沪科版九年级数学上册《解直角三角形》单元检测试卷专项练习及答案解析
沪科版九年级数学第23章解直角三角形单元检测试卷及答案

沪科版九年级数学第23章解直角三角形单元检测试卷及答案一、单选题(共10题;共30分)1.在△ABC中,若tanA=1,sinB= ,你认为最确切的判断是()A. △ABC是等腰三角形B. △ABC是等腰直角三角形C. △ABC是直角三角形D. △ABC是一般锐角三角形2.在中,∠°,若cosB= ,则sinA的值为( )A. B. C. D.3.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A 村的俯角为30°,B村的俯角为60°(如图)则A,B两个村庄间的距离是()米.A. 300B. 900C. 300D. 3004.如图,在4×4的正方形网格中,tanα= ()A. B. C. D.5.如图,已知A点坐标为(5,0),直线与y轴交于点B,连接AB,若∠a=75°,则b的值为( )A. 3B.C.D.6.如图,AC是电线杆AB的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC的长为( )A. °米B. °米C. 6·cos52°米D. °米7.如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,则tanA的值为()A. 2B.C.D.8.如图为K90的化学赛道,其中助滑坡AB长90米,坡角a=40°,一个曲面平台BCD连接了助滑坡AB与着陆坡,某运动员在C点飞向空中,几秒之后落在着陆坡上的E处,已知着陆坡DE的坡度i=1:,此运动员成绩为DE=85.5米,BD之间的垂直距离h为1米,则该运动员在此比赛中,一共垂直下降了()米.(参考数据:sin40°≈0.64,cos40°≈0.76,tan40°≈0.84,结果保留一位小数)A. 101.4B. 101.3C. 100.4D. 100.39.在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为( )A. B. C. D. 110.某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼三楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知CD=6米,则旗杆AB的高度为()A. 9米B. 9(1+ )米C. 12米D. 18米二、填空题(共10题;共36分)11.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为________米.(°,°)12.计算tan30°tan45°=________13.已知α与β互为余角,且cos(115°﹣α+β)= ,则α=________,β=________.14.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.如图,DE为△ABC的中位线,点F为DE上一点,且∠AFB=90°,若AB=8,BC=10,则EF的长为________.B.小智同学在距大雁塔塔底水平距离为138米处,看塔顶的仰角为24.8(不考虑身高因素),则大雁塔市约为________米.(结果精确到0.1米)15.如图,□ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于________.16.如图,在平行四边形ABCD中,AE⊥BC,垂足为E,如果AB=5,BC=8,sinB= ,那么=________.17.四边形ABCD中,BD是对角线,∠ABC=90 °,tan∠ABD= ,AB=20,BC=10,AD=13,则线段CD=________.18.在△ABC中,∠C=90°,BC=6 cm,sinA= ,则AB的长是________.cm.19.已知:等边△ABC的边长为2,点D为平面内一点,且BD= AD=2 ,则CD=________.20.如图,方格纸中的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上,则cos∠ACB的值为________三、解答题(共7题;共54分)21.计算.22.如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)23.甲、乙两船同时从港口A出发,甲船以12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行,2小时后,甲船到达C岛,乙船到达B岛,若C、B两船相距30海里,问乙船的速度是每小时多少海里?24.如图,小明在山脚下的A处测得山顶N的仰角为45°,此时,他刚好与山底D在同一水平线上.然后沿着坡度为30°的斜坡正对着山顶前行110米到达B处,测得山顶N的仰角为60°.求山的高度.(结果精确到1米,参考数据:≈1.414,≈1.732).25.如图,为了测得一棵树的高度AB,小明在D处用高为1m的测角仪CD,测得树顶A的仰角为45°,再向树方向前进10m,又测得树顶A的仰角为60°,求这棵树的高度AB.26.如图所示,某数学活动小组要测量山坡上的电线杆PQ的高度.他们采取的方法是:先在地面上的点A 处测得杆顶端点P的仰角是45°,再向前走到B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°,这时只需要测出AB的长度就能通过计算求出电线杆PQ的高度.你同意他们的测量方案吗?若同意,画出计算时的图形,简要写出计算的思路,不用求出具体值;若不同意,提出你的测量方案,并简要写出计算思路.27.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.答案解析部分一、单选题1.【答案】B【考点】特殊角的三角函数值【解析】【解答】解:∵tanA=1,sinB= ,∴∠A=45°,∠B=45°.又∵三角形内角和为180°,∴∠C=90°.∴△ABC是等腰直角三角形.故答案为:B.【分析】根据特殊角的三角函数值再结合已知条件可求出∠A、∠B的度数,即可判断△ABC的形状。
沪科版九年级数学上册《第二十三章解直角三角形》单元测试卷-附答案

沪科版九年级数学上册《第二十三章解直角三角形》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________(满分150分,限时120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.(2023安徽淮南模拟)如果Rt△ABC的各边长都扩大为原来的3倍,那么锐角A 的正弦值、余弦值()A.都扩大为原来的3倍B.都缩小为原来的13C.没有变化D.不能确定2.(2023安徽宿州埇桥期末)三角函数sin 30°、cos 16°、cos 43°之间的大小关系是()A.cos 43°>cos 16°>sin 30°B.cos 16°>sin 30°>cos 43°C.cos 16°>cos 43°>sin 30°D.cos 43°>sin 30°>cos 16°3.(2023安徽巢湖三中月考)若sin(70°-α)=cos 50°,则锐角α的度数是()A.50°B.40°C.30°D.20°4.在△ABC中,∠C=90°,tan A=2,则cos A的值为()A.√55B.2√55C.12D.25.(2023安徽阜阳质检)下列运算中,值为14的是() A.sin 45°×cos 45° B.tan 45°-cos230°C.tan30°cos60°D.(tan 60°)-16.如图,在Rt△ABC中,∠ACB=90°,∠B=β,CD⊥AB,垂足为D,那么下列线段的比值不一定等于sin β的是()A.ADBD B.ACABC.ADACD.CDBC7.(2023安徽池州月考)如图,将△ABC放在每个小正方形的边长均为1的网格中,点A,B,C均在格点上,则tan A的值是()A.√55B.12C.2D.√1058.【新考法】一配电房的示意图如图所示,它是一个轴对称图形,已知AB=3 m,∠ABC=α,则房顶A离地面EF的高度为()A.(4+3sin α)mB.(4+3tan α)mC.(4+3sinα)m D.(4+3tanα)m9.(2023安徽合肥庐江期末)如图,在△ABC中,sin B=12,AB=8,AC=5,且∠C 为锐角,cos C的值是()A.35B.45C.√32D.3410.【新情境·双翼闸机】下图是一个地铁站入口的双翼闸机示意图,它的双翼展开时,双翼边缘的端点A与B之间的距离为12 cm,双翼的边缘AC=BD=64 cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.76 cmB.(64√2+12)cmC.(64√3+12)cmD.64 cm二、填空题(本大题共4小题,每小题5分,满分20分)11.如果tan α=1,那么锐角α=度.12.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,BC=6,AC=8,设∠BCD=α,则tan α=.13.如图,已知tan O=4,点P在边OA上,OP=5,点M、N在边OB上,PM=PN,3如果MN=2,那么PM=.,BC=12,D是AB的中点,过点B 14.如图,在△ABC中,∠ACB=90°,cos A=35作线段CD的垂线,交CD的延长线于点E.(1)线段CD的长为;(2)cos∠DBE的值为.三、(本大题共2小题,每小题8分,满分16分) 15.计算:2cos 30°-tan 260°3tan45°+√(sin60°−1)2.16.(2023广西梧州模拟)构建几何图形解决代数问题是“数形结合”思想的重要体现,某数学兴趣小组在尝试计算tan 15°时,采用以下方法:如图,在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,设AC =1,则AB =2,BC =√3,所以tan 15°=ACCD =2+√3=√3(2+√3)×(2−√3)=2-√3,类比这种方法,计算tan 22.5°的值(画出计算所需图形,并用文字、计算说明).四、(本大题共2小题,每小题8分,满分16分)17.(2021广东潮州中考)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;BD,求tan∠ABC的值.(2)若AD=1318.(2023安徽合肥瑶海期末)有一架长为6米的梯子AB,将它的上端A靠着墙面,下端B放在地面上,梯子与地面所成的角记为α,地面与墙面互相垂直(如图1所示).一般满足50°≤α≤75°时,人才能安全地使用这架梯子.(1)当梯子底端B距离墙面2.5米时,人是否能安全地使用这架梯子?(2)当人能安全地使用这架梯子,且梯子顶端A离地面最高时,梯子开始下滑,如果梯子顶端A沿着墙面下滑1.5米到墙面上的D点处停止,梯子底端B也随之向后平移到地面上的点E处(如图2所示),此时人是否能安全地使用这架梯子?请说明理由.(参考数据:sin 50°≈0.77,cos 50°≈0.64,sin 75°≈0.97,cos 75°≈0.26)五、(本大题共2小题,每小题10分,满分20分)19.如图,数学兴趣小组成员在热气球A上看到横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20 ℃,海拔每升高100米,气温会下降约0.6 ℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:sin53°≈45,cos53°≈3 5,tan53°≈43)20.【方程思想】李老师给班级布置了一个实践活动,测量某广场纪念碑的高度,使用卷尺和测角仪测量.如图,纪念碑设在1.2 m的石台上,他们先在点B处测得纪念碑最高点A的仰角为22°,然后沿水平方向前进21 m,到达点N处,在点C 处测得点A的仰角为45°,BM=CN=1.7 m,求纪念碑的高度.(结果精确到0.1 m,参考数据:sin 22°≈0.37,cos 22°≈0.93tan 22°≈0.40,√2≈1.41)六、(本题满分12分)21.【主题教育·生命安全与健康】某校为检测师生体温,在校门安装了某型号测温门,如图,已知测温门AD的顶部A距地面2.2 m.某数学兴趣小组为了解测温门的有效测温区间,做了如下实践:身高为1.6 m的组员在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为20°,在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为60°.求有效测温区间MN的长度.(参考数据:sin 20°≈0.34,cos 20°≈0.94,tan 20°≈0.36,√3≈1.73,额头到地面的距离以身高计,计算结果精确到0.1 m)七、(本题满分12分)22.如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1∶√3,AB=16米,AE=24米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:√2≈1.414,√3≈1.732)八、(本题满分14分)23.(2022四川自贡中考)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)[探究原理]制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由;(2)[实地测量]如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P 的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH;(√3≈1.73,结果精确到0.1米)(3)[拓展探究]公园高台上有一凉亭,为测量凉亭顶端P 距地面的高度PH (如图④),同学们经过讨论,决定先在水平地面上选取观测点E 、F (E 、F 、H 在同一直线上),分别测得点P 的仰角为α、β,再测得E 、F 间的距离为m 米,点O 1、O 2到地面的距离O 1E 、O 2F 均为1.5米.求PH (用α、β、m 表示).参考答案与解析1.C Rt △ABC 的各边长都扩大为原来的3倍后,所得的三角形与Rt △ABC 是相似的,∴锐角A 的大小是不变的,∴锐角A 的正弦值、余弦值没有变化.2.C ∵sin 30°=cos 60°,16°<43°<60°,余弦值随着角度的增大而减小,∴cos 16°>cos 43°>sin 30°.3.C ∵sin(70°-α)=cos 50°,∴70°-α+50°=90°,解得α=30°.故选C.4.A 在△ABC 中,∠C =90°,设∠A 、∠B 、∠C 的对边分别为a 、b 、c ,因为tan A =ab =2,所以a =2b ,由勾股定理得c =√a 2+b 2=√5b所以cos A =bc =√5b =√55.5.Bsin 45°×cos 45°=√22×√22=12,故A 不符合题意;tan 45°-cos 230°=1-(√32)2=1-34=14,故B 符合题意;tan30°cos60°=√3312=23√3,故C 不符合题意;(tan 60°)-1=(√3)-1=√33,故D 不符合题意. 