2018年考研数学二真题解析 (1)
2018年考研数学二试题及答案解析

一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每题给出的四个选项中,只有一个 选项是符合题目要求的
1
(1)若 lim(e ax bx) x 1 ,则( )
x 2
2
x 0
A. a
1 , b 1 2
B. a
1 , b 1 2
x
0
f (t )dt tf ( x t )dt ax 2
0
x
(II)若 f ( x) 在区间[0,1]上的平均值为 1,求 a 的值。 ( 17 ) 设 平 面 区 域 D 由 曲 线
x t sin t (0 t 2 )与x轴围成, 计算二重积分 y 1 cos t
(8).设 A , B 为 n 阶矩阵,记 r ( X ) 为矩阵 X 的秩, (X A. r ( A C. r ( A
Y ) 表示分块矩阵,则( )
AB) r ( A) B) max{r ( A), r ( B)}
B. r ( A D. r ( A
BA) r ( A)
B) r ( AT BT )
2
3 x cos t 在 t 对应点的曲率为 3 4 y sin t
(12)曲线
.
(13)设函数 z z ( x, y) 由方程 ln z e
z 1
xy 确定,则
z x (2, 1 )
2
.
(14)设 A 为 3 阶矩阵, 1 , 2 , 3 为线性无关的向量组,若 A1 21 2 3 ,
( x 2 y)dxdy
D
(18)已知常数 k ln 2 1 ,证明 ( x 1)( x ln x 2k ln x 1) 0
2018考研数学二真题解答

2018 年全国硕士研究生统一入学考试数学二试题
题号 1-8 9-14 15 16 17 18 19 20 21 22 23 总分 分数
评卷人 一、
得分 选择题(每题 4 分, 共 32 分)
1.
若
lim
(ex
+
ax2
+
)1 bx x2
= 1,则
x→0
1
1
A. a = , b = −1
B. a = − , b = −1
( [x′
(t)]2
+
[y′
(t)]2)3/2
=
2 .
3
13.
设函数 z
= x(x, y) 由方程 ln z + ez−1
= xy 确定, 则
∂z ∂x
|(2,
1 2
)
=
.
【解析】原方程两边对 x 求偏导数得 1 ∂z z ∂x
+ ez−1 ∂z ∂x
= y, 于是 ∂z ∂x
=
1 z
y , 当 x = 2, y + ez−1
1
+
C
=
2
(ex
−
3
1) 2
+
√ 2 ex
−
1
+
C
3
3
∫ 故
e2x
√ arctan ex
−
1dx
=
1 e2x 2
√ arctan ex
−
1
−
1 6
(ex
−
3
1) 2
−
1
√ ex
2
−
1
+
2018考研数学二真题及解析

2017年考研数学二真题一、选择题 1—8小题.每小题4分,共32分.1.若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则 (A )12ab =(B )12ab =- (C )0ab = (D )2ab = 【详解】0001112lim ()lim lim 2x x x xf x ax ax a +++→→→-===,0lim ()(0)x f x b f -→==,要使函数在0x =处连续,必须满足1122b ab a =⇒=.所以应该选(A )2.设二阶可导函数()f x 满足(1)(1)1f f =-=,(0)1f =-,且()0f x ''>,则( ) (A )11()0f x dx ->⎰(B )11()0f x dx -<⎰(C )11()()f x dx f x dx ->⎰⎰ (D )011()()f x dx f x dx -<⎰⎰【详解】注意到条件()0f x ''>,则知道曲线()f x 在[][]1,0,0,1-上都是凹的,根据凹凸性的定义,显然当[]1,0x ∈-时,()21f x x ≤--,当[]0,1x ∈时,()21f x x ≤-,而且两个式子的等号不是处处成立,否则不满足二阶可导.所以10111()(21)(21)0f x dx x dx x dx --<--+-=⎰⎰⎰.所以选择(B ).当然,如果在考场上,不用这么详细考虑,可以考虑代一个特殊函数2()21f x x =-,此时11011(),()33f x dx f x dx -=-=-⎰⎰,可判断出选项(A ),(C ),(D )都是错误的,当然选择(B ).希望同学们在复习基础知识的同时,掌握这种做选择题的技巧. 3.设数列{}n x 收敛,则(A )当limsin 0n n x →∞=时,lim 0n n x →∞= (B)当lim(0n n x →∞+=时,lim 0n n x →∞=(C )当2lim()0n n n x x →∞+=时,lim 0n n x →∞= (D )当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【详解】此题考核的是复合函数的极限运算法则,只有(D )是正确的. 