变速度5×10^(-2)*5^(-l)和1×10^(-3)*5^(-l)试验后的断面组织由图表示,5×10^(-2)*5^(-l)时开裂的展开出现在结晶晶间和晶粒内,在应变速度比较快的场合可能会成为晶间破坏和晶粒内破坏的混合模式。
在应变速度为1×10^(-3)*5^(-l)空穴所生存的晶间,其破坏模式也可确定为疲劳开裂和蠕变空穴的混合形式。
上述说明,无铅焊料的应变速度在1×10^(-3)*5^(-l)以下时,将由单纯疲劳·蠕变形成重叠型损伤机构,会使寿命降低。
图是在总应变范围1%、合金的疲劳寿命及拉伸保持时间的影响示意,可看出,在最大应变时经设定的保持时间不论哪种合金的疲劳寿命都显着降低,但保持时间经120S后寿命降低的趋势基本饱和。
说明在保持时间中是产生蠕变应变的原因,保持时间越长蠕变应力越大,当蠕变空穴增加则疲劳寿命减少,这个疲劳过程与确认Sn-Pb 系焊料的疲劳寿命基本是相同的。
但是,从设定的
拉伸保持方式分析,不考虑各合金的寿命优劣关系,同样用对称三角波试验时,添加Cu 和h 比添加Bi 有更好的疲劳特性。
上面的内容均就室温试验而言,在实际进行寿命预测时,要考虑到应变波形对疲劳寿命的影响。
Sn-Ag 系无铅焊料的等温疲劳特性,基本上与原来对钢铁材料进行的高温疲劳解析方法同等,但是,目前研究的项目还不多,没有充分、详细的使用数据,今后对接合界面的形成、热疲劳机理、高精度寿命预测等还需开展更为广泛的研究。