6.AAD BD不一定等于sin β,故A 符合题意;∵△ABC 是直角三角形,∴sin β=AC AB,故B 不符合题意; ∵CD ⊥AB ,∠ACB =90°,∴∠ACD +∠A =∠B +∠A =90°∴∠ACD =∠B ,∴sin β=ADAC,故C 不符合题意;∵△BCD 是直角三角形,∴sin β=CDBC,故D 不符合题意.7.B 如图,取格点D ,连接BD由题意得AD 2=22+22=8,BD 2=12+12=2,AB 2=12+32=10,∴AD 2+BD 2=AB 2 ∴△ABD 是直角三角形,∴∠ADB =90°,在Rt △ABD 中 AD =2√2,BD =√2,∴tan A =BDAD =√22√2=12. 8.A 过点A 作AD ⊥BC 于点D ,如图∵AD ⊥BC ,∠ABC =α,∴sin α=AD AB=AD3,∴AD =3sin α m ,∴房顶A 离地面EF 的高度=AD +BE =(4+3sin α)m .9.A 如图,过点A 作AD ⊥BC ,垂足为D∴∠ADB =∠ADC =90°在Rt △ABD 中,sin B =12,AB =8,∴AD =AB ·sin B =8×12=4在Rt △ADC 中,AC =5,∴CD =√AC 2−AD 2=√52−42=3,∴cos C =CD AC =35.10.A 如图所示,过A 作AE ⊥CP 于E ,过B 作BF ⊥DQ 于F ,在Rt △ACE 中,AE =12AC =12×64=32(cm),同理可得BF =32 cm ,∵点A 与B 之间的距离为12 cm ,∴通过闸机的物体的最大宽度为32+12+32=76(cm).11.45解析 ∵tan α=1,∴锐角α=45度. 12.34解析 ∵CD ⊥AB ,∠ACB =90°,∴∠α+∠B =∠A +∠B =90°,∴∠α=∠A ∴tan α=tan A =68=34.13.√17解析 如图,过P 作PD ⊥OB ,交OB 于点D∵tan O =PD OD =43,∴设PD =4x ,则OD =3x∵OP =5,由勾股定理得(3x )2+(4x )2=52,∴x =1(已舍负),∴PD =4 ∵PM =PN ,PD ⊥OB ,MN =2,∴MD =ND =12MN =1在Rt △PMD 中,由勾股定理得PM =√MD 2+PD 2=√17. 14.(1)152(2)2425解析 (1)在Rt △ABC 中,cos A =AC AB =35∴设AC =3x ,则AB =5x ,∴BC =√AB 2−AC 2=√(5x)2−(3x)2=4x ∵BC =12,∴4x =12,∴x =3,∴AB =15,AC =9,∵D 是AB 的中点 ∴CD =12AB =152.(2)∵∠ACB =90°,D 是AB 的中点,∴△CBD 的面积=12×△ABC 的面积,∴12CD ·BE =12×12AC ·BC ,∴152BE =12×9×12,∴BE =365,在Rt △BDE 中cos ∠DBE =BE BD=365152=2425.15.解析原式=2×√32-(√3)23×1+1-√32=√3-1+1-√32=√32. 16.解析 如图,在等腰直角△ABC 中,∠C =90°,延长CB 至点D ,使得AB =BD ,则∠BAD =∠D.∵∠ABC =45°=∠BAD +∠D =2∠D ,∴∠D =22.5° 设AC =1,则BC =1,AB =√2AC =√2 ∴CD =CB +BD =CB +AB =1+√2 ∴tan 22.5°=tan D =ACCD =1+√2=√2−1(1+√2)×(√2−1)=√2-1.17.解析 (1)如图,连接BD ,设BC 的垂直平分线交BC 于点F ,∴BD =CD ∴C △ABD =AB +AD +BD =AB +AD +DC =AB +AC. ∵AB =CE ,∴C △ABD =AC +CE =AE =1 故△ABD 的周长为1.(2)设AD =x ,∴BD =3x.∵BD=CD,∴AC=AD+CD=4x在Rt△ABD中,AB=√BD2−AD2=√(3x)2−x2=2√2x∴tan∠ABC=ACAB =2√2x=√2.18.解析(1)在Rt△AOB中,cos α=OBAB∴OB=AB·cos α当α=50°时,OB=AB·cos α≈6×0.64=3.84当α=75°时,OB=AB·cos α≈6×0.26=1.56.∵1.56<2.5<3.84∴此时人能安全地使用这架梯子.(2)此时人不能安全地使用这架梯子.理由如下:当∠ABO=75°时∵sin∠ABO=AOAB∴AO=AB·sin 75°≈6×0.97=5.82(米)∵梯子顶端A沿着墙面下滑1.5米到墙面上的D点∴OD=AO-AD=5.82-1.5=4.32(米).当∠ABO=50°时∵sin∠ABO=AOAB∴AO=AB·sin∠ABO≈6×0.77=4.62(米)∵4.32<4.62∴此时人不能安全地使用这架梯子.19.解析过A作AD⊥BC,交CB的延长线于点D,如图所示则∠ACD=45°,∠ABD=53°,在Rt△ACD中,tan∠ACD=ADCD∴CD=ADtan45°=AD1=AD在Rt△ABD中,tan∠ABD=ADBD ,∴BD=ADtan53°≈AD43=34AD由题意得AD-34AD=75,∴AD=300 m,∵此时地面气温为20 ℃,海拔每升高100米,气温会下降约0.6 ℃,∴此时热气球(体积忽略不计)附近的温度约为20-300100×0.6=18.2(℃).答:此时热气球(体积忽略不计)附近的温度约为18.2 ℃.20.解析延长BC交AF于E,延长AF交MN的延长线于D,如图则四边形BMNC、四边形BMDE是矩形∴BC=MN=21 m,DE=CN=BM=1.7 m∵∠AEC=90°,∠ACE=45°∴△ACE是等腰直角三角形∴CE=AE设AE=CE=x m∴BE=(21+x)m∵∠ABE=22°∴tan 22°=AE BE =x21+x≈0.40,解得x =14∴AE =14 m∴AD =AE +ED =14+1.7=15.7(m) ∴纪念碑的高度=15.7-1.2=14.5(m). 答:纪念碑的高度约为14.5 m . 21.解析 延长BC 交AD 于点E则DE =CM =BN =1.6 m ,BC =MN ,∠AEB =90° ∵AD =2.2 m∴AE =AD -DE =2.2-1.6=0.6(m) 在Rt △ACE 中,∠ACE =60° ∴CE =AE tan60°=√3≈0.35(m)在Rt △ABE 中,∠ABE =20° ∴BE =AE tan20°≈0.60.36≈1.67(m)∴MN =BC =BE -CE =1.67-0.35=1.32(m) ∴有效测温区间MN 的长度约为1.32 m .22.解析 (1)Rt △ABH 中,tan ∠BAH =√3=√33 ∴∠BAH =30°,∴BH =12AB =8米.(2)如图,过B 作BG ⊥DE 于G 由(1)得BH =8米,易得AH =8√3米∴BG=HE=AH+AE=(8√3+24)米,在Rt△BGC中,∠CBG=45°∴CG=BG=(8√3+24)米.在Rt△ADE中,∠DAE=60°,AE=24米,∴DE=√3AE=24√3米.∴CD=CG+GE-DE=8√3+24+8-24√3=32-16√3≈4.3(米).答:广告牌CD的高约为4.3米.23.解析(1)∵∠COG=90°,∠AON=90°∴∠POC+∠CON=∠GON+∠CON∴∠POC=∠GON.(2)由题意可得KH=OQ=5米,QH=OK=1.5米,∠PQO=90°,∠POQ=60°在Rt△PQO中,tan∠POQ=PQOQ∴tan 60°=PQ5∴PQ=5√3米∴PH=PQ+QH=5√3+1.5≈10.2(米)即树高PH约为10.2米.(3)由题意可得O1O2=m米,O1E=O2F=DH=1.5米,tan β=PDO2D ,tan α=PDO1D∴O2D=PDtanβ,O1D=PDtanα∵O1O2=O2D-O1D,∴m=PDtanβ-PD tanα∴PD=mtanα·tanβtanα−tanβ米,∴PH=PD+DH=(mtanα·tanβtanα−tanβ+1.5)米。
第23章 解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)

第23章解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,⊙O的直径AB与弦CD垂直相交于点E,且AC=2,AE= .则的长是()A. B. C. D.2、三角函数sin50°,cos50°,tan50°的大小关系是()A.sin50°>cos50°>tan50°B.tan50°>cos50°>sin50° C.tan50°>sin50°>cos50° D.cos50°>tan50°>sin50°3、如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED →DC 运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s,设P,Q 出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5cm;②当0<t≤5时,;③直线NH的解析式为;④若△ABE与△QBP相似,则t=秒。
其中正确的结论个数为( )A.4B.3C.2D.14、如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6 ;③sin∠AOB= ;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④5、如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A. B. C. D.6、下列命题正确的是()A.若锐角a满足sina= ,则a=60°B.在平面直角坐标系中,点(2,1)关于x轴的对称点为(2,-1)C.两条直线被第三条直线所截,同旁内角互补D.相似三角形周长之比与面积之比一定相等7、如图,在中,是斜边上的高,,则下列比值中等于的是()A. B. C. D.8、在△ABC中,,则△ABC为().A.直角三角形B.等边三角形C.含60°的任意三角形D.是顶角为钝角的等腰三角形9、如图,在△ABC中,∠C=90°,AB=13,BC=5,则sinA的值是()A. B. C. D.10、如图,一座公路桥离地面高度AC为6米,引桥AB的水平宽度BC为24米,为降低坡度,现决定将引桥坡面改为AD,使其坡度为1∶6,则BD的长是( )A.36米B.24米C.12米D.6米11、如图,在数学兴趣小组探究活动中,小明要测量小河两岸相对的两点P,A的距离,他和同学利用工具测得PC=50米,∠PCA= ,根据上述测量数据可计算得到小河宽度PA为()A. 米B.50 米C. 米D.50tanα米12、若α是锐角,且cosα=0.7,则()A.0°<α<30°B.30°≤α<45°C.45°<α<60° D.60°≤α<90°13、在Rt△ABC中,∠C=90°,下列各式中正确的是( )A.sin A=sin BB.tan A=tan BC.sin A=cos BD.cos A=cosB14、如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则cos B的值为A. B. C. D.15、如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进40海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海里C到航线AB的距离CD是()A.20海里B.40海里C.20 海里D.40 海里二、填空题(共10题,共计30分)16、计算×()﹣1+(sin60°+π)0的结果等于________.17、如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=________.18、如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为________.19、如图Rt△ABC中,∠ACB=90°,⊙O是△ABC的外接圆,E为⊙O上一点,连结CE,过C作CD⊥CE,交BE于点D,已知,AB= ,DE=5,则tan∠ACE=________.20、如图,将一个含30°角的三角尺ABC放在直角坐标系中,使直角顶点C与原点O重合,顶点A,B分别在反比例函数y=﹣和y=的图象上,则k的值为________.21、计算:sin2 60°+cos 60°-tan 45°=________22、观光塔是某市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A 点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°。
九年级上册数学单元测试卷-第23章 解直角三角形-沪科版(含答案)

九年级上册数学单元测试卷-第23章解直角三角形-沪科版(含答案)一、单选题(共15题,共计45分)1、如图和都是边长为2的等边三角形,它们的边在同一条直线l上,点C,E重合,现将沿着直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图像大致为()A. B. C.D.2、如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为a,那么滑梯长m为()A. B. C. D.h﹣sinα3、一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s(m)与时间t(s)之间的关系为s=8t+2t2,若滑到坡底的时间为4s,则此人下降的高度为()A.16 mB.32 mC.32 mD.64 m4、已知:在Rt△ABC中,∠C=90°,sinA= ,则cosB的值为()A. B. C. D.5、小莉站在离一棵树水平距离为a米的地方,用一块含30°的直角三角板按如图所示的方式测量这棵树的高度,已知小莉的眼睛离地面的高度是1.5米,那么她测得这棵树的高度为( )A. B. C. D.6、在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为()A. B. C. D.7、如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD⊥AC 于D,设BP=x,则PD+PE=( )A. B. C. D.8、计算:tan45°+()﹣1﹣(π﹣)0=()A.2B.0C.1D.﹣19、如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值是()A. B. C. D.10、如图,在中,,,,将绕点逆时针旋转得到,使得点落在上,则的值为()A. B. C. D.11、如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则cos∠AOB的值等于 ( )A. B. C. D.12、如图,点,,在上,是的一条弦,则的值是()A. B. C. D.13、以直角坐标系的原点O为圆心,以1为半径作圆。
第23章 解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)