其实此题注意,设lim n n x A →∞=,则22limsin sin ,lim(),lim(sin )sin n n n n n n n n n n x A x A x x A A x x A A →∞→∞→∞→∞==++=++=+分别解方程2sin 0,0,0,sin 0A A A A A A ==+=+=时,发现只有第四个方程sin 0A A +=有唯一解0A =,也就是得到lim 0n n x →∞=.4.微分方程2489(1cos 2)xy y e x '''-+=+的特解可设为*y =( ) (A )22(cos 2sin 2)xx Ae e B x C x ++ (B )22(cos 2sin 2)x x Axe xe B x C x ++ (C )22(cos 2sin 2)xx Aexe B x C x ++ (D )22(cos 2sin 2)x x Axe xe B x C x ++【详解】微分方程的特征方程为2480r r -+=,有一对共轭的复数根22r i =±.所以12λ=不是特征方程的根,所以对应方程2489xy y e '''-+=的特解应该设为21*x y Ae =;而222i λ=+是方程的单根,所以对应方程2489cos 2xy y ex '''-+=的特解应该设为22*(cos 2sin 2)x y xe B x C x =+;从而微分方程2489(1c o s 2)xy y ex '''-+=+的特解可设为2212***(cos 2sin 2)x x y y y Ae xe B x C x =+=++,应该选(C ).5.设(,)f x y 具有一阶偏导数,且对任意的(,)x y 都有(,)(,)0,0f x y f x y x y∂∂><∂∂,则( ) (A )(0,0)(1,0)f f > (B )(0,0)(1,1)f f < (C )(0,1)(1,0)f f > (D )(0,1)(1,0)f f <【详解】由条件对任意的(,)x y 都有(,)(,)0,0f x y f x y x y∂∂><∂∂可知(,)f x y 对于x 是单调增加的,对y 就单调减少的.所以(1,1)(1,0)(0,0),(1,1)(0,1)(0,0),(0,1)(0,0)(1,0)f f f f f f f f f <>><<<,只有第三个不等式可得正确结论(D ),应该选(D ).6.甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:米)处,如图中,实线表示甲的速度曲线1()v v t =(单位:米/秒),虚线表示乙的速度曲线2()v v t =(单位:米/秒),三块阴影部分的面积分别为10,20,3,计时开始后乙追上甲的时刻为0t ,则( ) (A )010t = (B )01520t << (C )025t = (D )025t >【详解】由定积分的物理意义:当曲线表示变速直线运动的速度函数时,21()()T T S t v t dt =⎰表示时刻[]12,T T 内所走的路程.本题中的阴影面积123,,S S S -分别表示在时间段[][][]0,10,10,25,25,30内甲、乙两人所走路程之差,显然应该在25t =时乙追上甲,应该选(C ).7.设A 为三阶矩阵,()123,,P ααα=为可逆矩阵,使得1000010002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则123()A ααα++=( ) (A )12αα+ (B )232αα+ (C )23αα+ (D )132αα+ 【详解】显然这是矩阵相似对角化的题目.可知()()12312323000000(,,)010,,0100,,2002002A AP P αααααααα⎛⎫⎛⎫⎪ ⎪==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以12312323()2A A A A αααααααα++=++=+,所以可知选择(B ).8.已知矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100020002C ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A ),A C 相似,,B C 相似 (B ),A C 相似,,B C 不相似 (C ),A C 不相似,,B C 相似 (D ),A C 不相似,,B C 不相似【详解】矩阵,A B 的特征值都是1232,1λλλ===.是否可对解化,只需要关心2λ=的情况.对于矩阵A ,0002001001E A ⎛⎫⎪-=- ⎪ ⎪⎝⎭,秩等于1 ,也就是矩阵A 属于特征值2λ=存在两个线性无关的特征向量,也就是可以对角化,也就是~A C .对于矩阵B ,010*******E B -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,秩等于2 ,也就是矩阵A 属于特征值2λ=只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.曲线2(1arcsin )y x x=+的斜渐近线为 .解:2(1arcsin )lim lim1x x x y x x x →∞→∞+==,2lim()lim arcsin 2x x y x x x →∞→∞-==,所以斜渐近线为2y x =+. 10.设函数()y y x =由参数方程sin t x t e y t⎧=+⎨=⎩确定,则202|t d ydx == .