第23章解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=4,∠ABC=60°,则BD的长为( )A.2B.4C.D.2、在RtΔABC中,若∠C=90°,cosA= ,则sinA的值为()A. B. C. D.3、如图,小明为了测量校园里旗杆的高度,将测角仪竖直放在距旗杆底部点的位置,在处测得旗杆顶端的仰角为,若测角仪的高度是,则旗杆的高度约为(精确到,参考数据:,,)()A.8.5米B.9米C.9.5米D.10米4、如图,中,点在上,,若,,则的长度为()A. B. C. D.45、已知α为锐角,sin(α+20°)=,则α的度数为( )A.20°B.40°C.60°D.80°6、某水坝的坡度i=1:,坡长AB=20米,则坝的高度为()A.10米B.20米C.40米D.20 米7、在Rt△ABC中,∠C=90°,下列各式中正确的是()A.sinA=sinBB.tanA=tanBC.sinA=cosBD.cosA=cosB8、如图,在平面直角坐标系xOy中,O是坐标原点,已知A(3,2)、B(-2,3),则∠OAB的等于()A.30°B.45°C.60°D.75°9、如图,两条宽都为1的纸条交叉重叠地放在一起,且它们的夹角为α,则它们重叠部分的面积为( )A. B. C.sinα D.110、用计算器求tan26°,cos27°,sin28°的值,它们的大小关系是()A. tan26°< cos27°< sin28°B. tan26°< sin28°<cos27° C. sin28°< tan26°< cos27° D. cos27°< sin28°< tan16°11、如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为()A.20海里B.10 海里C.20 海里D.30海里12、如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于()米.A.asin40°B.acos40°C.atan40°D.13、方程,则锐角=()A.30°B.45°C.60°D.无法确定14、cos45°的值是()A. B. C. D.115、如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在正方形纸片ABCD中,EF∥AB,M,N是线段EF的两个动点,且MN= EF,若把该正方形纸片卷成一个圆柱,使点A与点B重合,若底面圆的直径为6cm,则正方形纸片上M,N两点间的距离是________ cm.17、如图,在菱形中,为边上的高,将沿所在的直线翻折,得到,若,则菱形的边长为________.18、在Rt△ABC中,∠C=90°,sinA= ,BC=20,则△ABC的面积为________.19、计算:=________20、如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠EFG的值为________.21、如图,是小明荡秋千的侧面示意图,秋千链长AB=5m(秋千踏板视作一个点),静止时秋千位于铅垂线BC上,此时秋千踏板A到地面的距离为0.5m.当秋千踏板摆动到点D 时,点D到BC的距离DE=4m.若他从D处摆动到D'处时,恰好D'B⊥DB,则D'到地面的距离为________ m.22、如图,在菱形中,为边的中点,为边上一动点(不与重合),将沿直线折叠,使点落在点处,连接,,当为等腰三角形时,的长为________.23、如图,在 Rt△ABC 中,∠ACB = 90°,AC= 3,sin A = ,若 E 为边 BC 的中点,则点E到Rt△ABC的中线CD的距离EF为________.24、如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为________.25、如图,AB是⊙O的弦,半径OA=5,sinA=,则弦AB的长为________.三、解答题(共5题,共计25分)26、计算:()﹣1+ tan60°﹣(﹣)0.27、为进一步加强疫情防控工作,避免在测温过程中出现人员聚集现象,某学校决定安装红外线体温监测仪,该设备通过探测人体红外辐射能量对进入测温区域的人员进行快速测温,无需人员停留和接触,安装说明书的部分内容如表.名称红外线体温检测仪安装示意图技术参数探测最大角:∠OBC=73.14°探测最小角:∠OAC=30.97°安装要求本设备需安装在垂直于水平地面AC的支架CP上根据以上内容,解决问题:学校要求测温区域的宽度AB为4m,请你帮助学校确定该设备的安装高度OC.(结果精确到0.1m,参考数据:sin73.14°≈0.957,cos73.14°≈0.290,tan73.14°≈3.300,sin30.97°≈0.515,cos30.97°≈0.857,tan30.97°≈0.600)28、如图,小明坐在堤边A处垂钓,河堤AC与水平面的夹角为30°,AC的长为米,钓竿AO与水平线的夹角为60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.29、如图所示,在半径为27m的广场中央,点O的上空安装了一个照明光源S,S射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°,求光源离地面的垂直高度SO.(精确到0.1m;=1. 414,=1.732,=2.236,以上数据供参考)30、数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:,,,)参考答案一、单选题(共15题,共计45分)1、D2、B3、C4、C5、B6、A7、C8、B9、A11、C12、C13、A14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、30、。
第23章 解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)

第23章解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、二次函数y=﹣x2﹣2x+3的图象与x轴交于A、B两点(A在B的左边),它的顶点为C 点.连接AC、BC,则tan∠CAB的值是()A. B. C. D.22、如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.2 cmB. cmC. cmD.1cm3、在Rt△ABC中,∠C=90°,如果AB=m,∠A=α,那么AC的长为()A.m•sinαB.m•cosαC.m•tanαD.m•cotα4、如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()A. B.2 C. D.35、某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A.450a元B.225a元C.150a元D.300a元6、如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=3 ,则弧BC的长为()A. πB. πC. πD.3 π7、如图所示,从山顶A望地面C、D两点,测得它们的俯角分别为45°和30°,已知CD=100m,点C在BD上,则山高AB为()A.100mB.100 mC.50 mD. m8、某校积极开展综合实践活动,一次九年级数学小组发现校园里有一棵被强台风摧折的大树,其残留的树桩DC的影子的一端E刚好与倒地的树梢重合,于是他们马上利用其测量旁边钟楼AB的高度.如图是根据测量活动场景抽象出的平面图形.活动中测得的数据如下:①大树被摧折倒下的部分DE=10m;②tan∠CDE=;③点E到钟楼底部的距离EB=7m;④钟楼AB的影长BF=(20 +8)m;⑤从D点看钟楼顶端A点的仰角为60°.(点C,E,B,F在一条直线上).请你选择几个需要的数据,用你喜欢的方法求钟楼AB的高度,则AB=()A.15 mB.(15 +6)mC.(12 +6)mD.15m9、如图,一天晚上,小颖由路灯A下的B处走到C处时,测得影子CD的长为1米,当她继续往前走到D处时,测得此时影子DE的一端E到路灯A的仰角为45º,已知小颖的身高为1.5米,那么路灯A的高度AB为( )A.3米B.4.5米C.6米D.8米10、四位学生用计算器求sin62°20′的值正确的是()A.0 .8857B.0 .8856C.0 .8852D.0 .885111、如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2 ,∠AEO=120°,则EF的长度为()A.1B.2C.D.12、如图,嘉淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,且C地恰好位于A地正东方向上,则下列说法正确的是()A.B地在C地的北偏西40°方向上B.A地在B地的南偏西30°方向上C.D.∠ACB=50°13、如图,在Rt△ABC中,∠C=90°,AB=13,BC=12,则下列三角函数表示正确的是()A.sinA=B.cosA=C.tanA=D.tanB=14、在4×5网格中,A,B,C为如图所示的格点(小正方形的顶点),则下列等式正确的是()A.sinA=B.cosA=C.tanA=D.cosA=15、如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为60m,这栋高楼BC的高度为()A.80 mB.60 mC.40 mD.30 m二、填空题(共10题,共计30分)16、某飞机的飞行高度为1500m,从飞机上测得地面控制点的俯角为60°,此时飞机与这地面控制点的距离为________m.17、如图,湖心岛上有一凉亭B,在凉亭B的正东湖边有一棵大树A,在湖边的C处测得B 在北偏西45°方向上,测得A在北偏东30°方向上,又测得A、C之间的距离为100米,则A、B之间的距离是________米(结果保留根号形式).18、在Rt△ABC中,∠C=90°,AB=4,BC=2 ,则sin =________.19、已知∠A为锐角,且cosA≤,那么∠A的范围是________20、一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28km/时的速度向正东航行,半小时到B处,在B处看见灯塔M在北偏东30°方向,此时,灯塔M与渔船的距离是________.21、如图,AB是⊙O的直径,已知AB=2,C,D是⊙O的上的两点,且+ = ,M 是AB上一点,则MC+MD的最小值是________.22、将一副直角三角板拼成如图所示的四边形ABCD,一边重合,若∠CAB=45°,∠CAD=30°,连接BD,则tan∠DBC=________.23、在△ABC中,∠B=30°,AB=8,AC=2 ,则BC的长为________。
沪科版初中九年级上册数学单元检测 第23章 解直角三角形
解直角三角形测试题与答案一.选择题(共12小题)1.(•义乌市)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1B.1.5 C.2D.32.(•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.3.(•凉山州)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°4.(•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()A.100米B.50米C.米D.50米5.(•凉山州)拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是()A.15m B.20m C.10m D.20m 6.(•百色)从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米7.(•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km8.(•路北区二模)如图,△ABC的项点都在正方形网格的格点上,则cosC 的值为()A.B.C.D.9.(•长宁区一模)如图,在△ABC中,∠ACB=90°,CD⊥AB于D,下边各组边的比不能表示sinB的()A.B.C.D.(•工业园区一模)若tan(α+10°)=1,则锐角α的度数是()10.A.20°B.30°C.40°D.50°11.(•鄂州四月调考)在△ABC中,∠A=120°,AB=4,AC=2,则sinB 的值是()A.B.C.D.12.(•邢台一模)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.二.填空题(共6小题)13.(•济宁)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB 的长为_________ .14.(•徐汇区一模)如图,已知梯形ABCD中,AB∥CD,AB⊥BC,且AD⊥BD,若CD=1,BC=3,那么∠A的正切值为_________ .15.(•虹口区一模)计算:cos45°+sin260°=_________ .16.(•武威模拟)某人沿坡度为i=3:4斜坡前进100米,则它上升的高度是_________ 米.17.(•海门市模拟)某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB 的顶点A的仰角为30°,然后向建筑物AB前进20m到达点D处,又测得点 A的仰角为60°,则建筑物AB的高度是_________ m.18.(•扬州)在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC= _________ .三.解答题(共6小题)19.(•盘锦)如图,用一根6米长的笔直钢管弯折成如图所示的路灯杆ABC,AB垂直于地面,线段AB与线段BC所成的角∠ABC=120°,若路灯杆顶端C到地面的距离CD=5.5米,求AB长.20.(•遵义)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)21.(•哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).22.(•邵阳)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)23.(•射阳县三模)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡度为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,求树的高度.24.(•崇川区一模)如图,某登山队在山脚A处测得山顶B处的仰角为45°,沿坡角30°的斜坡AD前进1000m后到达D处,又测得山顶B处的仰角为60°.求山的高度BC.参考答案与试题解析一.选择题(共12小题)1.(•义乌市)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1B.1.5 C.2D.3考点:锐角三角函数的定义;坐标与图形性质.专题:数形结合.分析:根据正切的定义即可求解.解答:解:∵点A(t,3)在第一象限,∴AB=3,OB=t,又∵tanα==,∴t=2.故选:C.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.(•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.考点:互余两角三角函数的关系.专题:计算题.分析:根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tan∠B.解答:解:∵sinA=,∴设BC=5x,AB=13x,则AC==12x,故tan∠B==.故选:D.点评:本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.3.(•凉山州)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.专题:计算题.分析:根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.解答:解:由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.故选:C.点评:此题考查了特殊角的三角形函数值及绝对值、偶次方的非负性,属于基础题,关键是熟记一些特殊角的三角形函数值,也要注意运用三角形的内角和定理.4.(•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()A.100米B.50米C.米D.50米考点:解直角三角形的应用.专题:几何图形问题.分析:过B作BM⊥AD,根据三角形内角与外角的关系可得∠ABC=30°,再根据等角对等边可得BC=AC,然后再计算出∠CBM的度数,进而得到CM长,最后利用勾股定理可得答案.解答:解:过B作BM⊥AD,∵∠BAD=30°,∠BCD=60°,∴∠ABC=30°,∴AC=CB=100米,∵BM⊥AD,∴∠BMC=90°,∴∠CBM=30°,∴CM=BC=50米,∴BM=CM=50米,故选:B.点评:此题主要考查了解直角三角形的应用,关键是证明AC=BC,掌握直角三角形的性质:30°角所对直角边等于斜边的一半.5.(•凉山州)拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是()A.15m B.20m C.10m D.20m考点:解直角三角形的应用-坡度坡角问题.专题:计算题.分析:在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.解答:解:Rt△ABC中,BC=10m,tanA=1:;∴AC=BC÷tanA=10m,∴AB==20m.故选:D.点评:此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.6.(•百色)从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:在Rt△ABC求出CB,在Rt△ABD中求出BD,继而可求出CD.解答:解:在Rt△ACB中,∠CAB=45°,AB⊥DC,AB=6米,∴BC=6米,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6米,∴DC=CB+BD=6+6(米).故选:A.点评:本题考查仰角俯角的定义,要求学生能借助仰角俯角构造直角三角形并解直角三角形,难度一般.7.(•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD 是等腰直角三角形,得出BD=AD=2,则AB=AD=2.解答:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选:C.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.8.(•路北区二模)如图,△ABC的项点都在正方形网格的格点上,则cosC 的值为()A.B.C.D.考点:锐角三角函数的定义;勾股定理.专题:网格型.分析:先构建格点三角形ADC,则AD=2,CD=4,根据勾股定理可计算出AC,然后根据余弦的定义求解.解答:解:在格点三角形ADC中,AD=2,CD=4,∴AC===2,∴cosC===.故选B.点评:本题考查了锐角三角函数的定义:在直角三角形中,一锐角的余弦等于它的邻边与斜边的比值.也考查了勾股定理.9.(•长宁区一模)如图,在△ABC中,∠ACB=90°,CD⊥AB于D,下边各组边的比不能表示sinB的()A.B.C.D.考点:锐角三角函数的定义.分析:利用两角互余关系得出∠B=∠ACD,进而利用锐角三角函数关系得出即可.解答:解:∵在△ABC中,∠ACB=90°,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠B=∠ACD,∴sinB===,故不能表示sinB的是.故选:B.点评:此题主要考查了锐角三角函数的定义,正确把握锐角三角函数关系是解题关键.10.(•工业园区一模)若tan(α+10°)=1,则锐角α的度数是()A.20°B.30°C.40°D.50°考点:特殊角的三角函数值.分析:根据tan30°=解答即可.解答:解:∵tan(α+10°)=1,∴tan(α+10°)=.∴α+10°=30°.∴α=20°.故选A.点评:熟记特殊角的三角函数值是解答此题的关键.11.(•鄂州四月调考)在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A.B.C.D.考点:解直角三角形.分析:首先延长BA过点C作CD⊥BA延长线于点D,进而得出AD,CD,BC 的长,再利用锐角三角函数关系求出即可.解答:解:延长BA过点C作CD⊥BA延长线于点D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,CD=,BD=5,∴BC==2,∴sinB===.故选:B.点评:此题主要考查了解直角三角形,作出正确辅助线构造直角三角形是解题关键.12.(•邢台一模)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.考点:解直角三角形.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选C.点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.二.填空题(共6小题)13.(•济宁)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB 的长为3+.考点:解直角三角形.专题:几何图形问题.分析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.解答:解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+.故答案为:3+.点评:本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.14.(•徐汇区一模)如图,已知梯形ABCD中,AB∥CD,AB⊥BC,且AD⊥BD,若CD=1,BC=3,那么∠A 的正切值为.考点:锐角三角函数的定义.分析:求出∠ABC=∠ADB=90°,根据三角形内角和定理求出∠A=∠DBC,解直角三角形求出即可.解答:解:∵AB∥CD,AB⊥BC,∴DC⊥BC,∠ABC=90°,∴∠C=90°,∵AD⊥BD,∴∠ADB=90°,∴∠DBC+∠ABD=∠A+∠ABD=90°,∴∠A=∠DBC,∵CD=1,BC=3,∴∠A的正切值为tanA=tan∠DBC==,故答案为:3.点评:本题考查了锐角三角函数的定义,三角形内角和定理的应用,关键是求出∠A=∠DBC和求出tan∠DBC=.15.(•虹口区一模)计算:cos45°+sin260°=.考点:特殊角的三角函数值.分析:将cos45°=,sin60°=代入求解.解答:解:原式=×+()2=1+=.故答案为:.点评:本题考查了特殊角的三角函数值,解答本题的关键是熟记几个特殊角的三角函数值.16.(•武威模拟)某人沿坡度为i=3:4斜坡前进100米,则它上升的高度是60 米.考点:解直角三角形的应用-坡度坡角问题.分析:根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB 的长度即可求得AC的值,即可解题.解答:解:由题意得,AB=100米,tanB==3:4,设AC=3x,则BC=4x,则(3x)2+(4x)2=1002,解得:x=20,则AC=3×20=60(米).故答案为:60.点评:本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.17.(•海门市模拟)某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB 的顶点A的仰角为30°,然后向建筑物AB前进20m到达点D处,又测得点 A的仰角为60°,则建筑物AB 的高度是m.考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:设AB=x,在Rt△ABC中表示出BC,在Rt△ABD中表示出BD,再由CD=20米,可得关于x的方程,解出即可得出答案.解答:解:设AB=x,在Rt△ABC中,∠C=30°,则BC==x,在Rt△ABD中,∠ADB=60°,则BD==x,由题意得,x﹣x=20,解得:.故答案为:10.点评:本题考查了解直角三角形的应用,解答本题的关键是熟练掌握三角函数的定义,利用三角函数的知识表示出相关线段的长度.18.(•扬州)在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC= 6 .考点:解直角三角形;等腰三角形的性质.分根据题意做出图形,过点A作AD⊥BC于D,根据AB=AC=5,析:sin∠ABC=0.8,可求出AD的长度,然后根据勾股定理求出BD的长度,继而可求出BC的长度.解答:解:过点A作AD⊥BC于D,∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,则BD==3,∴BC=BD+CD=3+3=6.故答案为:6.点评:本题考查了解直角三角形的知识,难度一般,解答本题的关键是构造直角三角形并解直角三角形以及勾股定理的应用.三.解答题(共6小题)19.(•盘锦)如图,用一根6米长的笔直钢管弯折成如图所示的路灯杆ABC,AB垂直于地面,线段AB与线段BC所成的角∠ABC=120°,若路灯杆顶端C到地面的距离CD=5.5米,求AB长.考点:解直角三角形的应用.专题:几何图形问题.分析:过B作BE⊥DC于E,设AB=x米,则CE=5.5﹣x,BC=6﹣x,根据30°角的正弦值即可求出x,则AB求出.解答:解:过B作BE⊥DC于E,设AB=x米,∴CE=5.5﹣x,BC=6﹣x,∵∠ABC=120°,∴∠CBE=30°,∴sin30°==,解得:x=5,答:AB的长度为5米.点评:考查了解直角三角形,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.20.(•遵义)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:应用题.分析:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.解答:解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.点评:本题考查了解直角三角形的应用,涉及仰角俯角及坡度坡角的知识,构造直角三角形是解题关键.21.(•哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:(1)根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的长.解答:解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为(60﹣20)米.点评:考查解直角三角形的应用;得到以AF为公共边的2个直角三角形是解决本题的突破点.22.(•邵阳)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.解答:解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.23.(•射阳县三模)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡度为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,求树的高度.考点:解直角三角形的应用-坡度坡角问题.分析:延长AC交BF延长线于D点,则BD即为AB的影长,然后根据物长和影长的比值计算即可.解答:解:延长AC交BF延长线于D点,则∠CFE=30°,作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4m,∴CE=2(米),EF=4cos30°=2(米),在Rt△CED中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,CE=2(米),CE:DE=1:2,∴DE=4(米),∴BD=BF+EF+ED=12+2(米)在Rt△ABD中,AB=BD=(12+2)=(6+)(米).答:树的高度为:(6+)(米).点评:本题考查了解直角三角形的应用以及相似三角形的性质.解决本题的关键是作出辅助线得到AB的影长.24.(•崇川区一模)如图,某登山队在山脚A处测得山顶B处的仰角为45°,沿坡角30°的斜坡AD前进1000m后到达D处,又测得山顶B处的仰角为60°.求山的高度BC.考点:解直角三角形的应用-仰角俯角问题.分析:过点D作DE⊥AC,△ACB是等腰直角三角形,直角△ADE中满足解直角三角形的条件.在直角△BDF中,根据三角函数可得BF,进一步得到BC,即可求出山高.解答:解:过D分别作DE⊥AC与E,DF⊥BC于F.∵在Rt△ADE中,AD=1000m,∠DAE=30°,∴DE=AD=500m.∵∠BAC=45°,∴∠DAB=45°﹣30°=15°,∠ABC=90°﹣45°=45°.∵在Rt△BDF中,∠BDF=60°,∴∠DBF=90°﹣60°=30°,∴∠DBA=45°﹣30°=15°,∵∠DAB=15°,∴∠DBA=∠DAB,∴BD=AD=1000m,∴在Rt△BDF中,BF=BD=500m,∴山的高度BC为(500+500)m.点评:本题考查了解直角三角形的应用﹣仰角俯角问题的应用,根据已知得出FC,BF的长是解题关键.。
2020年沪科版初三数学上册第23章《解直角三角形》单元测试卷(含答案)