【详解】223cos 1cos (1)sin cos ,1(1)t t t t t t d e dy t d y e t e t dt dx dx e dx e dt⎛⎫ ⎪+⎝⎭++===-++,所以2021|8t d y dx ==-. 112ln(1)(1)x dx x +∞++⎰.【详解】022000ln(1)1ln(1)1ln(1)|1(1)11(1)x x dx x d dx x x x x +∞+∞+∞+∞++=-+=-+=++++⎰⎰⎰ 12.设函数(,)f x y 具有一阶连续的偏导数,且已知(,)(1)y ydf x y ye dx x y e dy =++,(0,0)0f =,则(,)f x y =【详解】(,)(1)()yyydf x y ye dx x y e dy d xye =++=,所以(,)yf x y xye C =+,由(0,0)0f =,得0C =,所以(,)yf x y xye =. 13.11tan y xdy dx x=⎰⎰. 【详解】交换二重积分的积分次序得:1111100000tan tan tan ln cos ln cos1.x y x x dy dx dx dy xdx x x x ===-=-⎰⎰⎰⎰⎰14.设矩阵41212311A a -⎛⎫ ⎪= ⎪ ⎪-⎝⎭的一个特征向量为112⎛⎫ ⎪⎪⎪⎝⎭,则a = .【详解】根据特征向量的定义,有412111121132311222A a a αλ-⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪===+ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,解得1a =-.三、解答题 15.(本题满分10分)求极限0lim t x dt +→【详解】令x t u -=,则,t x u dt du =-=-,t x u dt du -=⎰⎰00002limlim limlim 33t x u u x x x x x dt e du du ++++---→→→→==== 16.(本题满分10分)设函数(,)f u v 具有二阶连续偏导数,(,cos )xy f e x =,求0|x dydx=,202|x d y dx =.【详解】12(,cos )(,cos )(sin )x x x dy f e x e f e x x dx ''=+-,01|(1,1)x dyf dx='=; 2111122222122(,cos )((,cos )sin (,cos ))cos (,cos )sin (,cos )sin (,cos )x x x x x x x x x x d y e f e x e f e x e xf e x xf e x dx xe f e x xf e x ''''''=+--''''-+2011122|(1,1)(1,1)(1,1)x d yf f f dx=''''=+-.17.(本题满分10分) 求21limln 1nn k kk nn →∞=⎛⎫+ ⎪⎝⎭∑ 【详解】由定积分的定义120111201lim ln 1lim ln 1ln(1)11ln(1)24nn n n k k k k k k x x dx n n n n n x dx →∞→∞==⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭=+=∑∑⎰⎰18.(本题满分10分)已知函数()y x 是由方程333320x y x y +-+-=. 【详解】在方程两边同时对x 求导,得2233330x y y y ''+-+= (1)在(1)两边同时对x 求导,得2222()0x y y y y y '''''+++=也就是222(())1x y y y y '+''=-+令0y '=,得1x =±.当11x =时,11y =;当21x =-时,20y = 当11x =时,0y '=,10y ''=-<,函数()y y x =取极大值11y =; 当21x =-时,0y '=,10y ''=>函数()y y x =取极小值20y =. 19.(本题满分10分)设函数()f x 在区间[]0,1上具有二阶导数,且(1)0f >,0()lim 0x f x x-→<,证明:(1)方程()0f x =在区间()0,1至少存在一个实根;(2)方程2()()(())0f x f x f x '''+=在区间()0,1内至少存在两个不同实根.证明:(1)根据的局部保号性的结论,由条件0()lim 0x f x x-→<可知,存在01δ<<,及1(0,)x δ∈,使得1()0f x <,由于()f x 在[]1,1x 上连续,且1()(1)0f x f ⋅<,由零点定理,存在1(,1)(0,1)x ξ∈⊂,使得()0f ξ=,也就是方程()0f x =在区间()0,1至少存在一个实根;(2)由条件0()lim 0x f x x-→<可知(0)0f =,由(1)可知()0f ξ=,由洛尔定理,存在(0,)ηξ∈,使得()0f η'=;设()()()F x f x f x '=,由条件可知()F x 在区间[]0,1上可导,且(0)0,()0,()0F F F ξη===,分别在区间[][]0,,,ηηξ上对函数()F x 使用尔定理,则存在12(0,)(0,1),(,)(0,1),ξηξηξ∈⊂∈⊂使得1212,()()0F F ξξξξ''≠==,也就是方程2()()(())0f x f x f x '''+=在区间()0,1内至少存在两个不同实根.20.(本题满分11分)已知平面区域{}22(,)|2D x y x y y =+≤,计算二重积分2(1)Dx d σ+⎰⎰ 【详解】由于积分区域关于y 轴左右对称,所以由二重积分对称性可知20Dxd σ=⎰⎰.所以2sin 2222044224620(1)(1)(cos 1)2sin cos 2sin 4(4sin 4sin 2sin )54DDx d x d d r rdrd d πθππσσθθθθθθθθθθπ+=+=+⎛⎫=+ ⎪⎝⎭=-+=⎰⎰⎰⎰⎰⎰⎰⎰其中利用瓦列斯公式,知24600013135315sin ,sin ,sin 2242864216d d d ππππππθθπθθπθθπ⨯⨯⨯=⨯==⨯==⨯=⨯⨯⨯⎰⎰⎰21.(本题满分11分)设()y x 是区间30,2⎛⎫ ⎪⎝⎭上的可导函数,且(1)0y =.点P 是曲线:()L y y x =上的任意一点,L 在点P 处的切线与y 轴相交于点()0,P Y ,法线与X 轴相交于点(),0P X .若P p X Y =,求L 上的点的坐标(,)x y 满足的方程.【详解】曲线过点(,)P x y 的切线方程为()()()Y y x y x X x '-=-,令0X =,得()()p Y y x xy x '=-; 曲线过点(,)P x y 的法线方程为1()()()Y y x X x y x -=--',令0Y =,得()p X x yy x '=+. 由条件P p X Y =,可得微分方程y xy x yy ''-=+标准形为11ydy x y xy y dx x y x--+'===++,是个一阶齐次型微分方程. 设y u x =,方程化为11du u u x dx u -+=+,整理,得211du u x dx u +=-+ 分离变量,两边积分,得1arctan ln ln ln 2u u x C +=-+ 由初始条件(1)0y =,得1,0,0x y u ===,确定常数1C = 所以曲线的方程为1arctan ln ln 2y yx x x+=-. 22.(本题满分11分)设三阶矩阵()123,,A ααα=有三个不同的特征值,且3122.ααα=+ (1)证明:()2r A =;(2)若123,βααα=+,求方程组Ax β=的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ≥.假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ≥,又因为31220ααα-+=,也就是123,,ααα线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220ααα-+=,所以基础解系为121x ⎛⎫ ⎪= ⎪ ⎪-⎝⎭;又由123,βααα=+,得非齐次方程组Ax β=的特解可取为111⎛⎫ ⎪⎪ ⎪⎝⎭;方程组Ax β=的通解为112111x k ⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,其中k 为任意常数.23.(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换x Q y =下的标准形为221122y y λλ+,求a 的值及一个正交矩阵Q .【详解】二次型矩阵21411141A a -⎛⎫⎪=- ⎪ ⎪-⎝⎭因为二次型的标准形为221122y y λλ+.也就说明矩阵A 有零特征值,所以0A =,故 2.a =114111(3)(6)412E A λλλλλλλ---=+=+---令0E A λ-=得矩阵的特征值为1233,6,0λλλ=-==.通过分别解方程组()0i E A x λ-=得矩阵的属于特征值13λ=-的特征向量1111ξ⎛⎫⎪=-⎪⎪⎭,属于特征值特征值26λ=的特征向量2101ξ-⎛⎫⎪=⎪⎪⎭,30λ=的特征向量3121ξ⎛⎫⎪=⎪⎪⎭. 所以()123,,0Q ξξξ⎛ == ⎝为所求正交矩阵.。
2018年全国硕士研究生入学考试数学二真题及答案

2
2
(C)当 f (x) 0 时, f (1) 0 (D)当 f (x) 0时, f (1) 0
2
2
【答案】( D )
【解析一】有高于一阶导数的信息时,优先考虑“泰勒展开”。从选项中判断,展开点为 x0
1 2
。
将函数
f
( x) 在
x0
1
处展开,有
2
f (x) f (1) f (1)(x 1) f ( ) (x 1)2 ,其中 1 x 。
1
ex ax2 bx1
ex ax2 bx1
x2
elim x0
ex
ax2 bx1 x2
,
x0
因此,
lim
ex
ax2
bx
1
0
lim
x
1 2
x2
ax2
bx
(x2 )
0
x0
x2
x0
x2
lim
x0
(1 2
a)x2
(1 x2
b)x
(x2)
0
1 2
a
0,1
b
0
或用“洛必达”: lim x0
ex
ax2 x2
x b 1, x 0
则 F(1) 1 a, F(0) 1 b, F(1 0) 2, F(0 0) 1,
因为函数连续,所以极限值等于函数值,即1 a 2,1 b 1 a 3,b 2 ,
故选 (D).