2020年沪科版初三数学上册第23章《解直⾓三⾓形》单元测试卷(含答案)沪科版九年级数学(上)第23章《解直⾓三⾓形》单元试卷⼀、选择题(本⼤题共8⼩题,共40分)1.在Rt△ABC中,∠C=90°,若sinA =513,则cos A的值为()A. 512B. 813C. 23D. 12132.在Rt△ABC 中,∠ACB=Rt∠,BC=1,AB=2,则sin A的值为()A. 12B. √3 C. √33D. √323.把⼀块直尺与⼀块三⾓板如图放置,若sin∠1=√22,则∠2的度数为()A. 120°B. 135°C. 145°D. 150°4.在△ABC中,∠ACB=90°,∠ABC=40°,BC=10,若⽤科学计算器求边AC的长,则下列按键顺序正确的是()A. B.C. D.5.如图,在Rt△ABC中,CD是斜边AB上的⾼,∠A≠45°,则下列⽐值中不等于sin A的是()A. CDACB. CBABC. BDCBD. CDCB6.河堤横断⾯如图所⽰,堤⾼BC=5⽶,迎⽔坡AB的坡⽐是1:√3(坡⽐是坡⾯的铅直⾼度BC与⽔平宽度AC之⽐),则AC的长是()A. 5√3⽶B. 10⽶C. 15⽶D. 10√3⽶7.将⼀副三⾓板按如图⽅法摆放在⼀起,连接AC,则tan∠DAC值为()A. 1B. 12C. √3+12D. √328.如,斜A的坡(D与AD的⽐)为1:2,AC=3√5,坡顶有旗杆B旗杆顶端B点与A点条彩相连.AB=0⽶,则旗杆B的⾼度为()A. 5⽶B. 6⽶C. 8⽶D. (3+√5)⽶⼆、填空题(本⼤题共6⼩题,共30分)9.如图,六个正⽅形组成⼀个矩形,A,B,C均在格点上,则∠ABC的正切值为______.10.如图,某飞机于空中探测某座⼭的⾼度,在点A处飞机的飞⾏⾼度是AF=3700⽶,从飞机上观测⼭顶⽬标C的俯⾓是45°,飞机继续以相同的⾼度飞⾏300⽶到B地,此时观察⽬标C的俯⾓是50°,则这座⼭的⾼度CD是______ ⽶(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)11.已知α、β均为锐⾓,且满⾜|cosα?12|+√tanβ?√3=0,则α+β的度数为______ .12.王英同学从A地沿北偏西60°⽅向⾛100⽶到B地,再从B地向正南⽅向⾛200⽶到C地,此时王英同学离A地的距离是______⽶.13.如图,在△ABC中,∠ACB=90°,延长斜边AB到点D,使BD=AB2,连结DC.若tan∠ABC=2,则tan∠BCD的值是______ .14.如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,P、Q分别是AC、AB边上的动点,PQ//BC,点A关于直线PQ的对称点为A′,连结A′B,设线段AP的长为t.(1)当t=54时,∠A′BC的正弦值为______;(2)若线段A′B的垂直平分线与线段AC有公共点,则t的取值范围是______.三、计算题(本⼤题共2⼩题,共20分)15.如图是⼀座⼈⾏天桥⽰意图,天⾼是10⽶,CB ⊥B,坡⾯AC的倾斜⾓为45了⽅便⾏⼈推车天桥市政门决定降低坡度,使新坡D的坡i=√3:3.若坡⾓外需留3⽶的⼈道,问离原⾓(点处)0⽶的建筑物是需要拆除?(考据:√2≈1.14,√3≈.732)16.如图益市梓⼭湖中有⼀孤⽴⼩岛,边有条笔直的光AB,现决⼩架座与光⼩道垂直的⼩桥PD,⼩张⼩上测得如数据:A=.0⽶,∠AB=38.°,∠PBA=6.5°请帮助⼩张求出桥PD的长并确定⼩桥道上的位置.(以A,为参照点,结精确01⽶)(参考数据si38.=0.6,cs385°=0.,tan8.5°=0.80,sin2.5°=0.,os6.5°=0.,tan26.5=0.50)四、解答题(本⼤题共6⼩题,共60分)17.如图分别是某型号跑步机的实物图和⽰意图,已知踏板CD长为2⽶,⽀架AC长为0.8⽶,CD与地⾯的夹⾓为12°,∠ACD=80°,(AB‖ED),求⼿柄的⼀端A离地的⾼度?.(精确到0.1⽶,参考数据:sin12°= cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)18.如图,秋千链⼦AB的长度为3m,静⽌时的秋千踏板(厚度忽略不计)距地⾯DE为0.5m,秋千向两边摆动时,若最⼤摆⾓(摆⾓指秋千链⼦与铅垂线的夹⾓)约为53°,求秋千踏板与地⾯的最⼤距离.(sin53°≈0.80,cos53°≈0.60)19.如图某仓储中⼼有⼀B,其度i1:2,顶A处的⾼AC为4,B、C在同⽔平地⾯上.矩形DEFG为体货柜侧⾯图,其中D=2.5,EF=2,该货沿斜坡向上运送,BF=35m时,求点D离⾯的(√5≈2.236果精确0.1m)20.如图,登⼭缆车从点A出发,途经点B后终点C其中AB与BC段的⾏路程为00m,且AB段运⾏路与⽔⾯的夹⾓为30,BC段的运⾏路线与平⾯夹⾓为2,求缆车点A⾏点C的上升的距离(参考数sin42≈0.67,o2≈0.74,tan2°≈0.90)21. 201年⽉2⽇,四川雅安发⽣⾥⽒0级地震,救援救援时,⽤⽣命探仪某建筑物废墟⽅测到点C 处有⽣命迹象,已知墟⼀侧地上两探测点A 、相距⽶探测线与地⾯的夹30°和60°,如图所⽰,试确定命所在点C 深度(结果确到1,考数据√2≈.41,√3≈1.7)22. 求⾬刮杆AB 过的最⼤积.结果保留π整数(参考数据:sin0°=√32,cos0°=12tan60°=√3,√721≈2.85,可使⽤学记算器)图1⼀辆汽车的背⾯,⼀种特形刮⾬器,忽略⾬器的宽度可抽象为⼀条折线OB ,如所⽰,得连杆长为10cm ,⾬刮杆A 长48cm ,OAB =10.若动次刮⾬器,⾬刮杆AB 正扫到⽔平线D 的位置如图3所⽰.答案和解析1.【答案】D【解析】解:∵sin 2A +cos 2A =1,即(513)2+cos 2A =1,∴cos 2A =144169,∴cosA =1213或?1213(舍去),∴cosA =1213.故选:D .根据同⼀锐⾓的正弦与余弦的平⽅和是1,即可求解.此题主要考查了同⾓的三⾓函数,关键是掌握同⼀锐⾓的正弦与余弦之间的关系:对任⼀锐⾓α,都有sin 2α+cos 2α=1. 2.【答案】A【解析】解:∵∠ACB =Rt∠,BC =1,AB =2,∴sinA =BCAB =12,故选:A .根据正弦的定义进⾏计算即可.本题考查锐⾓三⾓函数的定义及运⽤:在直⾓三⾓形中,锐⾓的正弦为对边⽐斜边,余弦为邻边⽐斜边,正切为对边⽐邻边. 3.【答案】B【解析】解:∵sin ∠1=√22,∴∠1=45°,∵直⾓△EFG 中,∠3=90°?∠1=90°?45°=45°,∴∠4=180°?∠3=135°,⼜∵AB//CD ,∴∠2=∠4=135°.故选:B .⾸先根据特殊⾓的三⾓函数值即可求得∠1的度数,然后根据直⾓三⾓形的两个锐⾓互余,以及平⾏线的性质即可求解.本题考查了特殊⾓的三⾓函数值,以及直⾓三⾓形的性质、平⾏线的性质,正确理解平⾏线的性质是关键. 4.【答案】D【解析】解:如图,∵在△ABC 中,∠ACB =90°,∴tan ∠ABC =ACBC ,∵∠ABC =40°,BC =10,∴AC =BC ?tan ∠ABC =10×tan40°.故选:D .根据正切函数的定义,可得tan ∠ABC =ACBC ,根据计算器的应⽤,可得答案.本题考查了计算器,利⽤了锐⾓三⾓函数,计算器的应⽤,熟练应⽤计算器是解题关键. 5.【答案】D【解析】解:∵在Rt △ABC 中,CD 是斜边AB 上的⾼,∴sinA =CDAC =CBAB ,同时有,sinA =sin ∠DCB =DBCB .故选D .根据锐⾓三⾓函数的定义解答即可.本题考查了锐⾓三⾓函数的定义:在直⾓三⾓形中,锐⾓的正弦为对边⽐斜边,余弦为邻边⽐斜边,正切为对边⽐邻边. 6.【答案】A【解析】解:Rt △ABC 中,BC =5⽶,tanA =1:√3;∴AC =BC ÷tanA =5√3⽶;故选:A . Rt △ABC 中,已知了坡⽐是坡⾯的铅直⾼度BC 与⽔平宽度AC 之⽐,通过解直⾓三⾓形即可求出⽔平宽度AC 的长.此题主要考查学⽣对坡度坡⾓的掌握及三⾓函数的运⽤能⼒. 7.【答案】C【解析】解:如图所⽰,过点C 作CE ⊥AD 于E ,设CD =a ,在Rt △BDC 中,∠DBC =30°,则 BD =cot30°×CD =√3a ,在Rt △DBA 中,AD =sin45°×BD =√62a ,⼜∵CE ⊥AD ,∠BDA =45°,∴DE =CE =sin45°×a =√22a ,∴在Rt △CAE 中,tan ∠EAC =CEAE =CEAD?DE =√22a √62a?√22a =√3+12.即tan ∠DAC =√3+12.故选:C .先过点C 作CE ⊥AD 于E ,设CD =a ,在Rt △BDC 中,利⽤三⾓函数,可求BD ,在Rt △DBA 中,利⽤三⾓函数,可求AD ,易证△CED 是等腰直⾓三⾓形,从⽽利⽤三⾓函数可求CE 、DE ,于是在Rt △CAE 中,可求tan ∠EAC =CEAE =CEAD?DE ,即tan ∠DAC 的值.本题考查了直⾓三⾓形的性质、特殊三⾓函数值.解本题最关键的是作辅助线CE ,构造直⾓三⾓形. 8.【答案】A【解析】【分析】本题查了解直⾓⾓的应⽤--坡度坡问题,找到合适直⾓三⾓形熟运⽤勾股定是解的关.设CD=x,则AD=2x 根据理求出C的长,从⽽求出C、AC的长,然根据勾理求B的长,即可求出BC长.【解答】解:设CD=x,则A=x,在RtAD中,BD=√102?62=8,∴√5x=3√5,BC=8?3=⽶.∴x3⽶,∴D=2×36⽶,∴CD=3,选A.9.【答案】3【解析】解:过点A作AD⊥BC于点D,∵S△ABC=12BC?AD=12×3×2,BC=√12+22=√5,∴AD=6√5=6√55,∵AB=√22+22=2√2,∴BD=√AB2?AD2=2√55,∴tan∠ABC=ADBD =6√552√55=3.故答案为:3.⾸先过点A作AD⊥BC于点D,利⽤三⾓形的⾯积求得AD的长,再利⽤勾股定理求得BD的长,继⽽求得答案.此题考查了矩形的性质、勾股定理以及三⾓函数等知识.注意准确作出辅助线是解此题的关键.10.【答案】1900【解析】解:设EC=x,在Rt△BCE中,tan∠EBC=ECBE,则BE=EC在Rt△ACE中,tan∠EAC=ECAE,则AE=ECtan∠EAC=x,∵AB+BE=AE,∴300+56x=x,解得:x=1800,这座⼭的⾼度CD=DE?EC=3700?1800=1900(⽶).故答案为:1900.设EC=x,则在RT△BCE中,可表⽰出BE,在Rt△ACE中,可表⽰出AE,继⽽根据AB+BE=AE,可得出⽅程,解出即可得出答案.此题考查了解直⾓三⾓形的应⽤,解答本题的关键是两次利⽤三⾓函数的知识,求出BE及AE的表达式,要能将实际问题转化为数学计算.11.【答案】120°【解析】解:由题意得,cosα?12=0,tanβ?√3=0,解得,α=60°,β=60°,则α+β的度数为120°,故答案为:120°.根据⾮负数的性质列出算式,根据特殊⾓的三⾓函数值计算即可.本题考查的是⾮负数的性质和特殊⾓的三⾓函数值,掌握⾮负数之和等于0时,各项都等于0是解题的关键.12.【答案】100√3【解析】解:如图,作AE⊥BC于点E.∵∠EAB=30°,AB=100,∴BE=50,AE=50√3.∵BC=200,∴CE=150.在Rt△ACE中,根据勾股定理得:AC=100√3.即此时王英同学离A地的距离是100√3⽶.故答案为:100√3.先在直⾓△ABE中利⽤三⾓函数求出BE和AE,然后在直⾓△ACF中,利⽤勾股定理求出AC.解⼀般三⾓形的问题⼀般可以转化为解直⾓三⾓形的问题,解决的⽅法就是作⾼线.13.【答案】23【解析】解:如图,作BE⊥BC,交CD于点E,∵BD=AB2,∴设BD=x,则AB=2x,∵tan∠ABC=ACBC=2,∴设AC=2a,则BC=a,∵AC2+BC2=AB2,即4a2+a2=4x2,解得:a=2√55x或a=?2√55x(舍),则AC=4√55∵AC⊥CB,∴AC//BE,∴△DEB∽△DCA,∴BEAC =BDAD,即BE4√55x=x2x+x,∴BE=4√515x,∴tan∠BCD=BEBC =4√515x2√55x=23,故答案为:23.作BE⊥BC交CD于点E,由BD=AB2设BD=x,则AB=2x,由tan∠ABC=ACBC=2设AC=2a,则BC=a,根据勾股定理可得a=2√55x,即AC=4√55x,BC=2√55x,再证∴△DEB∽△DCA得BEAC=BDAD,即BE4√55x=x2x+x,从⽽得出BE=4√515x,最后根据正切函数定义可得答案.本题主要考查解直⾓三⾓形的应⽤,根据题⽬需要建⽴合适的直⾓三⾓形并表⽰出所需线段的长度是解题的关键.;0≤t≤1或√5≤t≤3【解析】解:(1)由题意知,AP=A′P=t,A′C=4?2t,当t=54时,A′C=4?2×54=32,∵BC=2,∴A′B=√A′C2+BC2=√94+4=52,,故答案为:35;(2)如图,以点O为原点,AC所在直线为x轴建⽴平⾯直⾓坐标系,根据题意知点A′(2t,0),点B(4,2),设直线A′B解析式为y=kx+b,则有{2tk+b=84k+b=2,解得:{b=2tt?2k=12?t,∴直线A′B的解析式为y=12?tx+2tt?2,∵直线ME是线段A′B的中垂线,∴M为A′B的中点,作MN⊥A′C于点N,∴MN//BC,∴△A′MN∽△A′BC,,即12=MN2=A′N4?2t,可得MN=1,A′N=2?t,则ON=2t+2?t=t+2,∴点M的坐标为(t+2,1)∴直线ME的解析式为y?1=(t?2)(x?t?2),即y=(t?2)x?t2+5,当y=0时,(t?2)x?t2+5=0,解得:x=t2?5t?2,若直线ME与线段AC有公共点,则0≤t2?5t?2≤4,①当t?2<0,即t<2时,{t≥0t2?5≤0t2?5≥4(t?2),解得:0≤t≤1;②当t?2>0,即t>2时,{t2?5≥0t2?5≤4(t?2),解得:√5≤t≤3;综上,0≤t≤1或√5≤t≤3,故答案为:0≤t≤1或√5≤t≤3.(1)根据题意表⽰出AP=A′P=t,A′C=4?2t,由t的值得出A′C的长,继⽽求出A′B,根据正弦函数定义可得答案;(2)以点O为原点、AC所在直线为x轴建⽴平⾯直⾓坐标系,知A′(2t,0)、点B(4,2),待定系数法可求得直线A′B的解析式,作MN⊥A′C于点N,由△A′MN∽△A′BC得MN=1、A′N=2?t,从⽽得出点M的坐标为(t+2,1),根据直线ME是线段A′B的中垂线可得直线ME的解析式为y?1=(t?2)(x?t?2),由直线ME与线段AC有公共点可得0≤t2?5t?2≤4,解之即可得t的范围.本题主要考查解直⾓三⾓形、相似三⾓形的判定与性质、待定系数求⼀次函数解析式、解不等式组等知识点,将公共点问题转化为不等式问题求解是解题的关键.15.【答案】解:需要除理由为:∴ABC=10⽶,∴△C为等腰直⾓三形,∵37.32=0.32>1,∴DC2BC=2⽶,D=√CD2?BC2=10√3⽶,∴ADB?AB=(10√3?10⽶≈732⽶,需要拆除.【解析】需除,理为:根据题意到三形ABC腰直⾓三⾓,求B的长在直⾓三⾓形BC中根据新坡⾯的坡度求出∠BDC的度数3,利⽤30度所的等于斜边的⼀半求出DC长,再勾股定理求出DB的长,由DB? AB求出AD的长AD+30⽐较即可得到结.题考查了直⾓三⾓的应⽤?坡度坡问题,涉及的知识有勾股定理,等腰三的性质含0度直⾓三⾓的性质,坡⾓与坡之间的关,熟练掌握质及定理是解本的关.16.【答案】解:设PD=x,在Rt△PAD中,n∠PD=xAD,⼜AB=0.0⽶,∴54x+280.0,∴DB=49.(⽶.PD⊥AB,∴B=xtan26.°≈x0502x,在Rt△PD中,tnPBD=xDB,:桥PD的长约为246,位于AB之间距B点约492⽶.【解析】设D=⽶,在R△PAD中表⽰出D,Rt△PB中⽰出BD,由B=0.0,得出⽅,解出可得PD的长度,继⽽也可确定⼩桥在⼩道上的位.本题考查了解直三⾓形的应⽤,解本题键是造直⾓⾓形,利⽤三函表⽰出相关线的长度,度⼀般.17.【答案】解:过C点作FG⊥AB于F,交DE于G.∵CD与地⾯DE的夹⾓∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD?∠ACD=∠CGD+∠CDE?∠ACD=90°+12°?80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC?sin∠CAF≈0.744m,在Rt△CDG中,CG=CD?sin∠CDE≈0.42m,∴?=0.42+0.74=1.156≈1.2(⽶),答:⼿柄的⼀端A离地的⾼度h约为1.2m.【解析】过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据三⾓函数可求CF,在Rt△CDG中,根据三⾓函数可求CG,再根据FG=FC+CG即可求解.此题考查了解直⾓三⾓形的应⽤,主要是三⾓函数的基本概念及运算,关键是⽤数学知识解决实际问题.18.【答案】解:设秋千链⼦的上端固定于A处,秋千踏板摆动到最⾼位置时踏板位于B处.过点A,B的铅垂线分别为AD,BE,点D,E在地⾯上,过B作BC⊥AD于点C.在Rt△ABC中,AB=3,∠CAB=53°,∵cos53°=ACAB,∴AC=3cos53°≈3×0.6=1.8(m),∴CD≈3+0.5?1.8=1.7(m),∴BE=CD≈1.7(m),答:秋千摆动时踏板与地⾯的最⼤距离约为1.7m.【解析】在△ABC中,BC⊥AC,AB=3,∠CAB=53°,故有AC=3cos53°≈3×0.6=1.8,CD≈3+0.5?1.8=1.7,即BE=CD=1.7m.本题考查了解直⾓三⾓形的应⽤.解此题的关键是把实际问题转化为数学问题,只要把实际问题抽象到解直⾓三⾓形中,利⽤三⾓函数即可解答.19.