4.
设函数
f
(
x)
在
[0,1]
上二阶可导。且
1
0
f
( x)dx
0 ,则
()
(A)当 f (x) 0 时, f (1) 0 (B)当 f (x) 0 时, f (1) 0
考研数学二模拟题2018年(1)_真题(含答案与解析)-交互

考研数学二模拟题2018年(1)(总分100, 做题时间90分钟)一、填空题1.SSS_FILL分值: 1.[解析]2.设f(x)连续,且,则f(7)=______.SSS_FILL分值: 1. [解析] 等式,两边对x求导,得3x 2 f(x 3 -1)=1.令x=2得12f(7)=1,则.3.SSS_FILL分值: 1-3f(cos3x)sin3x.[解析] 由变上限积分求导法可知4.设f(x)连续,则SSS_FILL分值: 1xf(x 2 ). [解析] 令u=x 2 -t 2,du=-2tdt.当t=0时,u=x 2,当t=x 时,u=0.故本题属于要先作换元然后才能求导的类型.5.设函数f(x)连续,.若φ(1)=1,φ"(1)=5,则f(1)=______.SSS_FILL分值: 12. [解析] 改写,由变限积分求导法得由得f(1)=2.6.由曲线y=xe x与直线y=ex所围成图形的面积S=______.SSS_FILL分值: 1. [解析] 由xe x =ex可知x(e x -e)=0.则x=0或x=1.故二、选择题1.设,其中f(x)连续,s>0,t>0,则I的值SSS_SINGLE_SELA 依赖于s,t.B 依赖于s,t,x.C 依赖于t,x,不依赖于s.D 依赖于s,不依赖于t.分值: 1答案:D[解析] ,由此可见,I的值只与s有关,所以应选D.2.设函数记,0≤x≤2,则A.B.C.D.SSS_SIMPLE_SINA B C D分值: 1答案:B[解析] 当0≤x≤1时,;当1<x≤2时,.由此可见应选B.f(x)在[0,2]上可积,则在[0,2]上连续,于是排除A,C,D.3.设f(x)连续,,则F"(x)等于•**(x4).•**(x4).•**(x4).**(x2).SSS_SIMPLE_SINA B C D分值: 1答案:C[解析] 由知F"(x)=2xf(x 4 ).故应选C.4.已知设,则F(x)为A.B.C.D.SSS_SIMPLE_SINA B C D分值: 1答案:D[解析]所以应选D.f(x)在[0,2]上可积,则在[0,2]上连续,于是排除A,B,C.5.设函数f(x)连续,则下列函数中,必为偶函数的是A.B.C.D.SSS_SIMPLE_SINA B C D分值: 1答案:D[解析] 设,则即F(x)是偶函数,D是正确的.类似方法可以证明A,C均为奇函数.而对B中的函数,因为由所给条件不能推出为偶函数.6.设f(x)是奇函数,除x=0外处处连续,x=0是其第一类间断点,则是SSS_SINGLE_SELA 连续的奇函数.B 连续的偶函数.C 在x=0间断的奇函数.D 在x=0间断的偶函数.分值: 1答案:B[解析] 解法1 取函数它满足题设条件,则是一个连续的偶函数,从而排除了选项A,C,D,故选B.解法2 显然f(x)在任何有限区间[a,b]上都可积,于是连续;又因f(x)是奇函数,则是偶函数,故选B.7.设函数y=f(x)在区间[-1,3]上的图形如图所示.则函数的图形为A.B.C.D.SSS_SIMPLE_SINA B C D分值: 1答案:D[解析] 根据题中函数y=f(x)的图形,可知函数在除了x=0,x=2两点外可导,且F"(x)=f(x).由此可知:函数F(x)在(-1,0)内单调递增,在(0,1)内单调递减,在(1,2)内单调递增,在(2,3)内恒为常数.由于函数F(x)连续,且F(0)=0,所以正确选项只能是D.8.设函数,则SSS_SINGLE_SELA x=π是函数F(x)的跳跃间断点.B x=π是函数F(x)的可去间断点.C F(x)在x=π处连续但不可导.D F(x)在x=π处可导.分值: 1答案:C9.曲线y=x(x-1)(2-x)与x轴所围图形面积可表示为A.B.C.D.SSS_SIMPLE_SINA B C D分值: 1答案:C[解析] y=x(x-1)(2-x)与x轴的交点为x=0,x=1,x=2,因此该曲线与x轴围成的面积为所以应选C.10.由曲线与x轴围成的平面图形绕x轴旋转而成的旋转体的体积为A.B.C.D.SSS_SIMPLE_SINA B C D分值: 1答案:B[解析]11.曲线与x轴所围成的图形,绕x轴旋转一周所成旋转体的体积为A.B.π.C.D.π 2.SSS_SIMPLE_SINA B C D分值: 1答案:C[解析]12.设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m(m为常数),由曲线y=g(x),y=f(x),x=a及x=b所围平面图形绕直线y=m旋转而成的旋转体体积为A.B.C.D.SSS_SIMPLE_SINA B C D分值: 1答案:B[解析] 先画草图如图所示,对x积分。