【答案】解:∵坡度i=12,C=4m,∵GH=∠BSH,∠DHG∠BS,∴x2(2)2=52,∴GH=1,∴GHGD=12,∴BC=4×2=.∴D=√12+22=√5mBH=BF+FH=3.5+2.?)5m,作DSBC,⾜为S,且与B相交H.∴x=√5m,∴D=√5+√5=2√5≈4.5m.【解析】根据坡定直接解答即可;作⊥垂⾜为S,且与AB相交于H.证出∠DH=∠SB,根据GHGD=12得到H=1m,利⽤股理求出H的长,然后求出BH=5进求出HS然后得到DS.本题查了解直⾓三⾓形的应⽤?坡坡题,熟悉度坡的定和勾股定是解题的关键.20.【答案】解:在直⾓△AD中,∵∠AD=90,∠BAD=30°AB0m,在直⾓△CEB中∵CB=90,∠E=42°,CB=200,∴CE=BC?in4≈200×0.67134,∴DCE≈10+134=23m.答缆车从点A⾏到点的垂直上升的距离约为3m.【解析】要求缆车从点A运⾏到点C垂直升的距是求BD+CE的值直⾓△B,利⽤30°⾓所对的直⾓边斜边的⼀出BD=12A100m,解直CEB,据正弦函数的定义可得EBC?sn42°.考查了直⾓三⾓形应⽤?坡度⾓问题锐⾓数的定义,结合形理解题意是解决问题的关键.21.【答案】解:如图,过点作C⊥AB交于点D.∵=AD?BD=4,在Rt△BDC中,tn6=CDBD,AD=CDta30°=√3,∴B=CDtan0°=CD√3,在t△ADC中,an0°=CDAD,∴C=2√3≈3.5().∵探测与⾯的夹⾓30°和60,答:命所在点的度⼤约为.5⽶.【解析】过点CD⊥ABAB于D,则∠CAD=30°,∠CBD=0°,在R△BD,C=√3BD,在RtAD,AD=√3D 然后根据AB=D?BD4,即可得的⽅程,解⽅程即可.本考查直⾓三⾓形的应,度适,解答本题关键构直⾓三形,解直⾓三⾓,也考查了实际问题转化为数学问题的能⼒.22.【答案】解:图所⽰:A点C点,B点转到D点,启动⼀次刮⾬,杆AB正到⽔平CD的位置,答:⾬刮杆AB旋转最⼤⾓度180°,O、B两之间的距离约为0c;∴△BO≌DCO,SBO=S△DCO,∴∠EA=3°,∴O=√532+(5√3)2=√284=2√721≈5.0(cm);∴O=√102?52=5√3(cm,∴EB8+5=53(m),π(OB2?O2)1392cm2).∴⾬刮杆AB扫过最⾯积=12∵AB长为cm,∴∠AE=0°,∵∠OAB20°,A=5cm),∴E=12答:杆AB扫过的最⼤⾯为139πm2.【解析】根据平⾏线的性得出刮AB转的最⼤⾓度,再利⽤锐⾓函数关和勾定出EO,AE,O的长即可;⾬刮杆AB扫过的⼤⾯即以BO为半径的圆,进⽽得答案即可.此题主要考查解直⾓三⾓形⽤勾股定理和形⾯积求法勾股定等,利⽤平线的性得出旋转的最⼤⾓是解题关键.1、⽼吾⽼以及⼈之⽼,幼吾幼以及⼈之幼。
(考试真题)第23章 解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)
(考试真题)第23章解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、在△ABC中,已知AC=5,且+ ﹣=0,则BC+AB=()A.6B.7C.8D.92、在Rt△ABC中,∠C=90°,若cosB=,则sinB的值得是()A. B. C. D.3、计算:的值为()A. B. C. D.4、已知sinα= ,求α,若用计算器计算且结果为“30”,最后按键()A. AC10 NB. SHIETC. MODED. SHIFT5、在△ABC中,若三边BC、CA、AB满足 BC∶CA∶AB=5∶12∶13,则cosB=()A. B. C. D.6、若α是锐角,sinα=cos50°,则α的值为( )A.20°B.30°C.40°D.50°7、3tan60°的值为()A. B. C. D.38、已知90°<∠A<180°,90°<∠B<180°,甲、乙、丙、丁四个同学计算的结果依次为28°、48°、60°、88°,其中只有一个同学计算结果是正确的,那么计算正确的同学是()A.甲B.乙C.丙D.丁9、如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是()A.20海里B.40海里C. 海里D. 海里10、在等腰直角三角形ABC中,∠C=90°,则sinA等于()A. B. C. D.111、如图,正六边形的边长是1cm,则线段AB和CD之间的距离为()A.2 cmB. cmC. cmD.1cm12、已知AB和CD分别是半圆O的直径和弦,AD和BC的夹角为a,则S△CDE: S△ABE等于()A.Sin 2aB.cos 2aC.tan 2aD.sina13、的值等于()A. B. C. D.14、tan30°的值为()A. B. C. D.15、如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为3cm,则圆心O 到弦CD的距离为()A. cmB.3cmC.2 cmD.9cm二、填空题(共10题,共计30分)16、在Rt△ABC中,∠C=90°,cosA=, AC=2,那么BC=________.17、如图,在△ABC中,∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,分别交AB,AC于点D,E,若BC=2 ,则DE=________.18、如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i =1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0364)________.19、如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是________.20、如图,在直角坐标系中,四边形OABC是直角梯形,BC∥OA,⊙P分别与OA、OC、BC 相切于点E、D、B,与AB交于点F.已知A(2,0),B(1,2),则tan∠FDE=________.21、在Rt△ABC中,∠C=90°,sinA= ,AB= ,则AC=________.22、在平面直角坐标系中,点A、B的坐标分别为( 2,0 ),(4,0),点C的坐标为(m,m)(m为非负数),则CA+CB的最小值是________23、已知中,,,,则的长等于________24、已知为一锐角,化简:________ .25、如图,△ABC是等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F.若BC=2,则DE+DF=________.三、解答题(共5题,共计25分)26、sin45°﹣cos45°+tan60°﹣30.27、如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20 海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:≈1.41,≈1.73)28、计算:|2- |+(-2016)0+2cos30°+()-1.29、如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(结果保留整数,参考值:≈1.732)30、如图,在河对岸有一棵大树A,在河岸B点测得A在北偏东60°方向上,向东前进120m到达C点,测得A在北偏东30°方向上,求河的宽度(精确到0.1m).参考数据:≈1.414,≈1.732.参考答案一、单选题(共15题,共计45分)1、B2、A3、C4、D5、C6、C7、D8、B9、D11、B12、B13、A14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、。
沪科版九年级数学上册试题 第23章《解直角三角形》章节测试卷(含解析)
第23章《解直角三角形》章节测试卷一.选择题(共9小题,满分27分,每小题3分)1.在△ABC 中,∠A 、∠B 都是锐角,且sinA =32,cosB =12,则△ABC 是( ).A .等腰三角形B .等边三角形C .直角三角形D .钝角三角形2.直角三角形纸片ABC ,两直角边BC =4,AC =8,现将△ABC 纸片按如图那样折叠,使A 与电B 重合,折痕为DE ,则tan ∠CBE 的值是( )A .12B .34C .1D .433.如图,△ABC 的顶点分别在单位长度为1的正方形网格的格点上,则sin ∠BAC 的值为( )A .5B .55C .12D .2534.如图,在△ABC 中,∠C =90°,点D 、E 分别在BC 、AC 上,AD 、BE 交于F ,若BD=CD =CE ,AF =DF ,则tan ∠ABC 的值为( )A .12B .23C .34D .455.一块直角三角板ABC 按如图放置,顶点A 的坐标为(0,1),直角顶点C 的坐标为(−3,0),∠B =30°,则点B 的坐标为( )A. (−3−33,33)B .(−3+3,3)C .(−3+33,33)D .(−3−3,33)6.在Rt △ABC 中,∠A =90°,有一个锐角为60°,BC =6,若点P 在直线AC 上(不与点A 、C 重合),且∠ABP =30°,则CP 的长为( )A .6或23B .6或43C .23或43D .6或23或437.如图,延长等腰Rt ΔABC 斜边AB 到D ,使BD =2AB ,连接CD ,则tan ∠BCD 的值为( )A .23B .1C .13D .128.如图,在△ABC 中,∠ACB =90∘,分别以AB ,AC ,BC 为边向外作正方形,连结CD ,若sin∠BCD=35,则tan ∠CDB 的值为( )A .23B .34C .710D .9139.如图1是由四个全等的直角三角形组成的“风车”图案,其中∠AOB =90°,延长直角三角形的斜边恰好交于另一直角三角形的斜边中点,得到如图2,若IJ =2,则该“风车”的面积为( )A .2+1B .22C .4−2D .42二.填空题(共6小题,满分18分,每小题3分)10.如图,在Rt △ABC 中,∠C =90°,点D ,E 分别在AC ,BC 边上,且AD =3,BE =4,连接AE ,BD ,交于点F ,BD=10,cos ∠AFD=32,则AE 的长为 .11.如图,在菱形ABCD 中,tan ∠ABC =43,AE ⊥BC 于点E ,AE 的延长线与DC 的延长线交于点F ,则S △ECF :S 四边形ADCE = .(S 表示面积)12.如图,在矩形ABCD中,AB=3,AD=4,E是对角线BD上一动点(点E不与点B,D重合),当△ABE是等腰三角形时,DE=.13.如图,已知点P是菱形ABCD的对角线AC延长线上一点,过点P分别作AD,DC延长线的垂线,垂足分别为点E,F.若∠ABC=120°,AB=6,则PE−PF的值为.14.如图,在正方形ABCD中,M,N分别是AB,CD的中点,P是线段MN上的一点,BP的延长线交4D 于点E,连接PD,PC,将△DEP绕点P顺时针旋转90°得△GFP,则下列结论:①CP=GP,②tan∠CGF=1;③BC垂直平分FG;④若AB=4,点E在AD边上运动,则D,F两点之间距离的2.其中结论正确的序号有.最小值是3215.如图,△A B1A1,△A1B2A2,△A2B3A3,…是等边三角形,直线y=33x+2经过它们的顶点A,A1,A2,A3,…,点B1,B2,B3,…在x轴上,则线段B2022B2023的长度是.16.如图,E、F、G、H分别是矩形的边AB、BC、CD、AD上的点,AH=CF,AE=CG,∠EHF=60°,∠GHF=45°,若AH=2,AD=5+3,则四边形EFGH的周长为.三.解答题(共7小题,满分52分)17.(6分)计算:(1)2sin60°−tan45°2−tan30°⋅tan60°−2cos30°+6sin245°. (2)(π−1)0+4sin45°−8+|−3|.18.(6分)如图,在△ABC中,AD⊥BC于点D,若AD=6,BC=12,tan∠ACD=32.求:(1)CD的长;(2)sin∠ABC的值.19.(8分)(2023春·河南南阳·九年级统考期中)如图,已知点A(7,8)、C(0,6),AB⊥x轴,垂足为点B,点D在线段OB上,DE∥AC,交AB于点E,EF∥CD,交AC于点F.(1)求经过A、C两点的直线的表达式;(2)设OD=t,BE=s,求s与t的函数关系式;(3)是否存在点D,使四边形CDEF为矩形?若存在,请直接写出点D的坐标;若不存在,请说明理由.20.(8分)(1)在如图1的正方形网格图中,每个小正方形的边长为1,A,B,C,D均为格点(小正方形的顶点).求证:∠ABC=∠D.(2)在如图2所示的正方形网格图中,每个小正方形的边长为1,A,B,C均为格点,请你仅用无刻度的直尺在线段AC上求作一点P,使得∠PBA=∠C,并简要说明理由.21.(9分)如图,小明为测量宣传牌AB的高度,他站在距离建筑楼底部E处6米远的地面C处,测得宣传牌的底部B的仰角为60°.同时测得建筑楼窗户D处的仰角为30°(A、B、D、E在同一直线上.)然后,小明沿坡度为i=1:2.5的斜坡从C走到F处,此时DF正好与地面CE平行,小明在F处又测得宣传牌顶部A的仰角为45°.(1)填空:∠DAF=__________度,∠BDC=__________度;(2)求F距离地面CE的高度(结果保留根号);(3)求宣传牌AB的高度(结果保留根号).22.(9分)我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad),如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=底边腰=BCAB.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad90°=________.(2)对于0°<A<180°,∠A的正对值sadA的取值范围是________.(3)如图②,已知sinA=35,其中∠A为锐角,试求sadA的值.23.(9分)已知:△ABC 中,AB =AC ,D 为直线BC 上一点.(1)如图1,BH ⊥AD 于点H ,若AD =BD ,求证:BC =2AH .(2)如图2,∠BAC =120°,点D 在CB 延长线上,点E 在BC 上且∠DAE=120°,若AB =6,DB=23,求CE 的值.(3)如图3,D 在CB 延长线上,E 为AB 上一点,且满足:∠BAD=∠BCE ,AE BE=23,若tan ∠ABC =34,BD =5,求BC 的长.答案解析一.选择题1.B【分析】根据特殊角的三角函数值求出∠A=60°,∠B=60°,然后利用三角形内角和定理求出∠C的度数,即可解答.【详解】解:∵sinA=32,cosB=12,∴∠A=60°,∠B=60°,∴∠C=180°−∠A−∠B=60°,∴△ABC是等边三角形,故选:B.2.B【分析】根据折叠的性质得出BE=AE,设CE=x,则BE=AE=8−x,在Rt△BCE中,根据勾股定理得出B C2+C E2=B E2,列出方程求出x的值,最后根据正切的定义,即可解答.【详解】解:∵△ADE沿DE折叠得到△BDE,∴BE=AE,设CE=x,则BE=AE=8−x,在Rt△BCE中,根据勾股定理可得:B C2+C E2=B E2,即42+x2=(8−x)2,解得:x=3,∴tan∠CBE=CEBC =34,故选:B.3.B【分析】过B作BD⊥AC于点D,根据勾股定理得出AB,AC的值,再利用面积公式求出BD的值,由sin∠BAC=BDBA可得角的正弦值.