2018考研数学二真题答案解析二重积分

2018考研数学二真题答案解析:二重积分来源:文都教育在2018考研数学(二)的真题中,二重积分的题型十分新颖(第17题),难度大,文都教育的数学老师给出该题的解析:17.(本题满分10分)设平面区域D 由曲线sin ,2π1cos x t t t y t =-⎧≤≤⎨=-⎩(0)与x 轴围成,计算二重积分(2)d d Dx y x y +⎰⎰。
解:(利用形心坐标)d d d d d d d d D D D D x x y x x x y x x y x y=⇒=⎰⎰⎰⎰⎰⎰⎰⎰, 而πx =,于是()()2π0d d πd d π1cos d sin D D x x y x y t t t ==--⎰⎰⎰⎰⎰()()2π2π2200π1cos d π12cos cos d t t t t t =-=-+⎰⎰22001cos 2π22sin 2t t dt πππ+⎡⎤=-+⎢⎥⎣⎦⎰ 2π201sin 22π2π03π2t t ⎡⎤+⎢⎥=++=⎢⎥⎢⎥⎣⎦2π()2π2()00002d d d 2d d y x y x D y x y x y y y x ==⎰⎰⎰⎰⎰ 2π2π2200()d (1cos ).(sin )y x x t d t t ==--⎰⎰()2π2π32300(1cos )d 13cos 3cos cos d t t t t t t =-=-++⎰⎰[]()2π2π2π20001cos 23sin 3d 1sin dsin 2t t t t t t +=-+++⎰⎰ 2π+3π05π.=+=于是:()22d d 3π5π.Dx y r y +=+⎰⎰该题积分区域的上部边界曲线采用了参数方程形式,故使得这个二重积分的题型十分新颖,上述解答的思路是先不管具体的参数方程,直接化为累次积分,计算出内层积分,然后在计算外层积分时把上部曲线的参数方程代入,转化为关于t 的定积分。
考研数学历年真题2017年2018年2019年真题和答案(数学二)

目录2017年全国硕士研究生招生考试数学(二)试题 (1)2018年全国硕士研究生招生考试数学(二)试题 (8)2019年全国硕士研究生招生考试数学(二)试题 (15)2017年全国硕士研究生招生考试数学(二)试题一、选择题(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项的字母填在答题纸指定的括号内。
)1.若函数10,(), 0x f x axb x ⎧->⎪=⎨⎪≤⎩0x =在处连续,则( ) A.12ab =B.12ab =-C.0ab =D.2ab =2.设二阶可导函数()f x 满足(1)(1)1,(0)1,0,f f f f x ''=-==->且()则( ). A.1-1()0f x dx >⎰B.1-1()0f x dx <⎰C.11()()f x dx f x dx ->⎰⎰ D.110()()f x dx f x dx -<⎰⎰3.设数列{}n x 收敛,则( ).A.n n limsin 0lim 0n n x x →∞→∞==当时,B.(lim 0lim 0n n n n x x →∞→∞==当时,C.()2lim 0lim 0n n n n n x x x →∞→∞+==当时,D.()lim sin 0lim 0n n n n n x x x →∞→∞+==当时, 4.微分方程()24+81cos2xy y y e x '''-=+的特解可设为*y =().A.()22cos2sin 2xx Ae e B x C x ++ B.()22cos2sin 2xx Axee B x C x ++ C.()22cos2sin 2xx Aexe B x C x ++D.()22cos2sin 2xx Axexe B x C x ++5.设(),f x y 具有一阶偏导数,且任意的(),x y 都有()(),,0,0,f x y f x y x y∂∂><∂∂则( ).A.()()0,01,1f f >B.()()0,01,1f f <C.()()0,11,0f f >D.