【详解】解:如图,过B作BD⊥AC于点D根据勾股定理得:AB =32+42=5,AC =32+62=35∴S ΔABC =12AC ⋅BD =4×6−12×3×1−12×3×4−12×6×3=152, ∴BD =5∴sin ∠CAB=BD AB =55故选:B .4.C 【分析】如图,过A 作AG ∥BC ,交BE 的延长线于G ,证明△AGF ≌△DBF (AAS ),则AG =BD =12BC ,证明△AEG ∽△CEB ,则AE CE =AG BC =12,解得AE =12CE ,AC =32CE ,根据tan ∠ABC =ACBC,计算求解即可.【详解】解:如图,过A 作AG ∥BC ,交BE 的延长线于G ,∴∠G =∠DBF ,在△AGF 和△DBF 中,∵{∠G =∠DBF∠AFG =∠DFB AF =DF,∴△AGF ≌△DBF (AAS ),∴AG =BD =12BC ,∵∠G =∠CBE ,∠AEG =∠CEB ,∴△AEG ∽△CEB ,∴AE CE =AG BC=12,解得AE =12CE ,∴AC =32CE ,∴tan ∠ABC=AC BC =32CE 2CE =34,故选:C .5.D【分析】过点B 作BE ⊥OC 于点E ,根据ΔABC 为直角三角形可证明ΔBCE ∽ΔCAO ,求出AC =10,求出BC ,再由比例线段可求出BE ,CE 长,则答案可求出.【详解】解:过点B 作BE ⊥OC 于点E ,∵△ABC 为直角三角形,∴∠BCE +∠ACO =90°,∴ΔBCE ∽ΔCAO ,∴ BE OC =BC AC =EC OA ,在Rt △ACO 中,AC =A O 2+C O 2=12+32=10,在Rt △ABC 中,∠CBA=30°,∴ tan ∠CBA=CA BC ,∴ BC =CA tan ∠CBA =10tan30°=30,∴ BE3=3010=EC1,解得BE =33,EC =3,∴ EO =EC +CO =3+3,∴点B 的坐标为(−3−3,33).故选:D .6.D【分析】根据点P在直线AC上的不同位置,∠ABP=30°,利用特殊角的三角函数进行求解.【详解】如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°−30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB=3cos30°=332=23如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BCcos30°=632=43故选:D7.A【分析】过点D作DE垂直于CB的延长线于点E,设AC=BC=a,根据勾股定理得AB=2a,由等腰直角三角形的性质得∠ABC=∠BAC=45°,从而得BD=2AB=22a,在Rt△BDE中,解直角三角形得DE=2a,BE=2a,进而求得CE=BC+BE=3a即可求得tan∠BCD.【详解】解:过点D作DE垂直于CB的延长线于点E,如下图,设AC=BC=a,∵AC⊥BC,AC=BC=a,∴AB=A C2+B C2=2a,∠ABC+∠BAC=90°,∠ABC=∠BAC,∴∠ABC=∠BAC=45°,BD=2AB=22a,∴∠DBE=∠ABC=45°,∵DE⊥CE,∴DE=BD·sin∠DBE=22a·sin45°=2a,BE=BD·cos∠DBE=22a·cos45°=2a,∴CE=BC+BE=3a,∴tan∠BCD=DECE =2a3a=23,故选:A.8.D【分析】过点B作BE⊥CD于点E,过点C作CF⊥AB于点F,可得△ABC,△BED,△BEC,△BCF都是直角三角形,根据sin∠BCE=BEBC =35,设BE=3a,BC=5 a,得CE=B C2−B E2=4 a,过点C作DB延长线于点G,得矩形CFBG,设AC=x,AB=y,然后利用勾股定理和三角形的面积可得y2−9=133,进而利用锐角三角函数即可解决问题.【详解】解:如图,过点B作BE⊥CD于点E,过点C作CF⊥AB于点F,∴△ABC,△BED,△BEC,△BCF都是直角三角形,∵sin∠BCD=35,∴sin∠BCE=BEBC =35,设BE=3a,BC=5a,∴CE=B C2−B E2=4a,过点C作DB延长线于点G,得矩形CFBG,∴BF=CG,设AC=x,AB=y,在Rt△ABC中,根据勾股定理,得AB2﹣AC2=BC2,∴y2﹣x2=25a2,∵S△ABC=12×AB•CF=12×AC•BC,∴y•CF=5ax,∴CF=5axy,在Rt△BCF中,根据勾股定理,得BF=B C2−C F2=25a2−(5axy )2=25ya,∴BF=CG=25ya,在正方形ABDH中,AB=BD=y,在Rt△BDE中,根据勾股定理,得DE=B D2−B E2=y2−9a2,∴CD=CE+ED=4a +y2−9a2,∵S△CBD=12×CD•BE=12×BD•CG,∴CD•BE=BD•CG,∴(4a +y2−9a2)×3=y×25ya,∴y2−9a2=133a,∴tan∠CDB=tan∠EDB=BEDE =3ay2−9a2=913.故选:D.9.B【分析】连接AC,由题意可得Rt△AOB≌Rt△DCO≌Rt△EOF≌Rt△GOH,进而说明△OAC为等腰直角三角形,再说明分CD、GI垂直平分AB,进而说明∠OBH=∠OHB=45°,然后再运用解直角三角形求得AI,然后再求得三角形AOB的面积,最后求风车面积即可.【详解】解:如图:连接AC由题意可得:Rt△AOB≌Rt△DCO≌Rt△EOF≌Rt△GOH∴OA=OC, ∠OAB= ∠OCD∵∠AOC=∠AOB=90°∴△OAC为等腰直角三角形又∵∠OAB= ∠OCD:∴∠AJD=180°-∠ADJ-∠OAB=180°-∠ODC-∠OCD=90°,即AJ⊥CD又∵CJ=DJ∴AJ垂直平分CD同理:GI垂直平分AB∴AC=AD,AJ是等腰三角形顶角∠CAD的角平分线即∠DAJ=12∠CAD=12×45°=22.5°易得IH=BJ,IJ=IB+BJ=IB+IH 又∵IB=IA∴IJ=IB+BJ=IH+IA= 2在Rt△ABO中,∠ABH=∠BAH=22.5°∴∠OBH=OHB=45°设OB=OH=a,即AH=BH=2OB=2a∴tan∠A=BOAO =aa+2a=2−1∴IHIA=tan∠A=2−1设IH=(2−1)x,AI=x ∴IH+IA=2x=2,即x=1∴S△ABH =12×AB×IH=2−1又∵SΔBOHSΔABH =OHAH=12∴S△BOH =1−22∴S△AOB =S△ABH+S△BOH=2−1+1−22=22∴S风车=4S△AOB=4×22=22.故选B.二.填空题10.53【分析】过点A作AG∥BE,BG∥AE交于点G,连接DG,勾股定理求得DG,过点D作DH⊥BG,证明G,H重合,进而勾股定理即可求解.【详解】解:如图所示,过点A作AG∥BE,BG∥AE交于点G,连接DG,则四边形AGBE是平行四边形,∴AG=BE=4,∵∠C=90°,则BC⊥AC∴AG⊥AC∴△ADG是直角三角形,∴DG=5∵cos∠AFD=32∴∠AFD=30°∵AE∥BG∴∠DBG=30°∵DG=5,DB=10过点D作DH⊥BG,∵sin∠DBG=12∴DH=12DB=5,∴G,H重合,∴AE=BG=BH=53故答案为:53.11.4:21【分析】设AE=4k,则BE=3k,根据勾股定理求出AB=5k,然后证明△CEF∽△DAF,最后根据相似三角形的性质求解即可.【详解】解∶∵tan∠ABC=43,AE⊥BC,∴tan∠ABC=43=AEBE,设AE=4k,则BE=3k,∴AB =A E 2+B E 2=5k ,∵四边形ABCD 是菱形,∴CB ∥AD ,AD =BC =AB =5k ,∴CE =BC −BE =2k ,∵CB ∥AD ,∴△CEF ∽△DAF ,∴S △CEF S△DAF =(CE DA )2=(2k 5k )2=425,∴S △CEFS 四边形ADCE =S △CEF S △DAF −S △CEF =425−4=421.故答案为:4:21.12.2或52或75【分析】分AB =AE,BE =BA,EA =EB 三种情况,分别画出图形,即可求解.【详解】解:在矩形ABCD 中,AB =3,AD =4,∴∠BAD=90°,∴BD =A B 2+A D 2=32+42=5,当AB =AE 时,过点A 作AF ⊥AD 于点F ,则AF ⊥BD ,∴cos ∠ABD=AB BD =BF AB ,∴BF =AB 2BD =95∴DE =BD −BE =BD −2BF =5−185=75,当BA =BE 时,DE =BD −BE =5−3=2,当EA =EB 时,过点E 作EG ⊥AB 于点G ,∴EG ∥AD ,AG =GB ,∴BE ED=BG AG =1,∴DE =12BD=52,综上所述DE = 2或52或75,故答案为:2或52或75.13.33【分析】如图,延长BC 交EP 于M ,由菱形的性质可知,CP 为∠BCD ,∠FCM 的平分线,则PF =PM ,PE −PF =PE −PM =EM ,由题意知,EM 为△ABD 底边AD 上的高,由菱形ABCD ,∠ABC=120°,AB =6,可得∠BAD=60°,根据EM=AB ⋅sin ∠BAD ,计算求解,进而可得结果.【详解】解:如图,延长BC 交EP 于M ,由菱形的性质可知,CP为∠BCD,∠FCM的平分线,∵PF⊥CF,PM⊥CM,∴PF=PM,∴PE−PF=PE−PM=EM,由题意知,EM为△ABD底边AD上的高,∵菱形ABCD,∠ABC=120°,AB=6,∴∠BAD=60°,∴EM=AB⋅sin∠BAD=33,∴PE−PF=33,故答案为:33.14.①②③【分析】延长GF交AD于点H,连接FC,FB,FA,由已知可得MN为AB,CD的垂直平分线,由垂直平分线的性质和图形旋转的性质可得①的结论正确;利用三角形的内角和定理和等腰三角形的性质计算可得∠BCG=45°,由四边形内角和定理通过计算可得∠EHF=90°;利用平行线的性质可得BC⊥FG,则∠CGF=45°,可说明②的结论正确;通过证明点A,B,E,F在以点P为圆心,PA为半径的同一个圆上,利用圆周角定理可得∠FAB=45°,得到A,F,C三点共线,得到△CGF为等腰直角三角形,则③的结论正确;由题意点F在对角线AC上运动,当EF⊥AC时,EF的值最小,连接AC,解直角三角形的知识可得④的结论不正确.【详解】解:延长GF交AD于点H,连接FC,FB,FA,如图,∵正方形ABCD中,M,N分别是AB,CD的中点,∴MN是线段BA,CD的垂直平分线.∴PD=PC,PA=PB.∵△FPG是△PED绕点P顺时针旋转90°得到,∴△FPG≌△PED,∴PD=PG.∴PC=PG.∴①的结论正确;∵PD=PC,∴∠PDC=∠PCD=1(180°−∠DPC).2∵PC=PG,∴∠PCG=∠PGC=1(180°−∠CPG).2∴∠PCD+∠PCG=1[360°−(∠DPC+∠CPG)].2∵∠DPC+∠CPG=90°,∴∠PCD+∠PCG=135°.∵∠BCD=90°,∴∠BCG=45°.∵△FPG≌△PED,∴∠DEP=∠GFP.∵∠HFP+∠PFG=180°,∴∠DEP+∠HFP=180°.∵∠DEP+∠HFP+∠EHF+∠EPF=360°,∴∠EHF+∠EPF=180°.∴∠EPF=90°,∴∠EHF=90°.即GH⊥AD.∵AD//BC,∴GF⊥BC.∴∠CGF=45°.∴tan∠CGF=1.∴②的结论正确;∵PA=PB,PM⊥AB,∴∠APM=∠BPM,∵PM//AE,∴∠PEA=∠BPM,∠PAE=APM.∴∠PEA=∠PAE.∴PA=PE.∵PE=PF,∴PA=PB=PE=PF.∴点A,B,E,F在以点P为圆心,PA为半径的同一个圆上.∴∠FAB=12∠FPB=12×90°=45°.∴点F在对角线AC上,∴∠FCB=45°.∵∠BCG=∠CGF=45°,∴△FCG为等腰直角三角形.∵BC平分∠FCG,∴BC垂直平分FG.∴③的结论正确;由以上可知:点F在正方形的对角线AC上运动,∴当EF⊥AC时,EF的值最小.此时点E与点D重合,∴DF=AD⋅sin45°=4×22=22.∴④的结论不正确.综上,结论正确的序号有:①②③,故答案为:①②③.15.220233【分析】设直线y=33x+2与x轴交于点C,求出点A、C的坐标,可得OA=2,OC=23,推出∠C B1A1=90°,∠C B1A=30°,然后求出C B1=2O B1=43=22×3,C B2=2C B1=83=23×3,C B3=2C B2=163=24×3,…,进而可得C B2022=22023×3,C B2023=22024×3,再求出B2022B2023即可.【详解】解:如图所示,设直线y =33x +2与x 轴交于点C ,当x =0时,y =2;当y =0时,x =−23,∴ A (0,2),C (−23,0),∴ OA=2,OC =23,∴ tan ∠ACO =OA OC=223=33,∴ ∠ACO=30°,∵ △A B 1A 1是等边三角形,∴ ∠A A 1B 1=∠A B 1A 1=60°,∴ ∠C B 1A 1=90°,∠C B 1A =30°,∴ AC =A B 1,∵ AO⊥C B 1,∴ O B 1=OC =23,∴ C B 1=2O B 1=43=22×3,同理,C B 2=2C B 1=83=23×3,C B 3=2C B 2=163=24×3,……,∴ C B 2022=22023×3,C B 2023=22024×3,∴ B 2022B 2023=22024×3−22023×3=220233,故答案为:220233.16.8+46【分析】先构造15° 的直角三角形,求得15° 的余弦和正切值;作EK ⊥FH ,可求得EH:EF =2:6;作∠ARH=∠BFT =15°,分别交直线AB 于R 和T ,构造“一线三等角”,先求得FT 的长,进而根据相似三角形求得ER ,进而求得AE ,于是得出∠AEH =30°,进一步求得结果.【详解】解:如图1,Rt △PMN 中,∠P =15°,NQ =PQ ,∠MQN =30°,设MN=1,则PQ =NQ =2,MQ=3,PN =6+2,∴cos15°=6+24,tan15°=2−3,如图2,作EK ⊥FH 于K ,作∠AHR =∠BFT =15°,分别交直线AB 于R 和T ,∵四边形ABCD 是矩形,∴∠A =∠C ,在△AEH 与△CGF 中,{AE =CG ∠A =∠C AH =CF,∴△AEH ≌△CGF(SAS),∴EH =GF ,同理证得△EBF ≌△GDH ,则EF =GH ,∴四边形EFGH 是平行四边形,设HK=a ,则EH=2a ,EK =3a ,∴EF =2EK =6a ,∵∠EAH =∠EBF =90°,∴∠R=∠T =75°,∴∠R=∠T=∠HEF=75°,可得:FT=BFcos15°=3+36+24=26,AR=AH⋅tan15°=4−23,△FTE∽△ERH,∴FTER =EFEH,∴26ER =62,∴ER=4,∴AE=ER−AR=23,∴tan∠AEH=223=33,∴∠AEH=30°,∴HG=2AH=4,∵∠BEF=180°−∠AEH−∠HEF=75°,∴∠BEF=∠T,∴EF=FT=26,∴EH+EF=4+26=2(2+6),∴2(EH+EF)=4(2+6),∴四边形EFGH的周长为:8+46,故答案为:8+46.三.解答题17.(1)原式=2×32−12−33×3−2×32+6×(22)2=3−12−1−3+6×12=3−1−3+3=2.(2)原式=1+4×22−22+3 =1+22−22+3=4.18.(1)解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ADC中,tan∠ACD=ADCD =32,AD=6,∴CD=4;(2)解:由(2)得CD=4,∴BD=BC−CD=8,∴AB=A D2+B D2=10,在Rt△ABD中,sin∠ABD=ADAB =35,即sin∠ABC=35.19.解:(1)设直线AC的表达式为y=kx+b 将点A、C的坐标代入,得得:{7k+b=8b=6,解得:{k=27b=6,故直线AC的表达式为:y=27x+6;(2)∵OD=t,BE=s,AB⊥x轴∴则点D(t,0),点E(7,s)∵DE∥AC可设直线DE的解析式为y=27x+c将点D的坐标代入0=27t+c解得:c=﹣27t∴直线的表达式为:y=27x﹣27t,将点E的坐标代入,得s=2﹣27t(根据点D在线段OB上,可得0<t<7);(3)存在,理由:设点D(t,0),由(2)BE=2﹣27t,四边形CDEF为矩形,则∠CDE=90°,∵∠EDB +∠CDO =90°,∠CDO +∠OCD =90°,∴∠OCD =∠BDE ,∴tan ∠OCD =tan ∠BDE ,∴ODOC =BE BD即t 6=2−27t 7−t,解得:t =127或7(因为0<t <7,故舍去7),故点D 的坐标为(127,0).20.(1)如图所示,取格点E ,F ,连接BF,AF ,AE,CE ,∵BF =12+12=2,DF =32+32=32,∴tan ∠D =BF DF=232=13,∵CE =1,BE =3,∴tan ∠ABC=CE BE=13,∴tan ∠D =tan ∠ABC ,∴∠ABC=∠D ;(2)解:如图,取格点D ,E ,同理(1)可得,在Rt△AEC中,tan∠ACE=1,2,在Rt△ABD中,tan∠ABD=12∴tan∠ACE=tan∠ABD,∴∠ACE=∠ABD,直线BD与AC的交点为所求的点P.21.(1)解:由题意,得AD⊥DF,∴∠ADF=90°∴∠DAF=90°−∠AFD=90°−45°=45°,由题意,得FD∥CE,∴∠CDF=∠ECD=30°∴∠BDC=∠ADF+∠CDF=90°+30°=120°.(2)解:如图,过点F作FG⊥EC于G,由题意得,FG∥DE,DF∥GE,∠FGE=90°,∴四边形DEGF是矩形.∴FG=DE.在Rt △CDE 中,DE =CE ⋅tan ∠DCE=6×tan30°=23(米),∴FG =23(米).答:F 距离地面CE 的高度为23米;(3)解:∵斜坡CF 的坡度为i =1:2.5,∴Rt △CFG 中,CG = 2.5FG =23× 2.5=53(米),∴FD =EG =(53+6)(米).∴在Rt △AFD 中,∠AFD=45°,∴AD =FD =(53+6)米.在Rt △BCE 中,BE =CE ⋅tan ∠BCE =6×tan60°=63(米),∴AB =AD +DE −BE =53+6+23−63=(6+3)(米).答:宣传牌AB 的高度约为(6+3)米.22.(1)解:如图,∠BAC=90°,AB =AC ,sad90°=BC AB ,∵cos45°=AB BC=22,∴sad90°=BCAB = 2.(2)解:如图,点A 在BC 的中垂线上,当点A 向BC 靠近时,∠A 增大,逐渐接近180°,腰长AB 接近12BC ,AB >12BC 相应的sadA =BC AB <2;当点A 远离BC 时,∠A 减小,逐渐接近0°,腰长AB 逐渐增大,相应的sadA =BCAB 逐渐接近0,sad A =BCAB >0;∴0<sadA <2(3)解:如图,在AB 上截取AH=AC ,过H 作HD ⊥AC 于D ,sinA =35=DH AH ,设HD =3x,AH =AC =5x ,则,AD =A H 2−H D 2=4x ,∴DC =AC −AD =5x −4x =x .Rt △HDC 中,HC =C D 2+H D 2=10x ,∴sadA =CH AH =10x 5x =105.23.(1)解:证明:如图1,过点A 作AN ⊥BC 于N ,∵AB =AC ,∴BN =12BC ,∵AD =BD ,∴∠ABD =∠BAD ,在△ABN 和△BAH 中,{∠ANB=∠BHA=90°∠ABD=∠DABAB=BA,∴△ABN≌△BAH(AAS),∴BN=AH,∴12BC=AH,∴BC=2AH;(2)如图2,在AC上取一点F,使EF=EC,连接EF,∵∠BAC=∠DAE=120°,∴∠DAB=∠EAC,∵AB=AC,∴∠ABE=∠C=∠CFE=30°,∴∠ABD=∠AFE=150°,∴△ABD∽△AFE,∴ABAF =BDEF,即6AF=23EF,∴AFEF=3,设EF=a,则AF=3a,∵EF=CE=a,∠C=30°,∴CF=2EF·cos30°=3a,∴6−3a=3a,∴a=3,∴CE=EF=3;(3)如图3,过点A作AP⊥BC于P,作AG∥CE交BC的延长线于G,设AE=2m,BE=3m,则AB=AC=5m,∵tan∠ABC=34=AP BP ,∴ BP AB =45,∴BP =CP =4m ,BC =8m ,∵∠BAD =∠BCE =∠G ,∠ABD =∠GCA ,∴△ABD ∽△GCA ,∴ CG AB =AC BD ,即CG 5m =5m 5,∴CG =5m 2,∵AG ∥CE ,∴ BE AE =BC CG ,∴ 3m 2m =8m5m 2,∴m =1615,∴BC =8m =12815.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪科版九年级数学上册《解直角三角形》单元检测试卷专项练习及答案解析一、选择题1、在△ABC中,∠C=90°,,那么∠B的度数为()A.60°B.45°C.30°D.30°或60°2、如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B.C.D.3、在Rt△ABC中,∠C=90°,AB=13,AC=12,则cosA=()A.B.C.D.4、在△ABC中,∠A,∠B都是锐角,且sinA=,cosB=,则△ABC的形状是A.直角三角形B.钝角三角形C.锐角三角形D.不能确定5、计算sin30°·cos60°的结果是()A.B.C.D.6、如图,在距离铁轨200米的B处,观察“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1)C.200 D.300(第6题图)(第7题图)(第8题图)7、菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=,则点B的坐标为( )A.(,1) B.(1, ) C.(+1,1) D.(1,+1)8、如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i =1∶1.5,则坝底AD的长度为( )A.26米B.28米C.30米D.46米二、填空题9、如图,在正方形网格中,△ABC的顶点都在格点上,则cos∠ABC的值为__________.(第9题图)(第10题图)(第12题图)(第14题图)10、如图,已知AD是Rt△ABC斜边BC上的高,且AB=6,BC=10.则AC= ______,sin a=____ 。
11、若tana=,则sina=___________________。
12、如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tanB=_____。
13、中,,,,则__________。
14、为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=12米,∠B=60°,加固后拦水坝的横断面为梯形ABED,tan E=,则CE的长为________米。
15、在△ABC中,∠A,∠B都是锐角,若sin A=,cos B=,则∠C=________。
16、如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD=________.三、计算题17、计算:18、计算:2cos30°﹣2sin45°+3tan60°+|1﹣|四、解答题19、先化简,再求值:( +)÷,其中a=(﹣1)2016+tan60°.20、如图,在Rt△ABC中,已知∠C=90°,sin B=,AC=8,D为线段BC上一点,CD=2. (1)求BD的值;(2)求cos∠DAC的值.21、如图,在Rt△ABC中,∠C=90°,∠ABC=75°,点D在AC上,DC=6,∠DBC=60°,求AD的长.22、如图,在△ABC中,∠A=30°,cosB=,AC=.求AB的长.23、如图,在△ABC中,AC=1,AB=2,∠BAC=60°,求BC的长.24、某中学九年级学生在学习“直角三角形的边角关系”时,组织开展测量物体高度的实践活动.要测量学校一幢教学楼AB的高度如图所示,他们先在点C测得教学楼的顶部A的仰角为36.2°,然后向教学楼前进10米到达点D,又测得点A的仰角为45°.请你根据这些数据,求出这幢教学楼AB的高度.(结果精确到1米)【参考数据:sin36.2°=0.59,cos36.2°=0.81,tan36.2°=0.73】参考答案1、C2、D3、C4、B5、A6、A7、C8、D9、.10、8 .11、12、13、6.14、8 15、60°16、17、.18、19、解:(1)原式.当a=(﹣1)2016+tan60°=时,原式.20、(1)BD="4;" (2)21、22、23、24、27.答案详细解析【解析】1、分析:根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可.详解:∵,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.2、解:∵由图可知,AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,且∠ACB=90°,∴cos∠ABC==.故选D.点睛:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.3、∵Rt△ABC中,∠C=90°,AB=13,AC=12,∴cosA= = .故选:C.4、试题分析:∵sinA=,∴∠A=30°,又∵cosB=,∴∠B=30°,所以∠C=180°-30°-30°=120°.故△ABC是钝角三角形.故选B.考点: 1.特殊角的三角函数值;2.三角形内角和定理.5、.故本题应选A.6、作BD⊥AC于点D,∵在Rt△ABD中,∠ABD=60°,∴AD=BD•tan∠ABD="200" (米),同理,CD=BD=200(米),则AC="200+200" (米),则平均速度是=20(+1)米/秒,故选A.7、试题解析:过点作轴于点,∵是菱形,∴点的坐标为:故选:C.8、∵坝高12米,斜坡AB的坡度i=1:1.5,∴AE=1.5BE=18米,∵BC=10米,∴AD=2AE+BC=2×18+10=46米,故选D.9、解:如图所示,作AD⊥BC,垂足为D,AD=3,BD=4,∴AB=5,∴cos∠ABC=,故答案为:.点睛:此题主要考查了锐角三角函数的定义以及勾股定理,根据题意得出cos∠ABC=是解决问题的关键.10、在Rt△ABC中,利用勾股定理可得出AC的长,根据射影定理可求出BD的长,进而求出CD可求出sina的值.解:在Rt△ABC中,AC==8;AB2=BD•BC,∴BD=3.6,CD=6.4,在Rt△ACD中,sin a==.11、试题解析:∵tanα=,∴cos2α===,∴sin2α=1-=,则sinα=±.12、试题解析:在中,是斜边上的中线,依据勾股定理可得,故答案为:点睛:在直角三角形中,斜边的中线等于斜边的一半.首先由这个性质得出斜边的长是这个题目解题的关键.由勾股定理得出这个直角三角形的另一条直角边,再依据锐角三角函数得出正切值.13、由三角函数的定义和勾股定理即可求得.解:∵,.又∵,∴.∵,∴.14、试题分析:分别过A、D作AF⊥BC于点F,DG⊥BC于点G.在Rt△ABF中,求得AF的值,又DG=AF求得DG.在Rt△CDG中,求出CG的长,再在Rt△DEG中,根据tan E=得到GE的长,根据CE=GE-CG即可求解.解:分别过A、D作AF⊥BC于点F,DG⊥BC于点G.在Rt△ABF中,AB=12米,∠B=60°,∴sin∠B=,∴AF=12×=6.易知四边形AFGD是矩形,∴DG=AF=6.在Rt△DGC中,CD=12,DG=6,∴GC==18.在Rt△DEG中,tan E==,∴EG=26,∴CE=GE-CG=26-18=8.故答案为8.15、∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°−∠A−∠B=180°−60°−60°=60°故答案为:60°.16、如图,延长AD、BC相交于点E,∵∠B=90°,∴,∴BE=,∴CE=BE-BC=2,AE=,∴,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,,∴CD=.17、试题分析:原式第一项化为最简二次根式,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用负指数幂法则计算即可得到结果.试题解析:原式=2﹣1+2×+=.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.18、分析:第一项利用30°角的余弦值计算,第二项利用45°角的正弦值计算,第三项利用60°角的正切值计算,第四项按照绝对值的意义化简,然后合并同类项或同类二次根式.详解:原式=2×﹣2×+3+﹣1=﹣+3+﹣1=4﹣1.点睛:本题考查了绝对值的意义和特殊角的三角函数值,熟记30°,45°,60°角的三角函数值是解答本题的关键.19、解:(1)原式.当a=(﹣1)2016+tan60°=时,原式.试题分析:本题考查了分式的化简求值.解答本题一是要根据分式混合运算顺序把所给式子化简,二是根据乘方的性质和特殊角的三角函数值把a的值化简,然后再代入求值.20、试题分析:(1) 由于已知线段CD的长,所以只要求得线段BC的长就容易得到线段BD的长. 已知的值以及线段AC的长,利用锐角三角函数的定义不难在Rt△ABC中得到线段AB的长,进而通过勾股定理求得线段BC的长.(2) 在Rt△ACD中,由于已知线段AC与CD的长,所以可以通过勾股定理得到线段AD的长. 通过锐角三角函数的定义,可以在Rt△ACD中求得的值.试题解析:(1) ∵在Rt△ABC中,,又∵AC=8,∴,∴AB=10,∴在Rt△ABC中,,∵CD=2,∴BD=BC-CD=6-2=4.(2) ∵AC=8,CD=2,∴在Rt△ACD中,,∴在Rt△ACD中,.点睛:本题考查了锐角三角函数与勾股定理的综合应用. 解决本题的关键在于能够在一个直角三角形中准确地利用锐角三角函数的定义写出相应边的比值. 另外,在解直角三角形的相关应用中,锐角三角函数常常与勾股定理综合应用,应该予以重视.21、试题分析:根据三角函数的定义和直角三角形的解法解答即可.试题解析:在Rt△DBC中,∴∠ABD=∠A,22、试题分析:过点C作CD⊥AB于点D,在Rt△ACD中先由已知条件求得AD和CD,再在Rt△BCD中求得BD即可求出AB.试题解析:过点C作CD⊥AB于点D,∴∠ADC="∠BDC=90°,"∴AD=cosA AC=,CD=sinA AC=,∵cosB==,∴可设BD=4m,BC=5m,则在Rt△BCD中由勾股定理可得CD=3m=,∴m=,∴BD=4m=,∴AB=AD+BD=9+.23、试题分析:过点作于点,在中,可以求出的长. 在中,可以用勾股定理求出的长.试题解析:过点作于点,如图所示.在中,在中,24、试题分析:首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB 及CD=BC﹣BD=10构造方程关系式,进而可解,即可求出答案.试题解析:设AB=x米,由题意:在Rt△ADB中,∠ADB=45°,∠ABD=90°,则DB=AB=x.在Rt△ACB中,∠ACB=36.2°,∠ABD=90°,CB=x+10,∴ tan∠ACB=tan36.2°==0.73,由=0.73,解得x≈27,答:教学楼高约为27米.点睛:本题考查仰角的定义,要求学生能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形.。