()()0,11,0f f <6.甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m),图中,实践表示甲的速度曲线()1v v t =(单位m/s ),虚线表示乙的速度曲线 ()2,v v t = 三块阴影部分面积的数值依次为10,20,3,计时开始后乙追甲的时刻为0t (单位:s),则( ).A.010t =B.01520t <<C.025t =D.025t >7.设A 为3阶矩阵, ()123,,P ααα= 为可逆矩阵,使得1000010,002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭则()123A ααα++=( ).A.12+ααB.13+2ααC.23+ααD.13+2αα8.已知矩阵200210100021020020001001002A B C ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,则( ).A. A C B C 与相似,与相似B. A C B C 与相似,与不相似C. A C B C 与不相似,与相似D. A C B C 与不相似,与不相似二、填空题(9~14小题,每小题4分,共24分。
2018年考研数学一二三真题解析及点评(史上最强版)

证明数列收敛只有唯一的方法:证明数列单调有界。 《金讲》17页予以重要说明并给出两道难度高于本题 的同型例题详解,本题再不济,直接用第一问的结论 求出第二问的结果应该是一丝难度都没有。
数一第20题 数三第20题 数二第22题
《金讲》403-405页不仅给出了通用性齐次 方程组的详细解题过程,还给予具体具体方 程解析示例,详细程度超越市面任何一本数 学参考书,足以解答任何复杂齐次方程组。
本质 一样
数一第18题
(Ⅰ)是简单一阶微分方程求解,直接套公式即得, 送分题;(Ⅱ)不定积分函数与变现积分函数的灵活 转换,需要对两者关系有较深度地掌握方可轻易转 换,稍有难度,本题完整证明出来的同学应该不超 过万分之一。
较 难 题
考查不等式的证明,具有天然的难题属性。但 《金讲》在142页对这类题型设了一个专题给予 了本质性的总结,任何不等式证明本质都可以归 结到两类情况,每类情况的证明有唯一思路,因 此,不等式证明对于《金讲》读者不太可能成为 难题,但《金讲》以外,没有任何参考书做过这 种深度总结,因此本道题对于有些人是难题。
数二第18题
数三第18题
简单函数的级数展开并求通项。展开部分直接套公 式,属于送分。求通项虽偶有难度,但任何求通项 都可以通过适当展开进行归纳这一万能方法,在 《金讲》 中有强调,所以也属于半送分。《金讲》 254页至259页用了一个重点专题予以详解本考点, 足以解决任何函数的展开式。
数一第19题 数三第19题 数二第21题
数二第20题
考查微分的基本应用,将题目 内容用数学式子表示出来,问 题就转化为了最简单的微分或 积分问题,本题几乎是《金 讲》配套暑期集训讲义中的原 题。
数一第11题
考查旋度公式的记忆,直接用 旋度公式计算即得答案。旋度 公式的详细计算公式参见《金 讲》288页,属送分题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】
(21)(本题满分11分)设 是区间 内的可导函数,且 ,点 是曲线L: 上任意一点,L在点P处的切线与y轴相交于点 ,法线与x轴相交于点 ,若 ,求L上点的坐标 满足的方程。
【答案】
【解析】设 的切线为 ,令 得 ,法线 ,令 得 。由 得 ,即 。令 ,则 ,按照齐次微分方程的解法不难解出 ,
故特解为: 选C.
(5)设 具有一阶偏导数,且对任意的 ,都有 ,则
(A) (B) (C) (D)
【答案】C
【解析】 是关于 的单调递增函数,是关于 的单调递减函数,
所以有 ,故答案选D.
(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中实线表示甲的速度曲线 (单位: ),虚线表示乙的速度曲线 ,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为 (单位:s),则()
2017年全国硕士研究生入学统一考试数学二试题解析
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
(1))若函数 在 处连续,则()
(A) (B) (C) (D)
【答案】A
【解析】 在 处连续 选A.
(2)设二阶可导函数 满足 且 ,则()
,
由 ,可得A的属于特征值-3的特征向量为 ;
由 ,可得A的属于特征值6的特征向量为
由 ,可得A的属于特征值0的特征向量为
令 ,则 ,由于 彼此正交,故只需单位化即可: ,
则 ,
2018年金榜题名。
【答案】B
【解析】
为偶函数时满足题设条件,此时 ,排除C,D.
取 满足条件,则 ,选B.
(3)设数列 收敛,则()
当 时, 当 时,
当 时, 当 时,
【答案】D
【解析】特值法:(A)取 ,有 ,A错;
取 ,排除B,C.所以选D.
(4)微分方程的特解可设为
(A) (B)
(C) (D)
【答案】A
【解析】特征方程为:
(22)(本题满分11分)设3阶矩阵 有3个不同的特征值,且 。
证明:
若 ,求方程组 的通解。
【答案】(I)略;(II)通解为
【解析】
(I)证明:由 可得 ,即 线性相关,
因此, ,即A的特征值必有0。
又因为A有三个不同的特征值,则三个特征值中只有1个0,另外两个非0.
且由于A必可相似对角化,则可设其对角矩阵为
因为 ,∴A可相似对角化,即
由 可知B特征值为2,2,1.
因为 ,∴B不可相似对角化,显然C可相似对角化,∴ ,但B不相似于C.
二、填空题:914小题,每小题4分,共24分,请将答案写在答题纸指定位置上.
(9)曲线 的斜渐近线方程为_______
【答案】
【解析】
(10)设函数 由参数方程 确定,则 ______
(15)(本题满分10分)求极限
【答案】
【解析】 ,令 ,则有
(16)(本题满分10分)设函数 具有2阶连续偏导数, ,求 ,
【答案】
【解析】
结论:
(17)(本题满分10分)求【 Nhomakorabea案】【解析】
(18)(本题满分10分)已知函数 由方程 确定,求 的极值
【答案】极大值为 ,极小值为
【解析】
两边求导得:
(1)
令 得
对(1)式两边关于x求导得 (2)
将 代入原题给的等式中,得 ,
将 代入(2)得
将 代入(2)得
故 为极大值点, ; 为极小值点,
(19)(本题满分10分)设函数 在区间 上具有2阶导数,且 ,证明:
方程 在区间 内至少存在一个实根;
方程 在区间 内至少存在两个不同实根。
【答案】
【解析】
【答案】
【解析】
(11) _______
【答案】1
【解析】
(12)设函数 具有一阶连续偏导数,且 , ,则
【答案】
【解析】 故
,
因此 ,即 ,再由 ,可得
【答案】
【解析】
(13)
【答案】 .
【解析】交换积分次序:
.
(14)设矩阵 的一个特征向量为 ,则
【答案】-1
【解析】设 ,由题设知 ,故
故 .
三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.
(I) 二阶导数,
解:1)由于 ,根据极限的保号性得
有 ,即
进而
又由于 二阶可导,所以 在 上必连续
那么 在 上连续,由 根据零点定理得:
至少存在一点 ,使 ,即得证
(II)由(1)可知 , ,令 ,则
由罗尔定理 ,则 ,
对 在 分别使用罗尔定理:
且 ,使得 ,即
在 至少有两个不同实根。
得证。
(20)(本题满分11分)已知平面区域 计算二重积分 。
(A) (B) (C) (D)
【答案】B
【解析】从0到 这段时间内甲乙的位移分别为 则乙要追上甲,则
,当 时满足,故选C.
(7)设 为三阶矩阵, 为可逆矩阵,使得 ,则 ()
(A) (B) (C) (D)
【答案】B
【解析】
,
因此B正确。
(8)设矩阵 ,则()
(A) (B)
(C) (D)
【答案】B
【解析】由 可知A的特征值为2,2,1,
∴
(II)由(1) ,知 ,即 的基础解系只有1个解向量,
由 可得 ,则 的基础解系为 ,
又 ,即 ,则 的一个特解为 ,
综上, 的通解为
(23)(本题满分11分)设二次型 在正交变换 下的标准型 ,求 的值及一个正交矩阵 .
【答案】
【解析】
,其中
由于 经正交变换后,得到的标准形为 ,
故 ,
将 代入,满足 ,因此 符合题意,此时 ,则